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The thermodynamics of low-dimensional spin-1
2 Heisenberg ferromagnets �HFMs� in an external magnetic

field is investigated within a second-order two-time Green function formalism in the wide temperature and field
ranges. A crucial point of the proposed scheme is a proper account of the analytical properties for the approxi-
mate transverse commutator Green function obtained as a result of the decoupling procedure. A good quanti-
tative description of the correlation functions, magnetization, susceptibility, and heat capacity of the HFMs on
a chain and square and triangular lattices is found for both infinite- and finite-sized systems. The dependences
of the thermodynamic functions of two-dimensional HFMs on the cluster size are studied. The obtained results
agree well with the corresponding data found by Bethe ansatz, exact diagonalization, high temperature series
expansions, and quantum Monte Carlo simulations.
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I. INTRODUCTION

The quantum Heisenberg model with ferromagnetic ex-
change is used extensively to interpret the thermodynamic
and magnetic properties of low-dimensional �one-
dimensional �1D� and two-dimensional �2D�� physical sys-
tems. Examples of quasi-one-dimensional ferromagnets
whose properties can be explained within the Heisenberg
model are organic p-NPNN compounds1–5 and cuprates
TMCuC.6,7 The ferromagnetic insulators, such as K2CuF4,
Cs2CuF4, La2BaCuO5, and Rb2CrCl4,8–10 and quantum Hall
ferromagnets11–13 provide examples of the Heisenberg sys-
tem on a square lattice. A unique example of a spin-1

2 magnet
on a triangular lattice is 3He bilayers adsorbed on
graphite.14–21 At high coverages, the second layer proved to
be a solid ferromagnet whose thermodynamics can be de-
scribed by a Heisenberg ferromagnet �HFM� with a high de-
gree of accuracy.21–25 Nowadays, considerable study is being
given to 3He monolayers on 4He-preplated graphite sub-
strates. In these systems under high enough pressure, a solid
3He monolayer with ferromagnetic exchange is formed.26,27

Experimental research of the aforementioned low-
dimensional magnets is carried out intensively, in particular,
in the presence of an external magnetic field. To interpret the
experimental data, it is necessary to develop a quantitative
description of the HFM thermodynamics at arbitrary mag-
netic fields and temperatures. The two-time Green function
formalism is quite appropriate for this purpose. The method
based on one or another decoupling scheme for higher Green
functions results in a closed set of self-consistent equations
for thermodynamic averages.28–31 Random phase approxima-
tion �RPA� is the simplest variant of such a scheme with
decoupling at the first step.32 Being applied to the low-
dimensional systems, it gives satisfactory results at high
fields, whereas at low and intermediate fields, RPA describes
the thermodynamics only on a qualitative level.

A quantitative description of 1D and 2D spin systems can
be obtained within a more complicated scheme originally
proposed in Ref. 33 for a 1D HFM in zero magnetic field.
The scheme is based on the decoupling of higher Green

functions at the second step with the introduction of the ver-
tex parameters to be found. A proper choice of the vertex
parameters makes it possible to retain some relations that
must hold true at the exact solving of the problem. As a
result, the theory is built in terms of the correlation functions
and the vertex parameters obeying the self-consistent set of
equations. In Refs. 33–38, a single vertex parameter was
chosen so as to satisfy the sum rule. One vertex parameter
turned out to be quite enough to describe quantitatively the
thermodynamics of 1D and 2D �on square and triangular
lattices� ferromagnets in zero field.

When employing the above-mentioned scheme to the spin
systems in an external magnetic field, along with the correla-
tors, we have to determine at least three additional functions
of temperature and field: two vertex parameters and magne-
tization. To do this, we need three relations, two of which are
quite evident from the properties of the spin-1

2 operator

��Sz�2� =
1

4
, �Sz� =

1

2
− �S−S+� , �1�

where angular brackets denote thermodynamic averaging.
The choice of the third condition is not so apparent. In Ref.
39, a second-order Green function scheme was applied to a
HFM chain and a HFM on a square lattice. As the third
condition, Junger et al.39 used the exact representation of the
internal energy through the transverse Green function.30,32

