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The classical n-vector model on the face-centered cubic lattice with ferromagnetic and antiferromagnetic
interactions is studied by using the framework of an effective field theory approach in cluster with two spins.
For n=1 �Ising�, n=2 �XY-planar rotator�, n=3 �Heisenberg�, and n→� �spherical� models the ferromagnetic
system undergoes a second-order phase transition while the antiferromagnetic system presents a first-order
behavior. The first-order character for n=3, which is inconclusive in the literature, seems actually to be the case
for the isotropic Heisenberg antiferromagnet, and the same is expected to hold for the less studied XY and
spherical models. In addition, the transition temperatures are quantitatively comparable to the exact one �when
available� and to those from Monte Carlo simulations and series expansion.
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I. INTRODUCTION

The study of geometrically frustrated antiferromagnet
spin models have attracted both experimental and theoretical
interest during the past twenty years. The primary interest
emerged as a new class of magnetic materials with uncom-
mon physical properties.1–4 The effect of frustration leads to
nontrivial, highly degenerate ground states, and it can be
very difficult to ascertain the correct solution to a given
model, even when extreme approximations are used, such as
mean-field theory. In particular, geometric frustration does
not require adjustment of the magnitude of the coupling con-
stants and the most well-known examples of frustrated sys-
tems are the antiferromagnetic triangular and kagomé lattices
in two dimensions and pyrochlore and face-centered-cubic
�fcc� lattices in three dimensions. In all these lattices, the
elementary unit of the magnetic structure is a triangle, which
makes it impossible to satisfy all the antiferromagnetic bonds
at the same time, with the result of a macroscopically degen-
erated ground state.

The first nontrivial frustrated model, which has been ex-
actly solved by Wannier, is the Ising antiferromagnet on the
triangular lattice.5 The principal result is that no finite tem-
perature �i.e., TN=0� ordering occurs so that the effect of this
frustration is to increase the lower critical dimension beyond
two. After the solution of Wannier, other two-dimensional
frustrated Ising models have also been exactly treated by
various authors.6 Therefore, these exact solutions can be a
good starting point for testing approximate theories prior to
application to more complex systems.

In particular, the nature of the ground state and the low-
lying excited states in the fcc antiferromagnet �AF� with only
nearest-neighbor �nn� interaction continues to be an interest-
ing problem in the field of magnetism.7–10 For bipartite lat-
tices, such as square and simple cubic ones, the solution of
classical, and some quantum �XY and transverse Ising�, fer-
romagnetic �F� models, immediately yields the solution of
the corresponding antiferromagnetic �AF� model through a
gauge symmetry �for the quantum Heisenberg model this

symmetry does not exist11�. However, the fcc lattice is not
bipartite. The difficulty experienced in the study of the fcc
AF spin model resides in the fact that it is geometrically
frustrated, resulting in an infinite ground-state degeneracy
and also allows the system to present a first-order phase tran-
sition.

Inclusion of next-nearest-neighbor �nnn� interaction in fcc
AF spin models can even change the nature of the phase
transition from first order to second order �continuous� for
certain values of the parameter �� �0, � �, where �=J2 /J1

and J1�J2� is the nn �nnn� coupling constant. This is so be-
cause for small � all known investigations of the system
agree with the first-order character of the transition, whereas
in the limit �→� the fcc lattice decouples into four inde-
pendent ferromagnetic simple cubic lattices, which exhibit a
continuous phase transition. In fact, three different types of
AF orders, denoted by AF-I, AF-II, and AF-III, have been
predicted to exist in the fcc AF spin models with nn and nnn
interactions,12 where the types of magnetic orders are depen-
dent on the � parameter. The AF-I magnetic order is com-
posed of ferromagnetic �100� planes antiferromagnetically
coupled. The type AF-II can be viewed as defective type
AF-I in which the spins in a given cluster �100� plane can be
subdivided into at least two interpenetrating antiferromag-
netic clusters. All spins in a given cluster are either parallel
or antiparallel to the cluster axis. Finally, the AF-III ordering
has four degenerate configurations, and it is necessary to
divide the fcc lattice into four interpenetrating simple sublat-
tices A �corner spins�, B, C, and D �three face-centered spins,
respectively�. In Fig. 1, we have schematically the ground-
state configurations of the AF-I �Fig. 1�a��, AF-II �Fig. 1�b��
and AF-III �Fig. 1�c�� magnetic order.

