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The phonon-bottleneck problem in the relaxation of two-level systems �spins� via direct phonon processes is
considered numerically in the weak-excitation limit where the Schrödinger equation for the spin-phonon
system simplifies. The solution for the relaxing spin excitation p�t�, emitted phonons nk�t�, etc., is obtained in
terms of the exact many-body eigenstates. In the absence of phonon damping �ph and inhomogeneous broad-
ening, p�t� approaches the bottleneck plateau p��0 with strongly damped oscillations, the frequency being
related to the spin-phonon splitting � at the avoided crossing. For any �ph�0, one has p�t�→0, but in the case
of strong bottleneck, the spin relaxation rate is much smaller than �ph and p�t� is nonexponential. Inhomoge-
neous broadening exceeding � partially alleviates the bottleneck and removes oscillations of p�t�. The line-
width of emitted phonons as well as � increase with the strength of the bottleneck, i.e., with the concentration
of spins.
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I. INTRODUCTION

Spin-lattice relaxation is an old and much studied problem
that currently received a resurge in attention because of its
vital importance in quantum information processing �see,
e.g., Ref. 1, and references therein�. Theoretical description
of the spin-lattice relaxation as a single-spin process is, in
many cases, insufficient because of the collective effects of
incoherent and coherent nature, such as the phonon
bottleneck2 and superradiance,3 respectively.

The problem of phonon bottleneck �PB� in relaxation of
two-level systems �henceforth spins� via direct phonon emis-
sion and/or absorption processes, first recognized by Van
Vleck2 in 1941, remains unsolved until now. In short, if the
emitted phonons have nowhere to go, they are absorbed by
spins again and, thus, the spins cannot relax efficiently. How-
ever transparent this picture might appear, it is not easy to
propose a theoretical description of the effect based on first
principles.

Published theories of the PB4–8 use ad hoc rate equations
for populations of spins and resonant phonons, considering
the latter as a single dynamical variable. This is certainly an
oversimplification, because the emitted phonons, having fre-
quencies �k, form a group with a bell-like line shape with
some width, centered around the spin transition frequency
�0. For a single spin embedded into an infinite elastic matrix
�as well as for a decaying atomic state in free space�, this line
shape is Lorentzian with the width � /2, where � is the
single-spin decay rate following the Fermi golden rule.9,10

However, in the case of many spins with a concentration
sufficient to create a bottleneck, the line shape and linewidth
of emitted phonons are unknown and should follow from the
solution of the problem.

Van Vleck came to the idea of the phonon bottleneck
comparing the rate of energy transfer from spins to phonons
�obtained using experimental data� with the phonon relax-
ation rate �ph due to different mechanisms, and he found the
latter to be typically too small to keep the phonon subsystem
at equilibrium. However, the primary role in the PB problem

belongs to another parameter that is not related to the phonon
relaxation rate. This parameter is of a statistical origin and is
defined as the ratio of the number of spins to the number of
phonon modes within the single-spin linewidth �.11 If this
so-called bottleneck parameter B is vanishingly small, the
spin excitation goes over into the phonon subsystem and
never returns. In this case, spins completely relax even with-
out any phonon damping. However, for nonzero B and �ph
=0, the spin relaxation ends in the so-called bottleneck pla-
teau that corresponds to a quasiequilibrium between spins
and resonant phonons, but not to the complete equilibrium.
Further relaxation to the complete equilibrium can be
achieved only if �ph is taken into account. It should be
stressed that the effective relaxation rate of the spins in this
case is not �ph. It is much smaller, and can be estimated as
�ph multiplied by the small fraction of phonon modes in the
total number of modes �phonons+spins� involved in the pro-
cess.

Although in many practical situations the number of reso-
nant phonon modes is determined by the inhomogeneous
broadening of spin levels, the pure spin-phonon model with-
out inhomogeneous broadening has a fundamental impor-
tance. It was shown11 that this model cannot be described
kinetically �i.e., in terms of spin and phonon populations
only� because of long-memory effects. In Ref. 11, memory
effects have been taken into account within a minimal ap-
proximation, adding a new variable that can be interpreted as
spin-phonon correlator. Analytical and numerical solutions of
the resulting reversible dynamical equations show that the
spin excitation approaches the bottleneck plateau with
damped oscillations. Inclusion of an ad hoc phonon damping
�ph into the bottleneck equations allows one to describe the
second stage of the relaxation toward the complete equilib-
rium.

Still, the solution of the PB problem in Ref. 11 is not
completely satisfactory since it cannot produce a well-
behaved line shape of emitted phonons. This indicates that
additional nondiagonal correlators should be taken into ac-
count that will make the description more complicated. An-
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other important factor that should be taken into account is
the inhomogeneous broadening of the spin levels.

This paper presents the exact numerical solution of the
phonon-bottleneck problem based on the Schrödinger equa-
tion for the spin-phonon system, with and without the ad hoc
phonon damping and inhomogeneous spin broadening. The
full Schrödinger equation for a many-body system is, of
course, intractable by direct methods because of too many
variables. However, the low-excited states of the system can
be described by a single excitation that is hopping between
spins and phonon modes. In this case, the Hilbert space of
the problem is severely truncated, and one has to work with
matrices the size of which is just the total number of spins
and phonon modes under consideration. This is the case con-
sidered here, and the solution of the PB problem is obtained
by matrix algebra using Wolfram MATHEMATICA. The results
of the calculations show that for the pure model, the spin
excitation approaches the bottleneck plateau with oscilla-
tions, however, less revealed than in Ref. 11. The linewidth
of emitted phonons broadens with the bottleneck parameter
B.

The structure of the rest of the paper is the following.
Section II sets up the Hamiltonian of the spin-phonon system
and the Schrödinger equation �SE� in the case of a single
excitation. The spin excitation and the initial conditions for
the problem are defined here. Section III presents the known
results for the relaxation of a single spin and for the energy
distribution of emitted phonons, used later for reference.
Section IV introduces the bottleneck parameter B for systems
of many spins from statistical arguments, both with and with-
out inhomogeneous spin broadening. Section V is the central
section of the paper introducing the matrix formalism for the
single-excitation spin-phonon problem. Here, the expressions
for the spin excitation p�t�, its asymptotic value p� �the
bottleneck plateau�, and the asymptotic populations of the
emitted phonons are obtained in terms of eigenvectors and
eigenvalues of the dynamical matrix of the system. General
analysis of the eigenstates of the dynamical matrix is done in
Sec. VI. It is shown here that the number of the phonon
modes “on speaking terms” with spins for the pure problem
increases with B, thus changing the statistical balance be-
tween spins and phonon modes. In this section, the formulas
describing the spectrum of the split spin-phonon modes and
the hybridization of different phonon modes with each other
�i.e., the scattering of phonons on spins� are obtained in
terms of the eigenstates of the dynamical matrix. Section VII
presents the results of numerical calculations for the pure
model, including the split spin-phonon modes with the gap,
time evolution of the spin excitation, bottleneck plateau, the
postplateau relaxation due to the phonon damping, and the
energy distribution of the emitted phonons in the pure model.
In Sec. VIII, the effects of the inhomogeneous spin broaden-
ing are considered. The latter is shown to wash out oscilla-
tions of the spin excitation p�t�. Section IX contains the
implementation of the general results to the spin relaxation
between adjacent spin levels in molecular magnets. In Sec.
X, further problems of collective spin-phonon relaxation are
discussed.

