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In chiral ferromagnets, weak spin-orbit interactions twist the ferromagnetic order into spirals, leading to
helical order. We investigate an extended Ginzburg-Landau theory of such systems where the helical order is
destabilized in favor of crystalline phases. These crystalline phases are based on periodic arrangements of
double-twist cylinders and are strongly reminiscent of blue phases in liquid crystals. We discuss the relevance
of such blue phases for the phase diagram of the chiral ferromagnet MnSi.
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I. INTRODUCTION

In metallic magnets without inversion symmetry—so-
called chiral ferromagnets—spin-orbit coupling effects deter-
mine the physics decisively: they can twist the magnetization
into a helix in the ordered phase of the material. Prominent
examples are MnSi and FeGe, which have been known for a
long time to exhibit spiral order.1 Recently, interest in such
materials has been renewed with a number of experiments
that, on the one hand, found non-Fermi liquid behavior in a
large temperature and pressure region of the phase diagram2

and, on the other hand, uncovered signs of a peculiar par-
tially ordered state in neutron scattering experiments.3

In the ordered state of MnSi, helical order is observed in
neutron scattering experiments in the form of Bragg peaks
situated on a sphere in reciprocal space. The radius of this
sphere is proportional to the inverse pitch of the helix, and
the peaks are positioned in the �111� directions. This locking
of the helices is due to higher-order spin-orbit coupling ef-
fects. For temperatures down to 12 K, the phase diagram
exhibits a second-order phase transition out of the helical
into the disordered, isotropic phase when external pressure is
applied. Below 12 K, helical order is lost at external pressure
of 12–14 kbars via a first-order phase transition into a “par-
tially ordered” state. This state seems to retain remnants of
helical order on intermediate time and length scales: neutron
scattering experiments reveal a signal on the surface of a
sphere in reciprocal space, which is resolution limited in the
radial direction but smeared out over the surface of the
sphere.3 Maxima of the signal now point into the �110� di-
rections but are no longer sharply peaked.

Motivated by these experiments, we investigated ways of
destabilizing helical order in chiral ferromagnets and the
possible new phases that can exist besides helical order. Such
phases are well known for cholesteric liquid crystals,4 i.e.,
chiral nematics, where several so-called blue phases have
been observed. In these phases �more precisely, in phases I
and II�, crystalline order is formed, which can be interpreted
as a periodic network of ordered cylinders, see below. The
lattice spacing is often of the order of a few hundred nanom-
eters, leading to the colorful appearance of these phases �in-
cluding the color blue in some variants�.

As the Ginzburg-Landau theory for the director of a chiral
nematic liquid is very similar to that for the vector order

parameter of a chiral magnet �see discussion below�, the
question arises whether similar phases are realized in mag-
netic systems. This question has been addressed in some de-
tail by Wright and Mermin4 many years ago. They showed
that amplitude fluctuations, which are essential for the stabil-
ity of blue phases, cost a factor of 3 more energy for ferro-
magnets compared to liquid crystals and concluded that such
phases do not appear within a Ginzburg-Landau theory with
local interactions.

Motivated by the physics of MnSi, several groups have
reexamined this issue. Rößler et al.5 added a further param-
eter to the Ginzburg-Landau theory, allowing them to reduce
the energy of amplitude fluctuations arguing that such a term
might arise from higher-order fluctuation corrections. The
term considered in Ref. 5 is, however, nonanalytic in the
Ginzburg-Landau order parameter. In the presence of such a
term, they were able to show that a crystalline array of cyl-
inders can have lower energy than a uniform helix. We will
discuss a similar structure below. An alternative route �also
followed by us� to destabilize the helical solution are nonlo-
cal interactions, as suggested by Binz et al.6 They considered
crystals formed from superpositions of helices to be respon-
sible for the partially ordered phase of MnSi.