From an experimental viewpoint, the different types of AF
ordering discussed above have been observed in magnetic
compounds. The sign convention used is one in which an
exchange interaction is positive for antiferromagnetic inter-
action and negative for ferromagnetic interaction. For ex-
ample, the AF-I order is reported in a number of neodymium
systems,13 such as NdP �J1=0.01 K, J2=−0.11 K, �=−11.0,
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TN=11 K�, NdAs �J1=0.03 K, J2=−0.10 K, �=−3.3,
TN=13 K�, NdSb �J1=0.07 K, J2=−0.11 K, �=−1.6,
TN=16 K�, and NdBi �J1=0.09 K, J2=−0.18 K, �=2.0,
TN=24 K�. The AF-II magnetic order has been observed
in binary transition-metal oxides MnO �J1=0.01 K,
J2=−0.11 K, �=−1.1, TN=118 K�,14 CoO �J1=5.5 K,
J2=27.5 K, �=5.0, TN=289 K�,15 NiO�J1=34.16 K,
J2=202 K, �=8.4, TN=523 K� �Ref. 16� and the sulfide,
viz., �-MnS �J1=7.0 K, J2=12.7 K, �=1.8, TN=152 K�.17

The third kind of antiferromagnetic order, AF-III, has
been observed in �-MnS ��J1=28 K, J2=2.8 K, �=0.1,
TN=98 K� and some diluted magnetic semiconductors such
as A1−xMnxB �where A=Cd,Zn,Hg and B=Se,Te�. There
are several other known systems in which magnetic ions oc-
cupy the fcc lattice. For example, the UO2 is of type AF-I
�Ref. 18� and, instead of a second-order transition, it presents
a first-order transition. Therefore, the nature of the phase
transition is also an interesting problem to be experimentally
treated and theoretically explained.

Extensive theoretical studies have been made to treat the
criticality of the fcc antiferromagnetic Ising model with only
nn interaction.19–22 There appears to be a consensus among
the authors that the transition is of first order with the asso-
ciated spin ordering being of type AF-I. The most recent
study on this system which we are aware of is the Monte
Carlo simulation of Beath and Ryan,7 where a precise value
of the transition temperature �Néel temperature� has been
estimated kBTN /J=1.7217. This value is very small in com-
parison with the second-order phase transition temperature of
the ferromagnetic case,23 i.e., kBTc /J=9.7943.

On the other hand, in the case of the fcc antiferromagnetic
Heisenberg model the nature of the phase transition remains
less clear. Previous linear spin-wave calculation12 indicates
diverging spin reduction at finite temperature. It has been
argued that this model �classical and quantum� has no long-
range order. Similarly, the Green’s-function approach24 pre-

dicts no phase transition when T�0. In addition, other pro-
cedures such as series expansion, Green’s-function, and spin-
wave-based methods cannot offer further clarification on the
particular point either �i.e., the nature of transition�, since
these three methods are suited to treat second-order transition
in magnetic models. Monte Carlo simulations of classical fcc
Heisenberg antiferromagnet25–29 have shown, however, that
thermal fluctuations stabilize a type-I structure �AF-I order�
in the absence of nnn interactions. The authors have con-
cluded that the transition is of first order, in contrast with the
results of Fernandez et al.25 who found a second-order char-
acter. The latter conclusion of a continuous transition may be
due to rather small lattice size �L=8�, large temperature in-
terval, and rather short runs, as was pointed out in Monte
Carlo �MC� simulations by Diep and Kawamura.26 There-
fore, one can say that MC simulations have confirmed, for
the classical fcc Heisenberg antiferromagnet, a first-order
phase transition28 at kBTN /J=1.3377, which is also smaller
than the second-order temperature for the ferromagnetic
case,30 i.e., kBTc /J=8.6705.

For planar models, preliminary results have also indicated
the collinear AF-I-type order at low temperature for the
nearest-neighbor XY antiferromagnet on a fcc lattice. But
there is, up to now, no estimate for the �possible� first-order
transition temperature.26 The scenario is still less clear in the
case of the spherical model.

At this stage, it is then natural to ask the question of what
would happen if one treats this lattice by considering the
more general model with an n-component vector spin on its
sites, where n=1,2 ,3, and � corresponds to the Ising, XY,
Heisenberg, and spherical models, respectively. It is clear
that some studies have been made only for the case of n=1
and 3. However, no attention has been paid to the nature of
the phase transition in the more general case of the fcc
n-vector antiferromagnet. This fact has motivated the present
investigation, where the approximate properties have been
studied by employing the effective-field theory.