II. HAMILTONIAN AND SCHRÖDINGER EQUATION

Consider a spin-phonon Hamiltonian for NS two-level
systems �spins� placed at positions ri within an elastic body
of N cells

Ĥ = Ĥ0 + V̂ , �1�

where

Ĥ0 = −
1

2�
i

��0i�iz + �
k

��kak
†ak �2�

describes spins and harmonic phonons, � being the Pauli
matrix. The spin transition frequencies �i can differ from site
to site. One can represent them in the form

�0i = �0 + 	�0i, �3�

where 	�0i
�0 is the inhomogeneous broadening. Every-
where except Sec. VIII, we will use �0 as the spin transition
frequency instead of �0. Neglecting the processes that do not
conserve the energy �that can be done in cases of practical

significance, where V̂ can be treated as a perturbation�, one

can write V̂ in the rotating-wave approximation �RWA� as

V̂ = −
�

�N
�

i
�
k

�Aik
* Xi

01ak
† + AikXi

10ak� , �4�

where Aik�Vke−ik·ri. In the numerical work below, Vk will
be replaced by a constant, Vk⇒V. The operator X10��−

brings the spin from the ground state �↑ ���0��� 1
0

� to the
excited state �↓ ���1��� 0

1
�, while X01��+ does the oppo-

site. Note that the state with no phonons and all spins in the
ground state is the true ground state of the Hamiltonian
above.

Below, we will consider the low-excited states of the spin-
phonon system that can be described by a superposition of
the vacuum state of the system �0� �no phonons and all spins
in the ground state� and the states with one excitation that is
hopping between the spins and phonon modes. The wave
function of these states has the form

� = �c0 + �
i

ciXi
10 + �

k
ckak

†	�0� , �5�

where the coefficients satisfy the system of equations

dc0

dt
= i�0c0 �6�

and

ċi = − i	�0ici +
i

�N
�
k

Aikck,

ċk = − i��k −
i

2
�ph − �0	ck +

i
�N

�
i

Aik
* ci �7�

up to an irrelevant global phase factor. In the second equa-
tion, an ad hoc phonon damping �ph is included. Using a
damped Schrödinger equation for phonons can be justified
only at sufficiently low temperatures, so that only outgoing
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terms in phonon relaxation play a role. Even in this case, this
equation cannot be taken for granted because only inelastic
phonon processes should play a significant role in the PB,
while elastic processes do not lead to exchange of excitation
between resonant phonons and the rest of the phonon bath.

One can see that the ground-state coefficient c0 is decou-
pled from the other coefficients since the RWA Hamiltonian
conserves the excitation number

p�t� + �
k

nk�t� = const, �8�

where

p = �
i

�ci�2, nk = �ck�2 �9�

are the excitation number of the spin subsystem and popula-
tions of the phonon modes. One can also define transverse
spin polarization components by


�+� = 
X01� = c0
*�

i

ci


�−� = 
�+�*, 
�x� = Re
�+� , �10�

etc. The main part of the time dependence of 
�+� is e−i�0t.
The absolute value of the transverse spin component


��� � �
�x�2 + 
�y�2 = �
�+�� �11�

does not have this oscillating factor. In many practical situ-
ations, 
��� decays with time due to inhomogeneous broad-
ening. In the absence of the latter, the only source of the
decoherence is interaction with phonons.

Our task is to find the time evolution p�t� and 
���t start-
ing from a particular initial state. In this work, we restrict
ourselves to the initial states with no phonons, ck�0�=0. The
simplest initial condition in this case is one spin at site i0
excited and all other spins in their ground states:

ci0
�0� = 1, ci�i0

�0� = 0. �12�

Another kind of the initial spin state is the state with the
excitation equally distributed over all spins:

ci�0� = ei�i/�NS. �13�

The initial spin state with random phases,


ei��i−�j�� = 	ij , �14�

is called incoherent. If �i are constant or they periodically
change in space with some wave vector q0, the initial state is
coherent. One can consider other kinds of spin initial condi-
tions, say, excitation distributed over spins in some compact
region of space.

III. NONBOTTLENECKED SPIN-LATTICE RELAXATION

The results of this section can be found in the liter-
ature,9,10 still a concise description of the nonbottlenecked
spin-phonon dynamics is presented for the sake of consis-
tency and future reference.

A. Relaxation of a single spin

Suppose there is a single spin, ci=c, in the initially ex-
cited state. With a proper choice of the origin of the coordi-
nate system, one has Aik=Vk. Using the Schrödinger equa-
tion �7� with �ph→0, one can integrate the equations for the
phonon modes ck:

ck�t� =
iVk

*

�N
�

t0

t

dt�e−i��k−�0��t−t��c�t��

=
iVk

*

�N
�

0

t−t0

d
e−i��k−�0�
c�t − 
� �15�

and insert the result into the equation for the spin c:

ċ = −
1

N
�
k

�Vk�2�
0

t−t0

d
e−i��k−�0�
c�t − 
� . �16�

In this integrodifferential equation, c�t−
� is a slow
function of time, whereas the memory function f�
�
= �1 /N��k�Vk�2e−i��k−�0�
 is sharply peaked at 
=0. Thus, one
can replace c�t−
�⇒c�t�, after which integration over 
 and
keeping only real contribution responsible for the relaxation
yields the equation

ċ = −
�

2
c , �17�

where

� =
2�

N
�
k

�Vk�2	��k − �0� �18�

is the single-spin decay rate. For Vk=V independent of the
direction of k, � can be written as

� = 2��V�2�ph��0� , �19�

where

�ph��� =
1

N
�
k

	��k − �� �20�

is the phonon density of states normalized by 1. The accu-
racy of the above short-memory approximation is justified by
�
�0. The 	 function in Eq. �18� implies that the spin is
relaxing to a large number of phonon modes so that summa-
tion is replaced by integration,

1

N
�
k

. . . ⇒� ddk

�2��d . . . , �21�

where d is spatial dimension. In small bodies with essentially
discrete phonon modes, Eq. �21� is invalid. The solution of
Eq. �17� with t0=0 is c�t�=e−��/2�t, which leads to a well-
known decay rule for the spin excitation

p�t� = e−�t. �22�

The rate of transverse spin relaxation according to Eqs. �10�
and �17� is � /2.

A similar elimination of phonons can be performed in the
case of many spins in the absence of the PB.12 The resulting
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equations describe collective spin-phonon relaxation, includ-
ing superradiance.3

B. Distribution of emitted phonons

After the time dependence c�t� has been found, one can
return to Eq. �15� and calculate ck�t�. With t0=0, the result is

ck�t� =
iVk

*

�N

e−i��k−�0�t − e−�t/2

− i��k − �0� + �/2
. �23�

This leads to the distribution of emitted phonons

nk�t� = �ck�t��2 =
�Vk�2

N

1 − 2e−�t/2 cos���k − �0�t
 + e−�t

��k − �0�2 + �2/4
�24�

that asymptotically becomes the Lorentzian function

nk =
1

N

�Vk�2

��k − �0�2 + �2/4
. �25�

With the help of Eqs. �22� and �24�, one can check that the
total excitation is conserved, in accordance with Eq. �8�. For
Vk=V, Eq. �25� can be rewritten as

nk =
1

�N�ph��0�
�/2

��k − �0�2 + �2/4
. �26�

IV. PHONON BOTTLENECK

Let us now turn to systems with a macroscopic number of
spins NS. At least in the case of diluted spins, the relaxation
is controlled by the bottleneck parameter B that can be de-
fined as the ratio of the number of spins NS to the number of
phonon modes N� within the natural spin linewidth � of Eq.
�18�,

N� = �N�ph��0�� , �27�

where �ph��� is given by Eq. �20�. That is,11

B �
NS

N�

=
NS

�N�ph��0��
=

nS

��ph��0��
, �28�

nS=NS /N being the number of spins per unit cell. The defi-
nitions above pertain to a single phonon branch, and exten-
sion to several phonon branches is obvious. For B�1 �see
below�, N� is the estimation of the number of phonon modes
that can exchange excitation with spins.