As pointed out by Wright and Mermin,4 it is useful to
distinguish two rather different limits when investigating the
physics of blue phases. Here, one has to compare the corre-
lation length � for amplitude fluctuations of the ordered state
�i.e., the width of a typical domain wall� with the wavelength
2� /q0 of the helical state. For �q0�1 �the high-chirality
limit�, the magnetic structure can be described by a superpo-
sition of a few helices. This approach was taken by Binz et
al.6

The factor �q0 is proportional to the strength of spin-orbit
coupling,1 and therefore expected to become large only very
close to the second-order phase transition where � diverges.
As the pitch of the helix3 in MnSi, 2� /q0�175 Å, is very
large compared to all other microscopic length scales, we
think that the low-chirality limit ��q0�1� is more appropri-
ate for the description of the high-pressure phase of this ma-
terial. In this limit, amplitude fluctuations of the order pa-
rameter cost more energy than twists of the phase and,
therefore, one has to look for order-parameter configurations
with as little amplitude fluctuations as possible.

In the following, we will first investigate which terms in
the Ginzburg-Landau theory destabilize the helical state.
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Then, we will suggest variational solutions appropriate in the
low-chirality limit. Finally, we investigate experimental con-
sequences of the resulting structures.

II. CHIRAL MAGNETS AND BLUE PHASES

The starting point of our investigation is a Ginzburg-
Landau theory at finite temperature, assuming that all modes
with nonzero Matsubara frequencies are massive and can be
integrated out.

Up to second order in spin-orbit coupling, the Ginzburg-
Landau theory for chiral ferromagnets is given by1

f�r� =
�

2 � ��Mi�2 + �M · �� 	 M� + fFM, �1�

where M=M�r� is the position-dependent magnetization and
fFM= 


2 �M�2+u�M�4 is the Landau free energy of the under-
lying ferromagnet. Spin-orbit coupling is present in the form
of the Dzyaloshinsky-Moriya interaction ��. In order to fa-
cilitate the following discussion, we also provide a second
form for Eq. �1�. It can be rewritten by setting M=�n̂, where
� is the amplitude and n̂ is the direction of the magnetization
M:

f�r� =
�

2
�2��inj +

�

�
ijknk�2

+
�

2
����2 −

�2

�
�2 + fFM��� ,

�2�

with fFM���= 

2�2+u�4.

Terms that break rotational symmetry are of higher order
in spin-orbit coupling and take the form, e.g.,

B1	��xMx�2 + ��yMy�2 + ��zMz�2


+ B2	��x
2M�2 + ��y

2M�2 + ��z
2M�2
 + B3�Mx

4 + My
4 + Mz

4�
�3�

�to fourth order in spin-orbit coupling� for the point group
P213 of MnSi.7 These terms will be neglected for the mo-
ment.

The helical state

n̂helix�r� = x̂ cos�q0z� + ŷ sin�q0z� , �4�

with q0=� /�, can be shown to be the lowest energy state of
Eq. �1� if one assumes that the amplitude � of the magneti-
zation is constant and was argued in Ref. 4 to be the only
ordered phase possible for chiral ferromagnets. Higher-order
terms in the Ginzburg-Landau expansion can, however, serve
to destabilize this helical order and induce other phases. The
simplest �i.e., of lowest order in spin-orbit coupling� of these
terms will be the focus of our investigation in this paper:

��
i

Mi � Mi�2
=

1

4
��M2�2. �5�

This term acts only on the amplitude of the magnetization,
not on its direction. Therefore, it gives no contribution to the
free energy density in the helical phase, which has a uniform
amplitude. If Eq. �5� has a negative prefactor, then in a cer-

tain parameter regime, it can be expected to destabilize heli-
cal order in favor of an order parameter with a fluctuating
amplitude. In the following, we will use the shorthand
�M�M�2 for expression �5�.

In order to determine the new states that could be stabi-
lized by Eq. �5�, it is instructive to explore the close analo-
gies between chiral ferromagnets and chiral liquid crystals.4

The order parameter of chiral liquid crystals is a director and,
as a consequence, topological defects are fundamentally dif-
ferent in both systems. However, chiral liquid crystals can be
described by a free energy density that is quite similar in
form to Eq. �2�, the only differences being an additional cu-
bic term in � and an extra factor 1 /3 in front of the term
�����2.