The organization of the present paper is as follows. The
effective-field theory is formulated and applied to the
nearest-neighbor fcc classical n-vector model in Sec. II. The
formalism is constructed using a finite cluster with two spins
and the Zernike approximation. Results of the transition tem-
perature for the system with ferromagnetic �Tc� and antifer-
romagnetic �TN� interaction are shown in Sec. III. We also
discuss the criticality of the Ising �n=1�, XY or planar �n
=2�, Heisenberg �n=3�, and spherical �n= � � models. In par-
ticular, the results for the Ising and Heisenberg models are
compared with MC simulations discussed previously in the
literature. Some concluding remarks are given in Sec. IV.

II. MODEL AND EFFECTIVE-FIELD THEORY

The three-dimensional n-vector model, or O�n� model, is
quite studied in the literature due to the fact that many real
magnetic materials show large values of spin �S�1 /2� in
which the classical limit �S→ � � can be a good approxima-
tion, mainly above the transition temperature. The classical
spin approximation consists of replacing the quantum me-
chanical spin operator by a classical vector fixed in length,

FIG. 1. Schematic structures of the ground-state configurations
in an fcc classical antiferromagnet: �a� type AF-I, �b� type AF-II,
and �c� type AF-III. The black and white points represent the up and
down spins along the z direction, respectively.
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but free to orient itself in any direction. The classical parti-
tion function Zcl is an integral over the phase space defined
by the solid angle available to each spin vector. For nonfrus-
trated classical systems �and some quantum systems as, for
example, the quantum XY and transverse Ising models� there
is a unitary operator in which the partition function of the F
case is simply mapped into the partition function of the AF
case by redefining the spin direction on one sublattice �i.e.,
J→−J, J being the nn exchange coupling� of the AF system.
This fact implies the same transition temperature for the F or
AF system. Such a unitary operator, however, does not apply
to the quantum Heisenberg model11 and to frustrated sys-
tems, as the ones studied herein.

A. Hamiltonian

We consider the classical n-vector model defined on the
fcc lattice with a unit cell shown in Fig. 1, which can be
given by the following Hamiltonian:

H = J�
�i,j�

S�i · S� j , �1�

where J is the exchange coupling for all bonds �J�0 and
J�0 correspond to the AF and F system, respectively�,
�i , j� denotes nearest-neighbor pairs of spins, and S�i

= �Si
1 ,Si

2 , . . .Si
n� is a vector spin of n components at site i with

�S�i� =	�
p=1

n

�Si
p�2 = n1/2. �2�

In particular, the model �1� for n=0,1 ,2 ,3 and n→� corre-
sponds, respectively, to the self-avoiding walk, Ising, classi-
cal XY �or planar�, and classical isotropic Heisenberg and
spherical models.

The ground state of the classical fcc Heisenberg �n=3�
antiferromagnet is more degenerate than the corresponding
Ising �n=1� one. It has been shown that the average energy
value,31 i.e., E0= �H�, at T=0 for the fcc O�3� �Heisenberg�
is identical to the case of the Ising model. With the inclusion
of nnn interaction J2 ��=J2 /J1� in the Hamiltonian �1�, the
nature of the ground state changes as a function of �. Con-
sidering the fcc lattice as made up of four simple-cubic lat-
tices, the ground state for ��0 consists of three pairs of
configurations in which two sublattices are occupied by up
spins �sublattice A� and the other two by down spins �sublat-
tice B� as in Fig. 1�a� �AF-I order�. The corresponding aver-
age energy per spin in units of J is E0

I =−2+3�. In the inter-
mediate region 0���0.5 there are again six ground states
�three pairs� consisting of configuration type AF-III order as
shown in Fig. 1�c� with E0

III=−2+�. Finally, for ��0.5 the
ground state has AF-II order as shown in Fig. 1�b� with E0

II

=−3�. The points at �=0 and �=0.5 correspond to first-
order phase transitions between the AF-I→AF-III and
AF-III→AF-II states, respectively. For �=0 the AF-I state
dominates at low temperature, while at �=0.5 the AF-III
state dominates.