In the case of a single spin, NS=1, in a macroscopic �N
→�� matrix, the parameter B is vanishingly small. The ex-
citation, initially localized at the spin, spreads with time over
a large number N� of resonant phonon modes, so that the
spin relaxes completely according to Eq. �22�. In simula-
tions, the macroscopic limit is achieved if the average dis-
tance between the neighboring phonon modes becomes
smaller than the natural linewidth �

1

N�ph��0�

 � . �29�

If the sample is so small that the spin can exchange excita-
tion with only a few phonon modes, N��1, it does not relax

completely. In this case, one has B�1, the so-called phonon-
bottleneck situation. The simplest realization of the bottle-
neck is a system of two resonant states in which the excita-
tion oscillates between the two states in time. If NS is
macroscopic but still NS
N� and, thus, B
1, the initial spin
excitation is transferred irreversibly into the phonon sub-
system, as is clear from statistical arguments. There is no
bottleneck for B
1, and the spin relaxation is still described
by Eq. �22�.

In the case of a finite concentration of spins nS, the pa-
rameter B can easily become large. In this case, only a small
fraction of the excitation migrates into the phonon subsystem
and the spins practically cannot relax as the emitted phonons
are being absorbed by spins again. For B�1, as we will
immediately see, the number of the phonon modes on speak-
ing terms with spins is not N� but much greater. The latter
can be obtained if one considers the spin-phonon hybridiza-
tion. Inserting the spin Fourier components bk��icie

ik·ri

into the Schrödinger equation �7� and neglecting the cou-
pling of modes with different values of k, i.e., using
�i�ie

i�k−q�·ri ⇒NS	�k−q� ��i=1 if site i is occupied by a spin
and zero otherwise�, one can reduce Eq. �7� to a 2�2 matrix
problem that can be easily diagonalized. The eigenstates of
this problem are hybridized spin-phonon modes with
frequencies13,14

�k
��� =

1

2
��k − �0 � ���k − �0�2 + �k

2� , �30�

where

�k = 2�nS�Vk� �31�

is the spin-phonon splitting. These modes have the form of a
straight line with a slope corresponding to phonons and a
horizontal line corresponding to spins. The lines have an
avoided level crossing at �k=�0, split by �k that depends on
the spin concentration. For Vk=V independent of the direc-
tion of k, one can eliminate �ph��0� from Eq. �28� with the
help of Eqs. �20� and �18�, and obtain the relation

B =
2nS�V�2

�2 =
�2

2�2 . �32�

For ���, the number of phonon modes strongly coupled
to spins can be estimated as

N� = �N�ph��0�
�

2
. �33�

If nS is so small that � falls below the natural spin linewidth
�, one cannot speak of the hybridized spin-phonon modes.
From Eq. �32�, one obtains

N� = N�
�B/2. �34�

The number of resonant phonons Nres that exchange excita-
tion with the spins can be estimated in the whole range of B
as

Nres = �N�, B � 1

N�, B � 1.
� �35�
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For any B�0, the spin excitation p�t� does not relax to
zero but reaches a plateau at some p� that, from the statisti-
cal equidistribution argument, can be estimated as

p� =
NS

NS + Nres
, �36�

with Nres defined above. We will see that this formula works
well both for B�1 and B�1, in the absence of the inhomo-
geneous broadening that will be considered in Sec. VIII. The
asymptotes of the above expression are

p� ��B , B 
 1

1 − 1/�2B , B � 1,
� �37�

in accordance with the numerical results of Sec. VII.
To describe the complete spin relaxation after the bottle-

neck plateau, one has to include the phonon relaxation pro-
cesses, the easiest way being ascribing an empirical relax-
ation rate �ph to the phonons, as was done in Eq. �7�. The
condition for suppression of the PB by the phonon damping
and recovering the single-spin relaxation, Eq. �22�, in the
case B�1 has the form11

� �
�

�ph

 1, �38�

where � is the average spin-phonon splitting �k �see Eqs.
�30� and �31�
. The ratio � is another bottleneck parameter
accounting for the phonon damping. With the help of Eq.
�32�, it can be rewritten in the form

� �
�B�

�ph
=

1

�ph
� nS�

��ph��0�

 1. �39�

Bottleneck parameters similar to but not coinciding with �
were used in literature8 as part of ad hoc rate equations. It
should be stressed that �ph describes inelastic phonon pro-
cesses that lead to exchange of excitation between the reso-
nant phonons and the rest of the phonon bath. The phonon
relaxation rate �ph increases with frequency �0.

V. DYNAMIC MATRIX AND THE TIME
EVOLUTION OF THE SYSTEM

For the numerical solution of Eq. �7�, it is convenient to
introduce the state vector C= ��ci� , �ck�� and rewrite Eq. �7�
in the form

dC

dt
= − i� · C , �40�

where � is the dynamical matrix of the spin-phonon system.
In the absence of phonon damping, � is Hermitian. Since the
number of discrete phonon modes is N, � is an �NS+N�
� �NS+N� matrix. There are three methods of numerical so-
lution of this equation that can be implemented in Wolfram
MATHEMATICA.

The first method is the direct numerical solution using one
of the ordinary-differential equation �ODE� solvers. This
method is fast, can be made much faster if MATHEMATICA is

replaced by one of programming languages, it does not re-
quire high accuracy, but it does not allow one to analytically
average over the random phases in Eq. �13�. This averaging
can only be done if one runs the calculation many times with
different realizations of initial conditions.

The second method is based on numerical calculation of
the matrix exponentials in the solution of Eq. �40�, C�t�
=e−i�tC�0�. This method is slower than the direct ODE so-
lution, it also does not require high accuracy, and, here, one
can average over the initial conditions analytically.

The third method uses the expansion of the solution C�t�
over eigenvectors of �. This method allows analytical aver-
aging over initial conditions; it is faster than the method
using matrix exponentials if formulated in a fully vectorized
form. However, this method requires high precision and, for
large matrices, it runs on 64-bit machines only. Note that
arbitrary-precision computations on 32-bit machines with
MATHEMATICA are possible, but they are very slow. An im-
portant advantage of this method is that it allows one to
obtain formulas for the asymptotic t→� state of the system
in terms of matrices.

Below, the method based on the eigenvectors of � will be
used. In the general case when the ad hoc phonon damping
�ph is added, � is non-Hermitian, and one has to distinguish
between right and left eigenvectors. The dynamical matrix �
has NS+N right eigenvectors R� that satisfy

� · R� = ��� − i��/2�R�. �41�

In the eigenvalues, the imaginary parts �� /2 originate
from �ph /2 in Eq. �7�. The size of the matrix � can be
reduced if the phonon modes far from the resonance are
dropped. The solution of Eq. �40� can be expanded over the
complete orthonormal set of R� as follows:

C�t� = �
�

R�e−�i��+��/2�tL� · C�0� , �42�

where L� are left eigenvectors of � that satisfy L� ·R�

=	��. Note that, in general, R� and L� are not complex
conjugate. The vectorized form of Eq. �42� is

C�t� = E · W�t� · E−1 · C�0� , �43�

where E is the right-eigenvector matrix composed of all
eigenvectors R� standing vertically, E−1 is the left-
eigenvector matrix, composed of all left eigenvectors lying
horizontally, and W�t� is the diagonal matrix with the ele-
ments e−�i��+���t. In fact, E ·W�t� ·E−1=e−i�t.

A. Longitudinal relaxation of spins

Now the spin excitation p�t� can be written with the help
of Eqs. �9� and �43� in the vectorized form

p�t� = „E · W�t� · E−1 · C�0�…S · �H.c.�S, �44�

where the subscript S means projection onto the spin sub-
space. Equation �44� can be used for a fast computation. For
the incoherent initial condition, Eqs. �13� and �14�, one ob-
tains
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p�t� =
1

NS
TrS�„E · W�t� · E−1

…S · �H.c.�S
 , �45�

where the trace is taken over spin indices only. A more ex-
plicit form of Eq. �44� is

p�t� = �
��

e−���+���t/2 cos���� − ���t
�
n=1

NS

R�n
* R�n

� �
n�=1

NS

L�n�Cn��0� �
n�=1

NS

L�n�
* Cn�

* �0� . �46�

In the absence of phonon damping, ��=0, there is a nonzero
asymptotic value of p that can be obtained from the equation
above by dropping all oscillating terms, i.e., setting �=�.
This corresponds to the diagonal density matrix of the spin-
phonon system. Taking into account L�n

* =R�n in the Hermit-
ian case, one obtains

p� = �
�

�
n=1

NS

�R�n�2� �
n�=1

NS

R�n�
* Cn��0��2

. �47�

For the incoherent initial condition, this simplifies to

p� =
1

NS
�
�
��

n=1

NS

�R�n�2	2

. �48�

Note that in the macroscopic limit N→� for a single spin,
Eq. �46� should assume the simple exponential form of Eq.
�22� and p�=0. The same should be the case for any finite
NS.