The aim of the present work is to calculate the thermody-
namic functions of a HFM on a triangular lattice in an exter-
nal magnetic field using a second-order Green function for-
malism. As compared to a chain and a square lattice,12,39–42 a
HFM on a triangular lattice in a magnetic field is much less
investigated. For this case, high-temperature series expan-
sion �HTSE�,43 low-temperature asymptotics for the magne-
tization calculated within the spin wave approximation,44,45

temperature dependences of the magnetization found by
quantum Monte Carlo simulations �QMCs� on a 16�16
cluster,44 and some results obtained by the renormalization
group technique46 �RGT� are known. However, none of these
approaches gives a complete description of the thermody-
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namics in the whole temperature and field ranges, and a
second-order Green function method is expected to fill the
gap.

In the present work, we show that this method is more
effective when the conditions determining the magnetization
and vertex parameters result from the fundamental prin-
ciples. Clearly, the relations �1� are just of this kind. It is
equally important to retain the analytical properties28,30,31 of
the Green functions in the approximate approach. Such a
requirement for the transverse commutator Green function
provides a basis for the third condition in our theory. Note
also that by an appropriate choice of variables, the set of
self-consistent equations for the correlators, vertex param-
eters, and magnetization can be written in a universal form
suited not only for a triangular lattice but also for a chain and
a square lattice. Good agreement of our results obtained for
the three types of lattices with the corresponding data avail-
able from literature confirms the efficiency of the scheme
used.

In Sec. II, the statement of the problem is formulated, and
the self-consistent set of equations for the correlators, mag-
netization, and vertex parameters is derived. In Sec. III, the
proposed scheme is applied to a HFM on a chain and square
and triangular lattices. The obtained results are compared
with the corresponding data found within other methods.
Some concluding remarks are made in Sec. IV.

II. STATEMENT OF THE PROBLEM

The Hamiltonian of the system is given by

H = −
J

2�
f,�

SfSf+� − h�
f

Sf
z, �2�

where Sf is the spin-half operator at site f, � is a vector
connecting nearest neighbors, J�0 is an exchange integral,
and h=2�B, where � is the magnetic moment of a particle
and B is an external magnetic field.

To calculate spin-spin correlators, it is necessary to find
two retarded commutator single-particle Green functions:
��Sf

z �Sf�
z ��, ��Sf

� �Sf�
−��� ��= ± �. We write down equations of

motion for these two functions and make the decoupling of
the higher Green functions on the second step according to
the scheme proposed in Ref. 39,

Si
�Sj

�Sl
−� = ����Sj

�Sl
−��Si

� + �Si
�Sl

−��Sj
�� ,

Si
zSj

zSl
� = ���Si

zSj
z�Sl

�, Si
�Sj

−�Sl
z = �z�Si

�Sj
−��Sl

z,

i � j � l, i � l , �3�

where �� and �z are the vertex parameters.
After a number of manipulations, we finally obtain for the

time-space Fourier component

��Sk
z �S−k

z ��� =
Jc1�0

4�

1 − 	k

�2 − ��k
z �2 , �4�

where

��k
z �2 =

J2�0

2
�1 − 	k��
z + �0c̃1�1 − 	k�� , �5�


z = 1 + c̃2 − ��0 + 1�c̃1. �6�

Here, the following correlation functions have been intro-
duced:

c1 = 2�Sf
�Sf+�

−� �, c2 = 2�
�

��Sf+�
� Sf+��

−� �, c̃1,2 = �zc1,2.

�7�

The primed sum indicates that the term with �=�� is omitted
in it. The structure factor 	k is defined as

	k =
1

�0
�
�

exp�ik�� , �8�

where the coordination number �0 is equal to 2 for a chain, 4
for a square lattice, and 6 for a triangular lattice.

Fourier transform ��Sk
� �S−k

−���� can be written as

��Sk
��S−k

−���� =
1

2�
�

l=1,2

Al,k
�

� − �l,k
� . �9�

Here,

�l,k
� = h� + �− 1�l�k

�, �10�

��k
��2 =

J2�0

2
�1 − 	k��
� + �0b̃1�1 − 	k�� , �11�


� = 1 + b̃2 − ��0 + 1�b̃1, �12�

Al,k
� = ��Sz� +

�− 1�lJb1�0

2�k
� �1 − 	k� , �13�

where �Sz� is the magnetization. Due to the presence of the
external magnetic field, �Sz� is nonzero at any finite tempera-
ture.