These conclusions of several magnetic phases �AF-I,II,III�
in the fcc antiferromagnet as a function of the � parameter

�not the nature of the order of the transition� have been con-
firmed in the fcc Ising �n=1� �Ref. 20� and classical Heisen-
berg �n=3� �Ref. 8� antiferromagnets. Therefore, at least in
principle, such an hypothesis can be extended for all values
of n in the fcc O�n� antiferromagnet. On the other hand, the
order of the transition of the AF-I state at finite temperature
depends on the value of �. In particular, Monte Carlo simu-
lations in the fcc Ising antiferromagnet20 have indicated a
second-order transition for ��−0.25 and a first-order for
−0.25���0. In this paper we will restrict the analysis only
on the nature of the phase transition of the fcc O�n� antifer-
romagnet in the absence of nnn interaction ��=0� as a func-
tion of the number �n� of the spin components.

B. Formalism

Some years ago, a simple and versatile scheme, denoted
by effective-field theory �EFT� has successfully been used to
treat second-order phase transitions of classical and quantum
models.32–36 Recently, EFT also was applied to study first-
order phase transitions in frustrated models.36 The EFT pro-
vides a hierarchy of approximations to obtain thermody-
namic properties of magnetic models. One can continue this
series of approximations by considering larger and larger
clusters and, as a consequence, better results are obtained.
The exact solution would be obtained by considering an in-
finite cluster. However, by using relatively small clusters that
contain the topology of the lattice, one can obtain a reason-
able description of thermodynamic properties as will be
shown below. The EFT method is based on the use of rigor-
ous correlation identities as a starting point and utilizes the
differential operator technique developed by Honmura and
Kaneyoshi.37

The thermal expectation value of a general function in-
volving spin operator components in finite cluster �N can be
obtained by the relation corresponding to the generalized
Callen and Suzuki identity,38 i.e.,

��N� = 
TrN�Ne−�HN

TrNe−�HN
� , �3�

where the partial trace TrN is taken over the set of N spin
variables specified by a finite-system Hamiltonian HN and
�¯� indicates the canonical thermal average taken over the
ensemble defined by the complete Hamiltonian H.

For a cluster with two spins, de Sousa and de
Albuquerque39 have developed an EFT to treat the criticality
of the ferromagnetic n-vector model on a lattice with arbi-
trary coordination number z. Using a two-spin Hamiltonian
for the finite system HN=2 in Eq. �3�, the magnetization per
spin m=� S1+S2

2
� was found. Applying the differential operator

technique and EFT an approximate expression for m is ob-
tained for all values of z. Later, de Sousa40 generalized this
approach to treat the antiferromagnetic case. The lattice sites
are divided into two distinct interpenetrating sublattices A
and B, where the corresponding magnetizations are given by
mA�B�= �S1�2�� on a simple lattice �z=6�. The Curie �Néel�
temperature associated to the second-order phase transition
is obtained by using the boundary conditions mA=mB→0
�mA=−mB→0� for the F �AF� case.
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Contrary to the mean-field approximation �MFA�, where
all the self-spin and multiple-spin correlation functions are
neglected, EFT neglects correlations between different spins
but takes relations such as Si

2=1 exactly, which is critical for
incorporating frustration. According to Netz and Berker,41

the failure in the case of a triangular Ising model by using
MFA is due to a violation of the hard-spin condition Si

2=1.
The two different methods, EFT and the recursive lattice
technique,42 exactly treat the hard-spin constraint and cor-
rectly reproduces the one-dimensional result �i.e., Tc=0� and
exhibits a nonzero critical temperature for the three-
dimensional frustrated Ising model. Recently, EFT43 and
hard-spin mean-field theory44 have been used to study frus-
trated Ising systems with competitive interactions.

Following the same procedure developed by de Sousa 40

and assuming an ordered state of the AF-I type shown in Fig.
1�a�, the average magnetization in sublattice A �mA� is given
by the following expression:

mA = �̂��mA,mB�gn�x,y��x,y=0, �4�

with

�̂�mA,mB� = �
	=x,y

��	 − mB�	�5��	 − mA�	�2


 �
�=A,B

��xy − m��xy�2, �5�

gn�x,y� =
sinh�x + y� + ��nK�sinh�x − y�
cosh�x + y� + ��nK�cosh�x − y�

, �6�

and

��nK� =
1 + 
n�K�
1 − 
n�K�

, �7�

where K=�J, �	=cosh�KD	�, �	=sinh�KD	�, �xy

=cosh�K�Dx+Dy��, �xy =sinh�K�Dx+Dy��, D	= �
�	 �	=x ,y�,


n�K�= In/2�nK� / In/2−1�nK�, and Ip�x� is the modified Bessel
function of the first kind of order p. mB is the magnetization
of sublattice B.