If the phonon damping �ph is finite but small, the process
of spin relaxation is two stage. First, the spin subsystem
equilibrates with the subsystem of resonant phonons and p�t�
mainly changes due to the time dependence of the terms with
��� in Eq. �46�, whereas the role of �� is insignificant. At
the end of this stage, the terms with ��� die out, and the
further slow relaxation is governed by ��. In particular, for
the incoherent initial condition, Eq. �46� at the second stage
of the relaxation becomes

p�t� =
1

NS
�
�

e−��t�
n=1

NS

�R�n�2 �
n�=1

NS

�L�n��
2. �49�

Since for macroscopic systems the number of different val-
ues of �� in this expression is very large, the dependence
p�t� is a combination of many different exponentials, i.e.,
p�t� is nonexponential.

In the limit we study in the paper, k0r0�1 �k0 is the wave
vector of a resonant phonon and r0 is the typical distance
between the neighboring spins�, the solution p�t� is actually
the same for coherent and incoherent initial conditions. The
only difference is that for the incoherent initial condition,
averaging over the initial phases of spins leads to reproduc-
ible results for different realizations of the nondiagonal ele-
ments of �. For coherent initial conditions, one obtains
somewhat different results for different realizations of the
spin-phonon matrix elements, related to location of the indi-
vidual spins in space. These differences persist with increas-

ing number of spins and phonon modes, so that there is no
self-averaging. The computation of p�t� in the coherent case
is faster, but averaging over spin configurations is needed.

B. Transverse relaxation of spins

Let us now consider the time evolution of the transverse
spin polarization given by Eq. �11� starting from the fully
coherent initial condition

ci =
sin �

�NS

, c0 = cos � �50�

that satisfies the normalization condition �c0�2+�i�ci�2=1 for
the wave function of Eq. �5� in the case of initial phonon
vacuum. In Eq. �50�, � is the angle between the spin vector
and the z axis. In the initial state, one has


���0 = �NS sin � cos � �51�

that can be used to define the normalized transverse spin
polarization

f��t� = 
���t/
���0 �52�

that satisfies f��0�=1. With the help of Eq. �43�, one obtains
the vectorized expression

f��t� = � 1

NS
�

nn�=1

NS

„E · W�t� · E−1
…nn�� . �53�

Note that this formula is explicitly independent of the angle
�. An alternative expression for f��t� following Eq. �42� has
the form

f��t� = ��
�

T�e−�i��+��/2�t� , �54�

where

T� �
1

NS
�
n=1

NS

R�n �
n�=1

NS

L�n�. �55�

In the case of undamped phonons, one has L�n
* =R�n and

T�= �1 /NS���n=1
NS R�n�2 is real. Then, dropping oscillating

terms in Eq. �54� at large times, one obtains the asymptotic
value f����=����T��2 �cf. transition from Eq. �46� to Eq.
�47�
. It can be easily shown that in the presence of inhomo-
geneous broadening and in the absence of the coupling to
phonons, f����→0 in the thermodynamic limit. The same
should hold in the presence of both inhomogeneous broad-
ening and spin-phonon interaction since the former should be
sufficient to cause complete decoherence. Analysis of the
principally important case without the inhomogeneous
broadening should be postponed until numerical results. For
a single spin, coupling to phonons causes decoherence with
the rate � /2, as was stressed at the end of Sec. III A. In the
case of the phonon bottleneck, this decoherence should be
slowed down since a few phonon modes couple to many
spins, still the expected result is f����=0.
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C. Energy distribution of emitted phonons

The method formulated above can be used to find the state
of the phonon system resulting from spin-phonon relaxation.
Obviously, it can be done for undamped phonons only. In the
case of many spins, there are no analytical results for the
occupation numbers of emitted phonons nk in the literature.
However, one can express nk through the eigenstates of the
dynamical matrix � defined by Eqs. �40� and �41�. For the
wave function given by Eq. �5�, one has nk= �ck�2. Labeling
the phonon modes by the discrete index l, one can express
nk�nl through the state vector C given by Eq. �42�. For the
incoherent initial spin state with the help of Eq. �14�, one
obtains, asymptotically,

nl��� =
1

NS
�
�

�
n=1

NS

�R�n�2�R�,NS+l�2. �56�

For NS=1, this expression should reproduce Eq. �25�.

VI. ANALYSIS OF THE EIGENSTATES OF THE
SPIN-PHONON SYSTEM

A. Spinness and off-resonance phonon emission

Although the formalism of the preceding section is suffi-
cient to describe the dynamics of the spin-phonon system in
terms of transition between different bare �unperturbed�
modes, it is also interesting to look closer at the true spin-
phonon eigenstates. Throughout this section, we consider
phonons as undamped, L�n

* =R�n. The eigenstates are super-
positions of spin and phonon states, so the first question
would be to determine the fractions of spin and phonon
states in any eigenstate, or, as it can be termed, their “spin-
ness” and “phononness.” For instance, the spinness of the
state � is defined by

spinness� = �
n=1

NS

�R�n�2, �57�

while the phononness is defined by a similar expression with
summation over phonon indices. Note that spinness enters
the expression for the asymptotic spin excitation p� �Eq.
�48�
. Obviously, the sum of spinness and phononness of any
state � is 1. Spinness summed over � gives the total number
of spins. Far from the resonance, the eigenstates are mainly
phonon states, so that their spinness is small and can be
calculated perturbatively. Labeling these states by the wave
vector k instead of �, one has Rqk�	qk, where 	 is the
Kronecker symbol, and, in the first order of the perturbation
theory,

Rki � −
1

�N

Aik

�k − �0
. �58�

With this one obtains

spinnessk �
nS�Vk�2

��k − �0�2 ⇒
B

2

�2

��k − �0�2 . �59�

The last expression was obtained for �Vk�2= �V�2 with the help
of Eq. �32�. One can see that for a large bottleneck param-

eter, the interaction of phonons with spins becomes large, so
that phonon modes are noticeably hybridized with spins even
relatively far from the resonance. This means, dynamically,
that the number of phonon modes that exchange excitation
with spins is not just a fixed number N� determined by the
single-spin relaxation rate � �see Eq. �27�
, and it increases
with B. Of course, Eq. �59� becomes inapplicable near the
resonance. However, one can figure out its behavior for B
�1. In this case, the spinness of the states near the resonance
should approach 1. One can reproduce this behavior by add-
ing �B /2��2 in the denominator of Eq. �59�. This is in accor-
dance with Eqs. �34� and �35� that define the number of
phonon modes on speaking terms with the spins.

For B
1, we will see in numerical results that spinness
remains small everywhere including the resonance. This
means that initially prepared states with the excitation local-
ized on spins will decompose over the true eigenstates that
have a very small fraction of spin states, so that the excita-
tion will migrate completely into the phonon subsystem. To
the contrary, for B�1, the initially prepared state will de-
compose over eigenstates that have spinness close to 1, so
that the excitation mostly remains on spins. The latter is the
phonon bottleneck.

Using Eqs. �58� and �56� allows one to obtain the prob-
ability of emission of a phonon with a wave vector k far
from the resonance. With �⇒q, one obtains,

nk =
1

NS
�
q

�
i=1

NS

�Rqi�2�Rqk�2 �
1

NS
�
i=1

NS

�Rki�2 =
1

N

�Vk�2

��k − �0�2 ,

�60�

independently of the bottleneck parameter B and coinciding
with Eq. �25� far from the resonance. Independence of this
result from B, unlike Eq. �59�, is due to the fact that there is
only one excitation in the system. With increasing the num-
ber of spins and thus B, the probability that this excitation
migrates to the phonon subsystem can only decrease, as will
be seen in numerical results.