The correlation functions entering Eqs. �11�–�13� are de-
fined by

bl =
al + cl

2
, b̃l = ��bl, l = 1 or 2, �14�

a1 = 4�Sf
zSf+�

z �, a2 = 4�
�

��Sf+�
z Sf+��

z � . �15�

The Green functions look formally the same for the three
above-mentioned types of lattices. Such a universal form has
been possible to obtain, because instead of the usual correla-
tors describing correlations between spins which are two
steps along the translation vector � apart, we use linear com-
binations c2 and a2 defined by Eqs. �7� and �15�. The physi-
cal meaning of these combinations depends on the lattice
type. For a chain, c2 and a2 are the next nearest neighbor
correlators. For a square lattice, these combinations contain
the correlation functions between the spin at site f and spins
from the second and third coordination spheres. For a trian-
gular lattice, these combinations, in addition to the higher
order correlators, include also c1 and a1. For a chain and a
square lattice, Green functions �4� and �9� coincide with
those found in Ref. 39.
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Using the spectral relations,28 we have

a1 =
Jc1

N
�
k

	kgk + 4�Sz�2,

a2 =
Jc1

N
�
k

��0	k
2 − 1�gk + 4��0 − 1��Sz�2,

c1 =
1

��N
�
k

	kpk,

c2 =
1

��N
�
k

��0	k
2 − 1�pk, �16�

where

gk =
�0

�k
z �1 − 	k�coth	��k

z

2

 ,

pk =
2���Sz�sinh��h� − Jb̃1�0�1 − 	k�sinh���k

��/�k
�

cosh��h� − cosh���k
��

,

�17�

N is the total number of sites, and �=1 /T. Equation �16�
represents the set of equations for the correlation functions cl
and al. Along with these correlators, the set �16� contains the
parameters �z and ��, and magnetization �Sz� to be also
determined.

The vertex parameters are chosen so as to satisfy the sum
rules

4��Sf
z�2� = 1, 2�Sf

�Sf
−�� = 1 + 2��Sz� ,

which, using Eq. �17�, can be written as

Jc1

N
�
k

gk + 4�Sz�2 = 1, �� =
1

N
�
k

pk. �18�

Finally, in order to close the system �16� and �18�, we need
one more equation. It can be found from the following con-
sideration. It is known28,30 that a commutator Green function
must not have any pole at �=0. Clearly, Green function �4�
does not have such a pole. A different situation arises with
Green function �9�. When �=0, its denominator is equal to
zero at k=k0, with wave vector k0 satisfying the equation

h = �k0

� . �19�

Thus, the numerator of Green function �9� must also vanish
at k=k0; otherwise, this function would have a pole. From
this condition, we get the equation for �Sz�:

�Sz� =
Jb1�0

2�k0

� �1 − 	k0
� . �20�

Note that in calculating the anticommutator transverse Green
function, the condition �20� appears automatically without
any special assumptions �see also Ref. 31�.

Let us analyze Eq. �19�. The frequency �k
� has a maxi-

mum �max
� at the edge of the Brillouin zone,

��max
� �2 = �0J2�
� + 2�0b̃1� . �21�

Since the parameters 
� and b̃1 in Eq. �21� are functions of
temperature, the frequency �max

� depends on temperature as
well. It can be shown that �max

� decreases monotonically
from �max

� =J�0 at T=0 to �max
� =J��0 at T→. At h /J

���0, Eq. �19� has a real solution for any temperature. Sub-
stituting it into Eq. �20�, we obtain the following expression
for the magnetization:

�Sz� =
J

4h��

	�
�
2 +

8h2b̃1

J2 − 
�
 . �22�

In the field range ��0�h /J��0, the real solution of Eq. �19�
exists only at T�T0 �where T0 obeys the equation
�max

� �T0�=h�. Finally, if h /J��0, Eq. �19� has no real solu-
tions at any temperature.