Locally, the blue phases are based on a configuration of
the magnetization that can be shown to be even lower in
energy than the helix:

n̂dt�r� = ẑ cos�qr� − �̂ sin�qr� , �6�

in cylinder coordinates, see Fig. 1. This can be easily seen4

by comparing the energy density of the uniform helix,
− �2

2��2+ fFM���, to the result obtained by plugging Eq. �6�
into Eq. �2�: For �=const and q=q0, the first two terms in
Eq. �2� vanish for r=0 and, therefore, the energy density at
r=0 is given by − �2

� �2+ fFM���, i.e., lowered by an extra
factor − �2

2��2.
This so-called double-twist configuration is cylindrically

symmetric: sheets of constant magnetization are rolled up
around a common cylinder axis �see Fig. 1�. Configuration
�6� is, however, only favored in the vicinity of the cylinder
axis—the energy difference between the helix and the
double-twist configuration diminishes and even becomes
positive as the distance from the cylinder axis is increased.
Isolated double-twist configurations, therefore, necessarily
have to occur in the form of cylinders with an amplitude that
becomes zero at a certain distance from the cylinder axis.
However, amplitude fluctuations cost energy, as can be seen
from the second term in Eq. �2�. In the case of liquid crystals,
the prefactor of ����2 is small enough for double-twist cyl-
inders to become energetically lower in energy than the helix

FIG. 1. �Color online� Cut through a double-twist cylinder:
Double-twist-configuration of the magnetization. Sheets of constant
magnetization are wrapped as cylinders around a common axis.
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�see discussion above�. Crystals made of these double-twist
cylinders are indeed believed to lie at the heart of the blue
phases I and II in liquid crystals.4 In the case of the ferro-
magnet, however, the energy cost of amplitude fluctuations
outweighs the energy gains due to directional fluctuations
within the double-twist structure and, for a free energy den-
sity given by Eq. �1� �single�, double-twist cylinders do not
occur.4

Adding term �5� to the free energy density can invalidate
this conclusion: if the prefactor of Eq. �5� is allowed to be-
come negative, it can reduce the cost of amplitude fluctua-
tions and allow for the appearance of blue phases even in
chiral ferromagnets. If Eq. �5� has a negative prefactor, then
the inclusion of higher-order terms in the Ginzburg-Landau
theory becomes necessary in order to obtain a stable solution
and avoid, e.g., an unbounded magnetization.

In the following, we want to analyze the possible occur-
rence of the analog of blue phases in chiral ferromagnets. By
rescaling the magnetization, the free energy density, and the
momenta, the free energy density can be cast into the follow-
ing form:

f�r� = 
M2 + � ��Mi�2 + M · �� 	 M� + M4 + ��M � M�2

+ �hi�M� , �7�

where ��0, ��0, and hi�M� is a term containing k powers
of M and l derivatives �k�4, l�2�, which is used to stabi-
lize solutions against an unbounded magnetization and
oscillations thereof. Possible choices are, for example,
h1�M�= �M�M�2���Mi�2, h2�M�= �M�M�4, and h3�M�
=M2�M�M�2. In the rest of this paper, we will use h1�M�
exclusively: this term is the one with the least number of
derivatives and powers of M that, on the one hand, stabilizes
single double-twist cylinders and, on the other hand, is iden-
tically zero for the single helix.

III. FROM CYLINDERS TO CRYSTALS

As the first step, we investigated single double-twist cyl-
inders for 
=1 /4. At this point, the helical and isotropic
phase are degenerate with fhelical= f isotropic=0. If a single cyl-
inder can now be shown to have negative free energy, then
the system can lower its free energy further by creating ex-
tended networks of double-twist cylinders: crystalline phases
�the analogy to blue phases in liquid crystals� can be ex-
pected to form in chiral ferromagnets.