B. Spin-phonon modes

To quantify the spin-phonon hybridization in the general
case, one can introduce the average phonon detuning from
the spins �k−�0 in any eigenstate � as


�k − �0�� �
�
k

�R�k�2��k − �0�

�
k

�R�k�2
, �61�

where the denominator is the phononness of the eigenstate �
introduced above. Note that this definition does not include
the momentum carried by spins. Thus, Eq. �61� principally
cannot completely reproduce the results for dense magnetic
systems. Plotting the energy �frequency� eigenvalues �� vs

�k−�0�� reveals that near the resonance, there are pairs
of two different frequencies �� for the same value of

�k−�0��. This is the spin-phonon splitting described by
Eq �30�. Far from the resonance, the relation between
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�k−�0�� and the frequency �� corresponds to a pure pho-
non mode.

C. Resonance scattering of phonons

One also can study the admixture of other phonon modes
to the given phonon mode because of the phonon scattering
on spins. This can be described by the dispersion

	��k − �0�� ���
k

�R�k�2��k − �0 − 
�k − �0���2

�
k

�R�k�2
.

�62�

Far from the resonance, the eigenstates are almost pure
phonons, so that 	��k−�0�� is small. At resonance, 	��k
−�0�� has a maximum that corresponds to the resonance
scattering.

VII. NUMERICAL RESULTS AND ANALYSIS

Here, we study the systems containing a large number of
spins diluted so that k0r0�1, where k0 is the wave vector of
a resonant phonon and r0 is the typical distance between the
neighboring spins. In this case, a phonon emitted by one spin
has a random phase as it reaches another spin, so that one
can replace the factors e−ik·ri in the spin-phonon coupling Aik
�see Eq. �4�
 by e−i�, where � is a random number in the
interval �0,2��. As a result, in the case of diluted spins, the
problem becomes insensitive to the space dimensionality as
soon as one replaces the spin-phonon interaction amplitudes
Vk by constants V expressed through the one-spin relaxation
rate � given by Eq. �18�.

This has an important implication for numerical calcula-
tions. In three- and two-dimensional systems with phonon
modes quantized in a box, the phonon density of states
�ph��� is a ragged function for the moderately large numbers
of phonon modes amenable to computations. To make �ph���
a smooth enough function leading to smooth dependences of
physical quantities on parameters, one has to work with mil-
lions of phonon modes, which is prohibitive. The fact that
the problem for diluted spins becomes insensitive to the
space dimensionality allows one to use 1d equidistant pho-
non energy levels that yield a smooth phonon density of
states. This dramatically improves the quality of numerical
results. �Of course, using a realistic 3d phonon model with
explicit phase factors e−ik·ri yields essentially the same re-
sults, however with a larger numerical scatter.�

In the numerical simulations, the absolute values of the
spin-phonon matrix elements are set to a unique constant. If
not stated explicitly, the phonons are considered as un-
damped. To reduce the size of the problem, only the phonon
modes sufficiently close to the resonance �i.e., within a set
detuning tolerance�

��k − �0� � � � detuning tolerance �63�

have been taken into account, while all strongly nonresonant
phonon modes have been dropped. In most simulations, de-

tuning tolerance varied between 30 for B�1 and 150 for B
=100. Equation �26� suggests that it would be sufficient to
have detuning tolerance of about 3. However, one can see
from Eq. �24� that at short times, �t�1, the number of the
phonon modes responding to the spin is much larger than
that at asymptotically large times. Thus, choosing an insuffi-
ciently large detuning tolerance leads to loss of precision at
short times. Also for B�1, the number of relevant phonon
modes becomes large �see Eqs. �35� and �34�
, which re-
quires large detuning tolerance �DT�.

The number of phonon modes NDT within the detuning-
tolerance interval is given by NDT=N�ph��0��2��de-
tuning tolerance. Using this relation, one can eliminate the
irrelevant total number of phonon modes N from Eq. �28�
and obtain the relation

B =
2NS

�NDT
� detuning tolerance, �64�

which was used for the parametrization of simulations. The
total number of spins and phonon modes in simulations NS
+NDT reached the values of about 5000, which is sufficient to
attain the thermodynamic limit.

A. Analysis of the eigenstates of the spin-phonon system

Figure 1 shows the frequency eigenvalues �� plotted vs
their number for different values of the bottleneck parameter
B. We kept the number of phonon modes within the
detuning-tolerance interval of 150 equal to 956, and diago-
nalized the dynamical matrix � for NS=10, 100, and 1000
that corresponds to B=1, 10, and 100. One can see that for a
large number of spins, many states have ���0. These are
mostly spin states slightly hybridized with phonons. The
density of states of the whole system becomes large near the
resonance. There is no gap in the spin-phonon spectrum,
contrary to the finding of Refs. 13 and 14. The absence of the
gap is the consequence of the rotating-wave approximation
made here. For a small number of spins, the spectrum re-
sembles the phonon spectrum. Its distortion due to spins for
B=1 can be seen only in the inset.
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FIG. 1. Frequency eigenvalues �� plotted vs their appropriately
shifted number for different values of the bottleneck parameter B.
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The spinness of the spin-phonon eigenstates �Eq. �57�
 is
shown in Fig. 2 vs ��. While for small B the spinness is
small everywhere, with a maximum at ��=0, for large B the
spinness reaches 1 near the resonance. �Note that there are a
lot of states with ���0 for B�1. The spinness plotted vs
the eigenvalue number � has a wide flat maximum with
spinness��1 in this case.� The dashed lines of Eq. �59�
drawn for B=100 well approximate the spinness far from the
resonance, where �� practically coincides with the unper-
turbed �k−�0. The Lorentzian form

spinness� =
�B/2��2

��
2 + �B/2��2 �65�

perfectly approximates the results for B=100 in the whole
region, which could be an indication of an exact solution for
B�1 that could not be easily found, however. These results,
as well as Eq. �59�, show that the number of phonon modes
that are on speaking terms with spins grows with the concen-
tration of the latter.

Plotting different quantities vs the average phonon detun-
ing 
�k−�0�� in the eigenstate � defined by Eq. �61� reveals
finer details of the spin-phonon eigenstates. One can see an
avoided level crossing of spins and phonons in Fig. 3 that
shows �� vs 
�k−�0�� for B=100. Most of the points in
Fig. 3 fall onto the curve described by Eq. �30�. Note that the
horizontal branches of the spin-phonon spectrum in Fig. 3 do
not go infinitely to the left and right, but turn back to the
center, so that the numerical points make a continuous curve.
This is because Eq. �61� does not take into account the con-
tribution of diluted spins into the momentum. In Fig. 4 �cf.
Fig. 2�, one can see how both spin-phonon branches gradu-
ally change from pure phonon modes to pure spin modes.

The phonon dispersion 	��k−�0�� defined by Eq. �62�
and shown in Fig. 5 for B=100 behaves in an especially
interesting way. Far from the resonance, it is small but no-
ticeable, which means that phonons are scattering on spins.
At resonance, 
�k−�0��=0, it has a maximum correspond-
ing to the resonance scattering of phonons. In fact, there are

two superimposed maxima corresponding to the two split
spin-phonon states in Fig. 3. The horizontal joining region in
Fig. 3 creates a downward loop in Fig. 5.

B. Dynamics of the spin population

The relaxation of spin excitation p�t� obtained from Eq.
�45� �incoherent initial condition� is shown in Fig. 6 for dif-
ferent values of the bottleneck parameter B. The height of the
asymptotic bottleneck plateau p� grows with B and tends to
1 as B→�. Before reaching the plateau, p�t� performs
strongly damped oscillations that manifest the importance of
memory effects in the PB problem. The frequency of oscil-
lations is determined by the spin-phonon gap � of Eq. �31�
that increases with the concentration of spins nS and thus B.