In particular, we are interested only in the function 
n�x�
for the cases of n=1,2 ,3, and n→�, that are given by


n�K� =

tanh�K� , n = 1

I1�2K�
I0�2K�

, n = 2

L�3K� , n = 3

2K

1 + 	1 + 4K2
, n → � ,

�8�

where L�x�=coth�x�−1 /x is the Langevin function.
Applying the boundary condition in Eq. �4� for the AF-I

phase mA=−mB=m, we obtain the equation of state given by

m = �AF�m,T,n� = �
p=0

8

a2p+1�T,n�m2p+1, �9�

with

ak�T,n� =
1

k!
� �k�AF�m,T,n�

�mk �
m=0

, �10�

and

�AF�m,T,n� = �̂��m,− m�gn�x,y��x,y=0. �11�

In the case of the boundary condition for the ferromag-
netic �F� phase, we have mA=mB=m and the equation of
state is given by

m = �F�m,T,n� = �
p=0

8

b2p+1�T,n�m2p+1, �12�

with

bk�T,n� =
1

k!
� �k�F�m,T,n�

�mk �
m=0

, �13�

and

�F�m,T,n� = �̂F��m,m�g̃n�x,y��x,y=0, �14�

where �̂F�m ,m� corresponds to the differential operator

�̂�m ,m� substituting K by −K, and similarly g̃n�x ,y� corre-
sponds to the function gn�x ,y� substituting K by −K. The
coefficients �ak�T ,n� ,bk�T ,n�� are determined by applying
the identity eaDx+bDyf�x ,y�= f�x+a ,y+b�. The corresponding
expressions for the above quantities are rather lengthy to be
reproduced here.

III. RESULTS AND DISCUSSION

In order to study the phase transition of the fcc O�n�
model using EFT-2 we analyze the thermal behavior of the
order parameter as a function of the temperature. For the AF
and F cases we numerically study the equations of state
given by Eqs. �9� and �12�, respectively. When the transition
is of second order, m�T� decreases as the temperature in-
creases and at T=Tc the order parameter is null �continu-
ously�. In the F case, we indeed observe a continuous tran-
sition Tc�n� as a function of n, which is numerically obtained
through the condition

b1�Tc,n� = 1. �15�

The above equation corresponds to the equation of state �12�
in the limit m→0.

For first-order transitions we cannot use a similar condi-
tion as given by Eq. �15� because in this case one has m
�0. For a qualitative estimate of the first-order temperature
TN

*�n� we use the criterion of the infinity of the first tempera-
ture derivative of the order parameter at T=TN

*�n� �i.e.,
� dm

dT
�
T=TN

*→��, as depicted in Fig. 2 for the Ising model �n
=1�. Similar behavior as in Fig. 2 is observed for other val-
ues of n. In this scheme the first-order temperature Tc

*�n� is
overestimated in relation to the value to be obtained using
the free energy stability �Maxwell construction method�.
This method to locate TN

* has been recently used to study the
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quantum phase transition of the frustrated Heisenberg �spin-
1 /2� on a square lattice.36 From Eq. �9� we then have

�
p=0

8

�2p + 1�a2p+1�TN,n�mc
2p = 1. �16�

Simultaneously solving Eqs. �9� and �16� we obtain an esti-
mate for TN and the value of the discontinuity of order pa-
rameter mc=m�TN�. This procedure can also be used to ob-
tain the critical temperature Tc�n� in the F case, but in this
limit we have the solution mc=0 �see Fig. 2�, and the results
are equivalent to those from Eq. �15�.