Setting M= n̂dt�r���r�, with n̂dt�r� given by Eq. �6�, we
calculated numerically the amplitude function ��r� that mini-
mizes the free energy density 	Eq. �7�
 �for certain values of
� and ��, subject to the condition that the magnetization
drops to zero at a certain distance from the cylinder axis. For
a given � and sufficiently negative values of �, single cylin-
ders are stable configurations within a Ginzburg-Landau
theory of the form of Eq. �7�, see Fig. 2. In order to minimize
its free energy, the system will try to produce many such
cylinders, packed as tightly as possible. In these configura-
tions, the magnetization only has to drop to zero on lines or
points, if at all. Considering that it is the competition be-
tween phase and amplitude fluctuations that either stabilizes

double-twist structures or not, it can be expected that crys-
talline arrangements of the helices can exist even in param-
eter regimes where single cylinders are unstable.

The possible crystalline structures are subject to the con-
dition that the magnetization matches where cylinders touch
in order to avoid discontinuities in the magnetization. This
condition is much more restrictive for ferromagnets com-
pared to liquid crystals.4 We have found8 only two allowed
structures constructed as networks of double-twist cylinders:
a square and a cubic lattice, see Fig. 3. The square lattice is
invariant with respect to rotations by multiples of � /2
around the z axis, translations along the z axis, as well as a
translation by a� 1

2 , 1
2 ,0� combined with time reversal �M

→−M�. In this structure, the magnetization has to go to zero
on the line � a

2 ,0 ,z� and symmetry-equivalent lines. The sym-
metry transformations that leave the second structure �cubic
lattice� invariant are cyclic permutations of the axes and a
translation by a� 1

2 , 1
2 , 1

2
� combined with time reversal. In this

structure, the magnetization vanishes only at a� 1
8 , 5

8 , 3
8

�,
a� 3

8 , 3
8 , 3

8
�, and symmetry-equivalent points in the unit cell.

We calculated the free energy density of these structures
by means of a variational ansatz for the amplitude of a single
double-twist cylinder:

��r� = y0 · �r0 − r�e−r/r1��r0 − r� , �8�

where y0, r1, and the double-twist wave vector q are varia-
tional parameters. This ansatz is based on the numerics for a
single cylinder. The cylinders were then arranged in crystals,
as shown in Fig. 3. The cutoff r0��5� / �2q� was chosen for
convenience to avoid the tiny overlap of cylinders that are
far apart within the calculation.

A phase diagram as a function of the remaining three free
parameters can now be computed. Here, we set � to a fixed
value, assuming that it is the least susceptible to variations of
external pressure, and established the phase diagram as a
function of the two remaining free parameters. The result for
�=0.05 can be seen in Fig. 4.

One immediately notices that there is no parameter re-
gime in which the square lattice shown in Fig. 3�a� has the

1 2 3 4

0.5

1

1.5

2

2.5

3

λ

r

FIG. 2. Amplitude function ��r� which minimizes Eq. �7� using
the directional dependence 	Eq. �6�
, the stabilizing term h1 �with
�=−6.5, �=5�, and the boundary condition ��r�=0 for r�R. Here,
q=0.38q0 and R=3.98 are free variational parameters where q0

=1 /2 is the helix wave vector. The resulting free energy gain per
length is given by fcyl=−0.21.
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lowest free energy density; this is also true for different val-
ues of � not shown here. While the filling fraction of double-
twist regions is certainly larger in the square lattice than in
the cubic structure, the magnetization in the cubic crystal
only has to go to zero at points and not on lines, as it is the
case for the square lattice. Furthermore, in the cubic lattice,
the magnetization only has to twist outward by 45° until
cylinders touch, compared to 90° in the case of the square
lattice �see Fig. 3�. These factors conspire to make the free
energy of the cubic structure even lower than that of the
square lattice. Within our variational ansatz, we find that the
transition from the crystalline to the isotropic phase is very

weakly first order 	the relevant free energy differences are
less than 0.02 in units of Eq. �7�
. Note, however, that our
analysis might break down close to the transition, as one
enters the high-chirality regime, see above.