It is natural to suppose that the expression �22� for the
magnetization is valid at arbitrary h and T. This assumption
provides continuity of �Sz� as a function of field and tempera-
ture. Equation �22� gives correct values of the magnetization
at low and high fields for arbitrary temperatures and at T
=0 for arbitrary fields. However, the most important thing is
that Eq. �22� provides correct analytical properties of the
commutator Green function �9� obtained within the approxi-
mate scheme.

As a result, Eqs. �16�, �18�, and �22� represent a closed set
of seven self-consistent equations for a1, a2, c1, c2, �z, ��,

and �Sz�. This set can be reduced to three equations for b̃1,

z, and 
�

1 =
Jc1

N
�
k

gk + 4�Sz�2,

2b̃1 = ��c1�1 −
J

N
�
k

�1 − 	k�gk + ��,


� = 1 − �� +
��

2�z
�
z − 1� +

J��c1

2N
�
k

�1 − 	k��1 − �0	k�gk.

�23�

The values c1, ��, and �Sz� can be expressed through b̃1, 
z

and 
� according to Eqs. �16�, �18�, and �22�. For �z, with
the help of Eqs. �6� and �7�, we have

�z =
1 − 
z

��0 + 1�c1 − c2
. �24�

It is easy to see that the replacement h→−h changes the sign
of the magnetization and does not change the correlation
functions and vertex parameters. Owing to condition �22�,
Eq. �17� and thereby Eqs. �16� and �18� have no singularities.
At h=0, the system �23� reduces to that found in Refs. 33
and 38.

The internal energy E per site is given by

E = −
J�0

8
�2c1 + a1� − h�Sz� . �25�
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The efficiency of the proposed scheme can be estimated,
first, by comparing the obtained results with those available
from literature data found by alternative methods, and, sec-
ond, with the help of inherent criteria existing within the
developed scheme itself. The first criterion implies that at
T→, the entropy �per site� of the system with spin-1

2
should tend to S��=ln 2�0.693.

The second criterion follows from the relation30 connect-
ing the internal energy �25� and the Green function
��Sk

+ �S−k
− ���, which can be written as

J�0

8
�2c1 + a1 − 1� + h	�Sz� −

1

2



−
1

N
�
k
�

−



d�
��k + ��Im��Sk

+�S−k
− ���

e�� − 1
= 0, �26�

where �k=J�0�1−	k� /2+h. The relation �26� becomes the
identity with the exact Green function and correlators. This is
not the case for the Green function and correlators found as a
result of the decoupling procedure. Dividing Eq. �26� by
J�0�Sz� /4 and substituting Eq. �9� in its left hand side, we get

1 −
1

J�0�Sz�N

��
k

Jb1�0�1 − 	k�sinh��h� − 2�Sz��k
� sinh���k

��
cosh��h� − cosh���k

��
� R .

�27�

The quantity R is a function of field and temperature. Due to
Eq. �22�, expression �27� is singularity-free. It is evident that
the closer R is to zero, the better the approximation. Thus,
the condition �R��1 can serve as another criterion of the
approximation efficiency. Below, in discussing the results,
we will calculate R�h ,T� and check the fulfillment of this
criterion for the proposed scheme.

Note that employing a similar approach for HFMs on a
chain and a square lattice �below, we refer to it as the Green
function approximate method �GFAM��, Junger et al.39 in-
stead of Eq. �22� used the condition R=0 as one of the equa-
tions in the self-consistent set of equations. In the following,
we will compare the thermodynamic functions calculated
within our scheme with the results found in Ref. 39.

III. RESULTS AND DISCUSSION

In the general case, the set of equations �23� can be solved
only numerically. In limiting cases, analytical results could
be obtained. At T=0, the system �23� gives correct values for
the sought quantities

�Sz� =
1

2
, c1,2 = 0, a1 = 1, a2 = �0 − 1. �28�

The same solution is also true for finite temperatures at h
→.