The bottleneck plateau p� obtained in the case of un-
damped phonons from Eq. �48� is shown in Fig. 7 vs the
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FIG. 2. �Color online� Spinness of the spin-phonon eigenstates
vs �� for different values of B.
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FIG. 3. �Color online� Spin-phonon eigenstates �� vs the aver-
age phonon detuning 
�k−�0�� that shows splitting of the spin-
phonon eigenstates. The solid red line is the result of Eq. �30�.
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FIG. 4. Spinness vs the average phonon detuning 
�k−�0�� that
shows how both spin-phonon branches gradually change from pure
phonon modes to pure spin modes.
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ratio NS / �NS+N��=B / �1+B�. Both small- and large-B data
can be well fitted with the asymptotes of Eq. �37�.

Figure 8 shows the spin relaxation in the case of damped
phonons for B=10. Although p�t� relaxes to zero for any
value of the ad hoc phonon damping �ph, the effective spin
relaxation rate is much smaller than �ph for B�1. Only in
the limit �ph→�, the single-spin relaxation curve of Eq. �22�
is recovered. One can see from the curve with �ph that the
spin relaxation via the phonon relaxation in the case of
strong bottleneck is nonexponential, as commented upon af-
ter Eq. �49�. The logarithmic plot in Fig. 9 for �ph=10� and
B=300 shows that the spin relaxation is described by a com-
bination of many exponentials, but there is the dominant
slowest exponential at large times. This exponential is even

slower than the result of Ref. 11, p�t�exp�−�̃t� with �̃
=�ph /�2B.

C. Emitted phonons in the final state

Distribution of the emitted phonons in the final state �in
the case �ph=0� found from Eq. �56� is shown in Fig. 10�a�.
The total number of emitted phonons following Eq. �8� is
equal to 1− p� and decreases with increasing the bottleneck
parameter B, which is seen in the figure. The wings of the
line of emitted phonons do not depend on B, according to Eq.
�60�, whereas the central part of the line is suppressed with
B. As a result, the linewidth of the emitted phonons broadens
with increasing B.

As argued above, the present method formally consider-
ing a single excitation shared by the spin and phonon sub-
systems, in fact, is valid in any practical situation where the
system is weakly excited, although the number of excitations
can be macroscopically large. In this situation, increasing the
number of spins �and thus B� means increase of the excita-
tion that is partially transferred to the phonon subsystem.
This is to say that in real situations, B and the number of
emitted phonons are not inversely related as in the case of a
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FIG. 5. Phonon dispersion of Eq. �62� showing the resonance
phonon scattering on spins.
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FIG. 6. Bottlenecked relaxation of the spin excitation for differ-
ent values of the bottleneck parameter B. The number of spins used
in simulations are indicated, and the number of phonon modes were
chosen appropriately. The dashed horizontal line is the large-time
asymptote for B=0.1.

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
p∞

Relaxation of diluted spins:
The bottleneck plateau

NS/(NS+NΓ)

FIG. 7. Bottleneck plateau p� vs NS / �NS+N��=B / �1+B�. The
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single excitation. Thus, it makes sense to represent the num-
ber of emitted phonons in the normalized form as in Fig.
10�b� to make the phonon line shape for large B better vis-
ible.

The numerical results for B�1 can be perfectly fitted by

nk =
1

�N�ph��0�
�/2

��k − �0�2 + 2B�2 , �66�

which is a particular form of

nk =
1

N

�Vk�2

��k − �0�2 + �k
2 , �67�

with the spin-phonon gap �k given by Eq. �31�. Equations
�66� and �67� should be compared with Eqs. �26� and �25�.

VIII. INHOMOGENEOUS BROADENING OF SPIN
LEVELS

In some systems, the inhomogeneous broadening defined
by Eq. �3� is much larger than the natural spin linewidth � or
the spin-phonon splitting �. The number of spins within the
frequency interval d�0 around the frequency �0 is

dNS = NS�S��0�d�0, �68�

where the spin density of states �S��0� satisfies
�0

��S��0�d�0=1. An example is the Gaussian line shape

�S��0� =
1

�2�	�0

exp�−
��0 − �0�2

2�	�0�2 � . �69�

In the presence of a large inhomogeneous broadening, the
number of phonons on speaking terms with spins can be
estimated as N	�0

�N��ph��0�	�0, which should replace N�

of Eq. �27� in the definition of the bottleneck parameter B
that becomes smaller than for the pure model by a factor of
	�0 /��1. Consideration of this kind can be found in Van
Vleck’s original paper2 and subsequent publications. In fact,
as we shall see below in this section, the relation between the
numbers of spins and phonon modes that can exchange ex-

citation is different in different frequency regions within the
inhomogeneous spin linewidth 	�0 and a frequency-resolved
description of the phonon bottleneck is possible.

In simulations, the macroscopic limit is achieved if the
average distance between the neighboring spin levels be-
comes smaller than the natural linewidth �

1

NS�S��0�

 � �70�

�cf. Eq. �29�
. Since both of these conditions should be sat-
isfied, both N and NS should be large enough. The results for
the bottleneck plateau p� vs the inhomogeneous broadening
	�0 in Eq. �69�, obtained numerically from Eq. �48�, are
shown in Fig. 11. Since the number of phonons that can
exchange energy with spins increases with 	�0, the bottle-
neck plateau p� decreases. For B�1, the most pronounced
decrease occurs at 	�0��, the crossover from the natural
linewidth to the inhomogeneous linewidth. In the case B
�1, this crossover occurs at 	�0��B���, in accordance
with the comments after Eq. �59�.
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FIG. 9. Nonexponential relaxation of the spin excitation for B
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Clearly, for 	�0�� ,�, much more phonons can ex-
change their energy with spins, so that the bottleneck condi-
tion is alleviated and spin relaxation is facilitated. In this
case, the problems simplified since spins and phonons ex-
change energy only within the frequency interval of order
max�� ,��, which is much narrower than the inhomogeneous
linewidth 	�0. Thus, one can split the latter into the fre-
quency intervals ��0 around �0 that satisfy max�� ,��

��0
	�0, and consider the energy exchange between
spins and phonons in each of these intervals independently.
The spin and phonon densities of states within each interval
��0 can be considered as constants, and they define the
bottleneck parameter in a frequency interval around �0

B�0
�

NS

N

�S��0�
�ph��0�

= nS
�S��0�
�ph��0�

. �71�

Since the phonon density of states is a smooth function, one
can replace ���0�⇒���0��. On the other hand, �S��0� and
thus B�0

have a maximum at �0=�0�. One can parametrize

B�0
=

�S��0�
�S��0��

B�0
, �72�

where B�0
is the bottleneck parameter at the center of the

line. For a Gaussian line shape of Eq. �69�, one has

B�0
=

nS

�2��ph��0�	�0

. �73�

The spin excitation reaches a frequency-dependent plateau
p���0� that depends on B�0

. The average over the spin line
shape �S��0� of Eq. �68� now becomes

p�� = �
0

�

d�0�S��0�p���0� . �74�

Evidently, p��� p���0�� since the bottleneck effect weakens
away from the center of the spin band. The numerically
found dependence of p���0� is very close to

p���0� =
B�0

1 + B�0

, �75�

which can be expected from general statistical arguments.
This important formula will be used below to obtain results
for the bottleneck plateau taking into account the inhomoge-
neously broadened spin line shape. The illustrations will be
done for the Gaussian line shape of Eq. �69�.