Since the double-twist wave vector q is now also a varia-
tional parameter, it is no longer necessarily identical to the
helix wave vector q0. In Fig. 5, we show that q depends
considerably on the microscopic parameters but remains of
order q0.

What signal can these structures be expected to produce
in neutron scattering experiments? As for any crystal, peaks
in neutron scattering originate from the lattice structure it-
self, and the configuration of the magnetization within the
Wigner-Seitz cell only enters in the shape of form factors.
The lattice constants are functions of the double-twist wave
vector and determined by the requirement that the magneti-
zation has to match where cylinders touch. For the square
lattice, one obtains a=�2� /q, and for the cubic lattice a
=2� /q.

In neutron scattering, higher-order Bragg peaks can be
also expected to be generated by the lattice structures. The
elastic scattering cross section9 can be calculated from a Fou-
rier transform of the magnetization:

� d�

d�
�

el
� ��̂ 	 	M��� 	 �̂
�2. �9�

In order to compare with experimental data, the quantities of
interest are the positions of the Bragg peaks and the relative
intensities of the Bragg peaks.

For the square lattice, normalizing intensities to give unity
for the first reflection with Miller indices �10�, the �21� and
�30� reflections have intensities of 0.08 and 0.01, respec-
tively. The invariance of the square lattice with respect to a
translation by a� 1

2 , 1
2

� combined with M→−1M constrains all
Bragg peaks �hk� with h+k=2n to vanish. In the case of the
square lattice, the lowest order reflexes already account for
84% of the total intensity.

For the cubic lattice, assuming that the lowest Bragg
peak, i.e., the �100� peak, has intensity 1.0, the �210� and
�300� peaks have relative intensities of 0.17 and 0.03. The
�110� and �200� peaks vanish for symmetry reasons, while
the �111� peak vanishes as a consequence of our ansatz based

y

x a

z

x
y

a(b)

(a)

FIG. 3. �Color online� Crystalline structures built from double-
twist cylinders: �a� Unit cell of the square lattice of double-twist
cylinders in the x-y plane. The magnetization on the cylinder axes,
as well as at the points where cylinders touch, is shown explicitly.
�b� Unit cell of the cubic lattice of double-twist cylinders. At the
points where cylinders touch, the magnetization has twisted to an
angle of 45° from the cylinder axis.

−1.36 −1.34 −1.32 −1.3 −1.28
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δ

helical order

cubic crystal

isotropic phase

FIG. 4. Phase diagram for �=0.05. In addition to the helical and
the isotropic phases, there is a parameter range where the cubic
lattice of double-twist cylinders minimizes the free energy.

-1 -0.5 0 0.5
δ

0.5
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ξ = −1.32
ξ = −1.35
ξ = −1.36
ξ = −1.37

FIG. 5. Ratio of double-twist wave vector q 	see Eq. �6�
 versus
helix wave vector q0 	see Eq. �4�
 for �=0.05: q /q0 varies consid-
erably but remains of order 1 in the parameter region where the
cubic crystal is stable.
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on a linear combination of cylinders in the x, y, and z direc-
tions and should really be nonzero as allowed by symmetry.
Our approach suggests, however, that these peaks have small
weight. The �100� peaks of the cubic lattice only represent
46% of the total scattering intensity Icubic. The �100�, �210�,
and �300� peaks of the cubic lattice add up to 79% of Icubic.