In the high-temperature limit �J ,h�T�, the system �23�
can be solved by expanding in 1 /T. Restricting our consid-
eration to second order in x=J /4T and y=h /2T, we obtain
the following asymptotic expressions:

c1
as = x +

x2

4
��0

2 − 6�0 + 4� ,

c2
as =

x

4
���0 − 2���0 − 4� − x��0

2 − 14�0 + 20�� ,

a1
as = c1

as + y2, a2
as = c2

as + ��0 − 1�y2,

�Sz�as =
y

2
�1 + �0x�, �z

as = ��
as = 1 −

x

3
. �29�

For the heat capacity C=dE /dT to third order in x and y, we
get

Cas =
3�0x2

2
�1 +

x

2
��0

2 − 6�0 + 4� + y2�1 + 3�0x� . �30�

The expressions for the magnetization and heat capacity
coincide with those obtained by the direct high-temperature
series expansion.43 As it follows from Eq. �29�, the field-
dependent terms in expansions for cl occur in the fourth or
higher order in 1 /T.

We will demonstrate the efficiency of the proposed
scheme, applying it to the 1D HFM and a HFM on a square
lattice. The main attention is focused on low fields, because
it is this region that is the most difficult to describe ad-
equately within approximate methods.

A. One-dimensional Heisenberg model

In this section, we consider a 1D HFM. Figures 1–3 dem-
onstrate the magnetization, susceptibility �=��Sz� /�h, and
heat capacity vs temperature at low fields obtained within
our approach. In calculating the thermodynamic functions on
clusters, we use the periodic boundary conditions. The cor-
responding dependences found in Ref. 39 by Bethe ansatz
�BA� and GFAM for an infinite chain and by the exact di-

FIG. 1. Temperature dependences of the magnetization for 1D
HFM at h /J=0.005 and 0.05 �from left to right�. The infinite sys-
tem: present theory �solid line�, BA �Ref. 39� ���, and GFAM �Ref.
39� �dotted line�. The cluster: present theory �dashed line� and ED
�Ref. 39� ���.
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agonalization �ED� for a cluster of 16 sites are also shown
for comparison.

For the magnetization and susceptibility, our method
yields good agreement with the exact results in the whole
temperature range. The positions of the maxima in our
curves for ��T� coincide perfectly with those found within
the exact methods, and only a small difference in the peak
heights is observed.

At low fields, the exact methods indicate the dependence
of the thermodynamic functions on the chain length. As it is
seen from Figs. 1 and 2, at h /J=0.005, the curves �Sz�T��
and ��T� obtained by ED for the finite-sized chain differ
substantially from those found by BA for the infinite system.
Our method gives a proper description of this effect. At

higher fields �Figs. 1 and 3� where the ED and BA results
coincide, our dependences for N=16 and N→ also coin-
cide and show a good fit to the exact data.

As can be seen from Fig. 3, there is a certain disagree-
ment between the heat capacities obtained within the exact
and approximate methods at low fields. This result is quite
understandable. Indeed, a similar scheme33 applied to 1D
HFMs at h=0 gives in the low-temperature region a suffi-
ciently different run of the heat capacity than the exact solu-
tion. Nevertheless, even at h /J=0.1, our theory not only
gives the correct position of the maximum but also repro-
duces a specific bend in the curve C�T� at T /J�0.3. The
agreement between C�T� calculated within our scheme and
found by the exact methods becomes better with increase in
field. The inset in Fig. 3 illustrates a double-peak structure of
the heat capacity that within our method is identified at 0
�h /J�0.045. A similar structure of C�T� at low fields was
first obtained in Ref. 39.

We calculated the entropy for the 1D HFM. It turned out
that the higher is the field, the closer is the limiting value
S�� to ln 2. For example, at h /J=0.05, the entropy is
S���0.631, and at h /J=1, it is S���0.687. The quantity
R�h ,T� was also found. At low and high temperatures, it is
practically equal to zero, so that the Green function �9� and
correlators calculated within our method may be considered
as satisfying Eq. �26�. At a given field in the intermediate
temperature range where the correlators vary rapidly, the
quantity R is at maximum. At h /J=0.05, the maximum value
of R is �0.027, whereas at h /J=1, it does not exceed 0.006.
With increase in h /J, the quantity R decreases and the dif-
ference between results obtained by the exact and approxi-
mate methods vanishes.