In the case B�0

1, one obtains

p�� � B�0�
0

�

d�0
��S��0�
2

�S��0��
�76�

that with the help of Eq. �69� yields

p�� � B�0
/�2. �77�

If B�0
�1, one can use

p�� = 1 − �
0

�

d�0
�S��0�
1 + B�0

, �78�

which follows from Eq. �75�. The integrand of this expres-
sion is close to �S��0�� /B�0

=const for B�0
�1, and it decays

abruptly further from the center of the spin line where B�0
�1. Let us define �* that satisfies B�*=1, that is, �S��*�
=�S��0�� /B�0

. Then, from Eq. �78�, one obtains, approxi-
mately,

p�� � 1 −
2	�*�S��0��

B�0

, �79�

where 	�*���*−�0��. For the Gaussian line shape of Eq.
�69�, one has 	�*=	�0�2 ln B�0

and, finally,

p�� � 1 −
2

B�0

� ln B�0

�
, B�0

� 1. �80�

Figure 12 shows p�� in the whole interval of B�0
calculated

numerically from Eqs. �69�, �74�, �75�, and �72�.
Next we calculated the time dependence of the spin exci-

tation p�t� for spins within a frequency interval ��0 around
�0 that satisfies max�� ,��
��0
	�0, as explained above.
Again, the incoherent initial condition for spins leading to
Eq. �48� was used. Only spins and phonon modes within the
interval ��0 were taken into account, while all other spins
and phonon modes have been ignored. This allowed us to
greatly reduce the computation time. The results have been
shown to be practically independent of ��0 as long as the
condition �
��0 is fulfilled. The distribution of spin fre-
quencies within ��0 was taken to be equidistant �similar to
the phonon modes�, which allowed us to eliminate statistical
scattering. In this realization of the model, spins and phonon
modes form two equivalent groups interacting with each
other. The results of computations for undamped phonons are
shown in Fig. 13. Note that here oscillations visible in Fig. 6
are completely washed out. The asymptotic values of p are in
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p∞

δω0/Γ

Bottleneck plateau vs inhomogeneous broadening

FIG. 11. The bottleneck plateau in the case of inhomogeneous
broadening with the Gaussian line shape vs 	�0.
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accord with Eq. �75�. Having the results for p�t� for any �0,
one could now perform integration over spin frequencies �0
similar to Eq. �74� using, e.g., Eq. �69�.

One can compare the results of the present calculation
within the frequency interval ��0 with the results of the
earlier general calculation shown in Fig. 11. The connection
is provided by the identity

B�0
=��

2

�

	�0
B �81�

that follows from Eqs. �28�, �71�, and �69�. For instance, the
rightmost point of the curve B=1 in Fig. 11 is p��0.070 for
	�0 /�=30. Equation �81� yields then B�0

�0.0418. For such
small B�0

, one can use Eq. �77� that yields p��0.030. The
disagreement with the value p��0.070 can be explained by

the fact that the number of spins NS=64 in the general cal-
culation for B=1 is too small to reach the asymptotic result
given by Eq. �75� and statistical scattering is still substantial.
For the rightmost point of the curve B=3 in Fig. 11, the
disagreement between the results of the two calculations is
smaller.

The results for spin relaxation in the case of damped
phonons are shown in Fig. 14. One can see that for B�1, the
effective spin relaxation rate is much smaller than the pho-
non relaxation rate �ph, similar to the case without inhomo-
geneous broadening �see Fig. 8�.

IX. IMPLEMENTATION FOR MOLECULAR MAGNETS

Let us work out the general expressions and estimate the
parameters that govern the bottlenecked spin relaxation for
molecular magnets, in particular, for the most popular com-
pound Mn12. Historically, the phonon bottleneck was first
observed in other systems. However, there is an experimental
evidence of the phonon bottleneck in molecular magnets as
well. On the other hand, molecular magnets are especially
convenient because of the universal form of the spin-phonon
relaxation that does not depend on any unknown spin-
phonon coupling constants.15 The spin relaxation between
the adjacent levels of the uniaxial spin Hamiltonian −DSz

2 is
due to the rotation of the crystallographic easy axis by the
transverse phonons. The rate of decay from the first excited
state �−S+1� to the ground state �−S� is given by the formula

� =
S�2S − 1�2D2�0

3

12���vt
5 , �82�

where � is the mass density and vt is the speed of transverse
phonons. The most recent derivation of this formula for the
transitions between any adjacent spin levels can be found in
Appendix A of Ref. 16. In zero field, one has ��0=E−S+1
−E−S= �2S−1�D and Eq. �82� can be cast into the elegant
form
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__Bω0/(1+Bω0)
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FIG. 12. The bottleneck plateau in the case of strong �	�0

�� ,�� inhomogeneous broadening with the Gaussian line shape vs
the bottleneck parameter B�0

.
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FIG. 13. Time dependence of the spin excitation p�t� for the
spins with frequencies around �0 in the case of strong inhomoge-
neous broadening.
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FIG. 14. The same in the case of damped phonons. Again, for
B�1, the effective spin relaxation rate is much smaller than the
phonon relaxation rate �ph.
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� =
S

12�

�0
5

�t
4 , �t � ��vt

5

�
	1/4

, �83�

where �t is the characteristic frequency of spin-phonon in-
teraction related to the similar energy Et of Ref. 17 by ��t
=Et. The phonon density of states of Eq. �20�, multiplied by
2, the number of transverse phonon modes, has the form

�ph��0� =
1

�2

�0
2

�̃D
3

, �̃D �
vt

v0
1/3 , �84�

where v0 is the unit-cell volume. The frequency �̃D is related

to the Debye frequency �D as �D= �6�2�1/3�̃D. Thus, the
bottleneck parameter B of Eq. �28� becomes

B =
12�2

S

�t
4�̃D

3

�0
7 nS. �85�

For Mn12, one has S=10, �=1.83 g /cm3, and v0=3716 Å3,
and, from the heat-capacity measurements,18 follows

��D /kB�38 K, thus ��̃D /kB�10 K. Further, one obtains
vt�2�103 m /s and ��t /kB�210 K, whereas ��0 /kB
�12 K. Plugging these parameters into Eq. �85�, one obtains
B�5�105nS. This means that for a undiluted Mn12 crystal,
nS=1, the bottleneck parameter is huge.

Of course, for undiluted magnetic crystals, the physics
includes the effects of coherence and it is more complicated
than just the phonon bottleneck. The pure bottleneck situa-
tion is realized for a sufficient dilution, so that k0r0�2� and
the phases of emitted and reabsorbed phonons can be con-
sidered as random. Using r0= �v0 /nS�1/3 for the average dis-
tance between the neighboring magnetic molecules and k0
=�0 /vt, one can rewrite the condition of sufficient dilution as

nS � nS
* � � �0

2��̃D
	3

. �86�

We call nS
* critical concentration or critical dilution. With

the parameters above, one obtains nS
*�0.008. Even at this

dilution, the bottleneck parameter remains huge,

B* �
12�2

S

�t
4�̃D

3

�0
7 nS

* =
3

2�S
��t

�0
	4

, �87�

which numerically yields B*�4000. Note that for spin tran-
sitions between excited levels, the energy differences ��0
=Em+1−Em=−�2m+1�D are smaller than above, thus the val-
ues of B are even larger.

Now from Eq. �19�, one obtains the estimation of the
spin-phonon matrix element

�V�2 =
�

2��ph��0�
=

S

24

�0
3�̃D

3

�t
4 �88�

�which also could be obtained directly�. This yields the

spin-phonon splitting of Eq. �31� in the form

� = �nS�S

6

�0
3�̃D

3

�t
4 �89�

and

�* = �nS
*�S

6

�0
3�̃D

3

�t
4 =�S

6

1

�2��3/2
�0

3

�t
2 . �90�

Numerically, one obtains �� /kB�40�nS mK and ��* /kB
�3.6 mK.