Anisotropic terms that orient the helix also act on the
crystalline structures and determine their orientation with re-
spect to the crystal lattice of the substance. For the square
lattice, where all cylinders are arranged in parallel, using Eq.
�3� for B1=B2=0, B3�0, we find that weak anisotropic
terms align the cylinder axes parallel to the preferred direc-
tion of the helix vector, i.e., either in the �111� or �100�
direction, depending on the sign of B3. However, the orien-
tation of the crystal in the perpendicular direction is not af-
fected to leading order by the anisotropy term, but higher-
order terms would lock a perfect crystal. Motivated by the
“partial order” observed in the high-pressure phase of MnSi
�see Introduction�, we investigate the expected signature in
neutron scattering assuming that these higher-order terms are
not effective. In this case, the square lattice will produce
rings in planes normal to the �111� direction �the orientation
of the helix in the low-pressure phase�. These rings intersect
to produce maxima in the �110� direction on a circle with
radius �2q in reciprocal space. For parameters with �2q
�q0, this is consistent with the observed signatures3 in neu-
tron scattering. Note, however, that at least within our model,
the square lattice never has the lowest energy.

In Ref. 5, it was argued that an amorphous texture of
parallel cylinders �which the authors called skyrmions�
aligned preferentially along the �111� direction would also
produce such rings. However, such a scenario would not ex-
plain the resolution limited width in the radial direction, i.e.,
at least on length scales of 2000 Å, the square crystal would
have to remain intact.

In the case of the cubic lattice, the numerical calculation
of the free energy density shows that for B3�0, the aniso-
tropic terms are minimized if one of the axes of the
cubic lattice is �1 /�2,1 /�2,0� and the other axes are
�−1 /2,1 /2,1 /�2� and �1 /2,−1 /2,1 /�2�, respectively.
While such structures would produce peaks in the �110� di-
rection �as observed in the high-pressure phase of MnSi�, one
expects also considerable intensity rather close to �111� 	as,
e.g., �−1 /2,1 /2,1 /�2� differs only by about 10° from
�−111�
. Experimentally, however, one observes a minimum
of the intensity in the �111� direction. For B1=B2=0, B3
�0, the system would prefer to align the cubic structure with
the crystal lattice of MnSi.

Binz et al.6 have argued that the Bragg peaks in neutron
scattering should be smeared out because the magnetization

has a varying amplitude, and is therefore susceptible to in-
teractions with nonmagnetic impurities. The same argument
would apply for the crystalline structures presented in this
paper.

IV. CONCLUSIONS

In conclusion, we have constructed “blue phases” in chi-
ral ferromagnets. Is it likely that these blue phases are real-
ized in MnSi? The signatures in neutron scattering seem to
be consistent with the square structure �also considered in
Ref. 5�, which is, however, never the ground state within the
models that we considered. Our results suggest that the in-
tensity in neutron scattering is located on rings intersecting
in the �110� direction. It would be interesting to check ex-
perimentally whether the intensity distribution arising from
such a picture fits quantitatively.

In the case of the cubic lattice, the positions of the ex-
pected maxima do not match the ones observed. In any case,
the smoking gun experiment to detect crystalline structures
would be the observation of higher-order Bragg peaks �this
also applies for other structures, e.g., those suggested in
Refs. 5 and 6� and we hope that our estimates may guide
future experiments in this direction.

However, it is still unclear whether the partially ordered
state of MnSi is indeed a separate phase. Recent measure-
ments of the thermal expansion coefficient give no trace of
a phase transition from the partially ordered state to the
isotropic phase.10 Furthermore, muon spin spectroscopy
experiments11 give no evidence for static order in this regime
and it remains unclear on which time scales the partial order
survives.3

It therefore remains an open question whether distinct
phases other than the helical one are present in chiral ferro-
magnets that are currently investigated experimentally. In
fact, the partially ordered phase in MnSi might be more
analogous to the blue phase III than to blue phases I and II.
While the precise structure of the blue phase III is not com-
pletely clear, it seems to show some type of crystalline short
range order but is a liquid on long length scales.12,13 There-
fore, it has been conjectured14 that an amorphous arrange-
ment of double-twist cylinders is relevant for this blue phase
III in liquid crystals—this might also be true3,5,15 for the
partially ordered phase in MnSi.
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