B. Heisenberg ferromagnet on a square lattice

Now, we proceed to the HFM on a square lattice. Figure 4
demonstrates the magnetization as a function of temperature
at h /J=0.1 and 0.4 for 4�4 and 32�32 square lattice clus-
ters together with QMC,41 ED,39 and GFAM39 data. The inset
shows the magnetizations for the 32�32 cluster at h /J
=0.05, 0.1, 0.2, 0.32, and 0.4 found within the present
method, QMC,41 and HTSE.43 The comparison between our
results and HTSE is possible, because at these values of
field, the magnetizations for the 32�32 cluster proved41 to
be identical to those for the infinite lattice. It is seen that the
temperature dependences of �Sz� obtained within our ap-
proach are in good agreement with the exact results. The
proposed scheme reproduces correctly the dependence of
�Sz� on the size of the system as well. The difference between
the present results and GFAM in Fig. 4 �see also Figs. 1–3�
testifies that Eq. �22� is more preferable as compared to the
condition R=0 for a quantitative description of the low-
dimensional HFM at small fields. It is also evident that the
thermodynamic functions of the square lattice HFM are more
sensitive to the choice of the condition for �Sz� than the ther-
modynamic functions for the 1D HFM. Naturally, such a
choice is expected to be even more critical for the lattices
with larger coordination numbers �for example, a triangular
lattice�.

FIG. 2. Temperature dependences of the susceptibility for 1D
HFM at h /J=0.005. The infinite system: present theory �solid line�,
BA �Ref. 39� ���, and GFAM �Ref. 39� �dotted line�. The cluster:
present theory �dashed line� and ED �Ref. 39� ���.

FIG. 3. Temperature dependences of the heat capacity for 1D
HFM at h /J=0.1. The infinite system: present theory �solid line�,
BA �Ref. 39� ���, and GFAM �Ref. 39� �dotted line�. The cluster:
ED �Ref. 39� ���. The inset shows C�T� at low fields h /J=0.001,
0.005, 0.01, 0.025, 0.05, 0.075, and 0.1 �from bottom to top�.

THERMODYNAMICS OF LOW-DIMENSIONAL SPIN-… PHYSICAL REVIEW B 77, 024407 �2008�

024407-5



Figure 5 illustrates the susceptibility ��T� for the square
lattice together with ��T� found by HTSE,43 ED,39 and
GFAM.39

The temperature dependences of the correlation functions
a1 and c1 at h /J=0.1 and 0.4 calculated for the 4�4 cluster
as well as for the infinite lattice are presented in Fig. 6. The
ED and GFAM results are added for comparison. At low
fields, a clearly defined dependence on the size of the system
is seen. Our results for the infinite lattice differ noticeably
from GFAM. For the 4�4 cluster, good agreement with the
dependences calculated by ED is observed.

The limiting value of entropy for the HFM on the square
lattice is S��=0.651 at h /J=0.05 and S��=0.684 at h /J
=1, which is very close to the exact value of ln 2. The maxi-
mum value of R is �0.058 at h /J=0.05 and �0.014 at
h /J=1.

Thus, the results of Secs. III A and III B show that the
theory based on the correct accounting for the analytical
properties of Green functions gives an adequate description
of the thermodynamic functions for the systems under con-
sideration in the wide field and temperature ranges.

C. Heisenberg ferromagnet on a triangular lattice

In this section, we consider a HFM on a triangular lattice
in an external magnetic field with peculiar attention concen-
trated on small and intermediate fields. Figure 7 represents
the temperature dependences of the magnetization at differ-
ent values of h /J. It is seen that our results agree closely with
HTSE43 up to the point of HTSE applicability, whereas the
RPA curves coincide with HTSE only at relatively high tem-
peratures. In the intermediate temperature range, the RPA
results differ significantly from ours even at h /J=1.5, repro-

FIG. 4. Temperature dependences of the magnetization for HFM
on a square lattice at h /J=0.1 and 0.4 �from left to right�. The
infinite system: present theory �solid line�, QMC �Ref. 41� ���, and
GFAM �Ref. 39� �dotted line�. The 4�4 cluster: present theory
�dashed line� and ED �Ref. 39� ���. The inset shows �Sz� vs T /J at
h /J=0.05, 0.1, 0.2, 0.32, and 0.4 �solid line� in comparison with
QMC �Ref. 41� ��� and HTSE �Ref. 43� �dashed line� �from left to
right�.