Let us now discuss the role of inhomogeneous broadening
�IB� on the phonon bottleneck in molecular magnets. First,
there is the dipole-dipole interaction �DDI� that is as strong
as about EDDI /kB�67 mK between the two neighboring
Mn12 molecules. This would result in the change of the spin
transition frequency for adjacent spin levels by
�EDDI /kB� /S�6.7 mK. Sometimes, for simplicity, the DDI is
considered as a kind of IB. This is an oversimplification, at
least for weakly excited states considered here. Rigorous
treatment of the Landau-Zener effect at fast sweep with an
account of both DDI and true IB �random hyperfine fields19�
shows that these two effects compete with each other, rather
than simply add. In the present case, the magnetostatic field
smoothly varies along the crystal �if the crystal shape is non-
elliptic�, so that its change on the unit-cell distance is very
small. Thus, the DDI as a source of IB will be neglected.

A larger source of inhomogeneous broadening in Mn12 is
the hyperfine interaction with their own NI=12 nuclear spins
I=5 /2. With the hyperfine coupling A between the total elec-
tronic spin S and each of the nuclear spins I of A /kB
=2 mK,20 the dispersion of the hyperfine field �HF� 	HHF on
the electronic spin is given by15,21

	HHF =
��IA

g�B
, �I =

NI

3
I�I + 1� , �91�

whereas the inhomogeneous line shape is Gaussian. Numeri-
cally, one obtains 	HHF�8.8 mT. For the transition between
adjacent spin levels for the inhomogeneous broadening 	�0
in Eq. �69�, one has �	�0=g�B	HHF, thus �	�0 /kB
�12 mK. In another popular compound Fe8, the IB is
mainly due to the DDI with nuclear spins of hydrogen atoms
present in magnetic molecules, 	H�0.8 mT according to
Ref. 22.

The greatest source of IB is, however, the dispersion of
the uniaxial anisotropy D �the so-called D strain�, which can
be due to strains created by dislocations23,24 or, more likely,
due to chemical disorder in ligands surrounding magnetic
atoms.25 The electron paramagnetic resonance linewidth of
the transition 9↔10 in Mn12 is about 200 mT,26,27 which
suggests Gaussian dispersion 	D�0.02D.27–29 In Fe8, the
relative dispersion is smaller: 	D�0.01D.27 Similar is the
case for another molecular magnet Ni4: 	D
��0.005–0.01�D in good crystals.30 The inhomogeneous
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linewidth of 200 mT exceeds the spin-phonon splitting � of
Eq. �89� by far, so that the latter cannot emerge in molecular
magnets.

An important question is what happens with IB upon di-
lution. It was shown31 that a particular member of the Mn12
family remains stable upon dilution and retains its undiluted
value of 	D /D. This contrasts the data obtained for other
Mn12 derivatives �see, e.g., Ref. 32 and citations in Ref. 31�.
Recent experiments on Ni4 show a large D strain in diluted
samples: 	D�0.11D.33

In the case of strong inhomogeneous broadening 	�0
�� ,� that is realized in molecular magnets, the relaxation is
governed by the frequency-interval bottleneck parameter B�0
of Eq. �73�. With the help of Eq. �84�, identifying �0=�0�,
one obtains

B�0
=

nS

�2�

�2�̃D
3

�0�
2	�0

. �92�

At critical dilution, this becomes

B
�0

* =
n

S
*

�2�

�2�̃D
3

�0�
2	�0

=
1

27/2�3/2

�0�
	�0

� 0.016
�0�
	�0

. �93�

For the dominating D-strain mechanism, this amounts to

B�0

* � 0.016
D

	D
. �94�

With 	D�0.02D for Mn12, one obtains B�0
�100nS,

whereas nS
*�0.008, so that B�0

* �0.8. In this case, Eq. �80�
yields p��0.44 for the bottleneck plateau, which is still
quite a big value that requires phonon damping to be taken
into account to ensure a complete relaxation.

Of course, collective effects in spin-phonon relaxation
should be much stronger for undiluted crystals, nS=1. Cor-
responding analysis will be done elsewhere.

X. DISCUSSION

The problem of the phonon bottleneck considered in this
paper in the weak-excitation limit is only a part of a larger
problem of collective spin-phonon relaxation. The bottleneck
in the pure form occurs for magnetically diluted systems that
satisfy the condition k0r0�1, where k0 is the wave vector of
a resonant phonon and r0 is the typical distance between the
neighboring spins. If this condition is violated, one cannot
consider the phases of emitted phonons reaching other spins
as random, and the interference effects become important.
The well-known example of interference effects is
superradiance3,12 that requires, among other conditions, a co-
herent initial condition of spins. In contrast to the bottleneck,
superradiance dramatically increases the relaxation rate, so
that the two effects should compete. On the other hand, de-
structive interference effects in the case of incoherent initial
condition or dynamical loss of coherence due to the inhomo-
geneous broadening can lead to suppression of relaxation
that resembles the PB, but has a different physical origin. For

this reason, using the results of this paper to interpret experi-
ments should be done with care as the experimental obser-
vations can be a mixture of different effects. In particular, the
results obtained in this paper are not applicable to undiluted
molecular magnets.

Considering the weak-excitation limit in this paper al-
lowed us to drastically simplify the Schrödinger equation
and obtain numerically exact results for the PB effect with
and without inhomogeneous broadening of spins and phonon
damping. It was confirmed that the bottleneck parameter B
quantifying the statistical weights of spins and resonant
phonons, introduced in Ref. 11, plays the main role in the
problem. Fundamentally, the most interesting case corre-
sponds to the pure model without inhomogeneous spin
broadening and phonon damping. For this model, similar to
the results of Ref. 11, the spin excitation p�t� was shown to
oscillate upon approaching the bottleneck plateau �see Fig.
6�. However, these oscillations have a smaller amplitude and
are more strongly damped than the analytical results of Ref.
11. The frequency of these oscillations corresponds to the
gap � between the two branches of the hybridized magneto-
elastic waves at resonance �see Eq. �30� and Fig. 3
.

It was shown that the bottleneck parameter effectively
decreases in the presence of inhomogeneous broadening that
alleviates the bottleneck condition. If the inhomogeneus spin
linewidth 	�0 exceeds the spin-phonon gap frequency � /�,
the splitting of spin and phonon modes is not resolved and
the oscillations of p�t� are washed out �see Fig. 13�.

Inclusion of the ad hoc phonon relaxation rate �ph in the
theory describes the second, postplateau, stage of the spin
relaxation. An important observation is that for B�1, the
corresponding relaxation rate is much smaller than �ph �see
Figs. 8 and 14� and the spin relaxation is nonexponential �see
Eq. �49� and Fig. 9
. One should stress, however, that it is not
completely satisfactory to plug an ad hoc phonon relaxation
into the theory. The latter should be treated in this case as
taken from the experiment. This can lead to a problem since
one of the main sources of the observed phonon damping can
be their scattering on spins that is already taken into account
by the very spin phonon interaction �Eq. �4�
. On the other
hand, this and other kinds of elastic scattering cannot help
the system to reach complete equilibrium since these pro-
cesses conserve the energy and do not transfer excitation
from the narrow group of resonant phonons to the rest of the
phonon bath.

It would be of principal importance to generalize the
theory of phonon bottleneck for the highly excited initial
states of the spin subsystem. However, the Schrödinger equa-
tion in this case is not amenable to a direct numerical solu-
tion. In Ref. 12 it was argued that, since collective motion of
spins in the regions large in comparison to the typical dis-
tance between the neighboring spins involves a large number
of atomic spins, the problem can be considered classically.
Thus, the spin and phonon operators in Eqs. �9� and �10� of
Ref. 12 had been replaced by classical variables. This gives a
possibility to numerically treat highly excited states of the
spin-phonon system without the combinatorial explosion of
the full SE. On the other hand, linearization of the classical
equations of motion of Ref. 12 near the ground state yields
equations that are equivalent to the truncated SE �Eq. �7�
 in

PHONON BOTTLENECK IN THE LOW-EXCITATION LIMIT PHYSICAL REVIEW B 77, 024429 �2008�

024429-15



the low-excitation limit. This suggests that classical equa-
tions of Ref. 12 are indeed a good approximation for the
spin-phonon problem in the whole energy range. It would be
interesting to investigate what are quantum corrections to
these equations.
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