The numerical results for Tc and TN, and when available,
a comparison with exact Monte Carlo simulations, and series
expansion, are shown in Table I. One can clearly see that the
agreement is quite good, even having in mind the simplicity
of the present approximation. Of course, there are other
analytical procedures of the same level of the EFT. However,
the corresponding results are not as good as the present ones.
For instance, the Bragg-Willians47 and quasichemical
approximation48 are clearly inadequate for the treatment of
antiferromagnetism in the fcc lattice. Improved mean-field
theories, such as the pair approximation49 and the Bethe
scheme50 yield no finite temperature AF ordering. Only a
more sophisticated approximation, the Kikuchi scheme �the
so-called cluster variation method �CVM�� in both
tetrahedral51 and the tetrahedral-octahedral52 approximations,
is capable of yielding first-order transitions. More recently, a
mean-field theory in cluster with four spins �MFT-4� has
been applied19 to this model and for the F case it was found
kBTc /J=11.719 and for the AF case �first-order transition�
kBTN /J=3.502. In the present formalism the values kBTc /J
=8.910 �F case� and kBTN /J=1.526 �AF case� are clearly
superior in quality than the values from MFT-4 in compari-
son with the results from Monte Carlo �MC� simulation7,23 as
can be seen from Table I. In particular, for the fcc Heisenberg
antiferromagnet the present results are in good accordance
with recent MC simulations.28

On the other hand, for the fcc XY �n=2� and spherical
�n→ � � antiferromagnets there exists �up to our knowledge�
no estimate for TN, only values of Tc �F case�. However,
preliminary results of MC simulations28 indicate a possible
first-order transition in the XY model, corroborating the pre-
visions of the present work.

IV. CONCLUSIONS

In summary, we have studied, using effective-field theory
in finite cluster, the criticality of the fcc O�n� model with F
and AF interactions. For the F case the phase transition is of
second order and the AF case is of first order. The results for
the ferromagnetic system are in good agreement with the
exact ones or those coming from Monte Carlo simulations.
In addition, a similar treatment applied to the quantum fcc
Heisenberg model using EFT-2 �Ref. 53� has given kBTc /J
=8.769 �F case� and kBTN /J=1.289 �AF case�. These values
are smaller than the present classical ones, due to the pres-
ence of the quantum effects.

To obtain an estimate of TN �AF case� we used the deriva-
tive method of the order parameter, where at T=TN we im-
pose �dm /dT�T=TN

→�. Qualitatively, we have found first-
order transition for the fcc O�n� antiferromagnet and all
values of n. The quantitative results for TN in the Ising and
Heisenberg models are in good agreement with MC simula-
tions. The present approach does not provide a free energy
for the system. For this reason one is not able to completely
describe the first-order behavior such as transition point, la-
tent heat, etc. However, more recently, a functional form for
the free energy has been proposed in order to get first-order
transitions.43 The method has given good estimates for the
phase diagram of the Ising model with nn and nnn competi-

TABLE I. Transition temperature kBTc /J �F case, J�0� and
kBTN /J �AF case, J�0� for the O�n� model on an fcc lattice ob-
tained in this work using EFT-2. We compare with exact solution
for the spherical ferromagnet, Monte Carlo �MC� simulations for
the Ising and Heisenberg models, and series expansion �series� for
the XY ferromagnetic model. Except for the EFT-2 approach and
the exact solution of the spherical model, here and also in the text,
the errors in the temperatures are in the next decimal digit �not
shown�.

Model Method F case AF case

Ising �n=1� EFT-2 8.910 1.526

MC7 9.794 1.721

XY planar �n=2� EFT-2 8.911 1.493

Series �Ref. 45� 9.639

Heisenberg �n=3� EFT-2 8.913 1.476

MC �Refs. 28 and 30� 8.671 1.329

Spherical �n→ � � EFT-2 8.919 1.434

Exact �Ref. 46� 6.675

FIG. 2. Magnetization as function of the reduced temperature
for the Ising model �n=1� in the antiferromagnetic �AF� and ferro-
magnetic �F� cases. The dotted line is the unphysical solution, and
the dashed line represents the discontinuity in the magnetization at
the infinite derivative point for the AF model.
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tive interactions on a simple cubic lattice. We have also used
this new methodology to the present system but could not
find any numerical solution for the Néel temperature. Prob-
ably, the series for the present model is still too short to get
a reasonable free energy.

Although there are some arguments sustaining no antifer-
romagnetism in this system54,55 for n=3, MC simulations25

have indicated a finite Néel temperature. Since our results are
close to MC simulations, as can be seen in Table I, we be-
lieve that the present approach can actually give a good pic-
ture of the criticality of the system, even in the AF case,

including the less studied models n=2 and n→�.
As a final comment, we would like to point out that the

recursive lattice technique42 should be worthy to be applied
to the present problem. As this method allows one to calcu-
late the free energy, an unambiguous location of first-order
transition lines can be correctly obtained.
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