FIG. 5. Temperature dependences of the susceptibility for HFM
on a square lattice at h /J=0.2, 0.4, and 1.0 �from top to bottom�.
The infinite system: present theory �solid line�, HTSE �Ref. 43�
�dash-dotted line�, and GFAM �Ref. 39� �dotted line�. The 4�4
cluster: present theory �dashed line� and ED �Ref. 39� ���.

(b)

(a)

FIG. 6. Correlation functions �a� a1 and �b� c1 for HFM on a
square lattice at h /J=0.1 and 0.4 �from left to right�. The infinite
system: present theory �solid line� and GFAM �Ref. 39� �dotted
line�. The 4�4 cluster: present theory �dashed line� and ED �Ref.
39� ���.
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ducing the temperature behavior of �Sz� only qualitatively.
We have also calculated the magnetization at low tempera-
tures using the renormalization group technique. The results
obtained by both our approaches are in good agreement.

At a given magnetic field, the magnetization for the trian-
gular lattice exceeds �Sz� for the square one within the whole
temperature range. This result seems quite natural because
the local field for a spin of the triangular lattice ferromagnet
is higher than that for a spin of the square ferromagnet due to
the greater coordination number of the triangular lattice.

Figure 8 illustrates the temperature behavior of the sus-
ceptibility. Analysis shows that with increase in field, the
maximum in ��T� decreases and shifts to higher tempera-
tures. At h /J�0.1, the height of the maximum as a function
of h /J, with a great degree of accuracy, is described by a
power law

�max = a	h

J

b

, a = 0.1696, b = − 0.8634. �31� Temperature dependences of the correlation functions a1

and c1 at different h /J are shown in Fig. 9. Beginning with
T /J�0.5, the RPA results differ from ours sufficiently. It is
easy to verify that at T�J, the correlator a1 calculated within
RPA to the first approximation in J /T is negative and equal
to −J /4T. Thus, at almost all temperatures, RPA fails to de-
scribe correctly the correlation functions and, hence, the en-
ergy and heat capacity.

Figure 10 demonstrates the temperature dependences of
the heat capacity C�T� in comparison with HTSE43 and RPA.
It is seen that our results are in good agreement with HTSE.
With increase in field, the position of the maximum in the
curve C�T� shifts to higher temperatures, and its value Cm

tr

first increases rapidly and then decreases. A similar behavior
occurs for the heat capacity maximum Cm

sq on a square lat-
tice. Maximum values Cm

sq and Cm
tr vs field are illustrated in

Fig. 11. Field dependences of the maximum positions for the
square and triangular lattices are shown in the inset. At h /J
�1, both Cm

tr�h /J� and Cm
sq�h /J� can be approximated by a

function

FIG. 7. Temperature dependences of the magnetization for HFM
on a triangular lattice at h /J=0.1, 0.3, 0.5, 0.7, 1.0, and 1.5 �from
left to right�. The present theory �solid line�, HTSE �Ref. 43�
�dashed line�, RGT �thin line�, and RPA �dotted line�.

FIG. 8. Temperature dependences of the susceptibility for HFM
on a triangular lattice at h /J=0.2, 0.4, and 1.0 �from top to bottom�.
The present theory �solid line�, HTSE �Ref. 43� �dashed line�, and
RPA �dotted line�.

(a)

(b)

FIG. 9. Correlation functions �a� a1 and �b� c1 for HFM on a
triangular lattice at h /J=0.1, 0.3, 0.5, 0.7, 1.0, and 1.5 �from left to
right�. The present theory �solid line� and RPA �dotted line�. Thin
lines correspond to h=0.
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Cm =
ax

b + x
, x =

h

J
,

with

a = �0.5136

0.5254,
�b = �0.0239 square

0.0189 triangular.
�

At higher fields �h /J�1.4�, the maximum values decrease
linearly

Cm = Ax + B ,

with

A = �− 0.006 93

− 0.0248,
�B = �0.5118 square

0.5468 triangular.
�

Since Cm
sq decreases slower than Cm

tr, the inequality Cm
tr

�Cm
sq valid for low fields changes into the opposite one at

h /J�2.
Let us consider now the dependence of the thermody-

namic functions on the cluster size L�L. It is interesting to
determine the linear size L0 corresponding to the thermody-
namic limit at a given magnetic field. This quantity is impor-
tant, for example, when using such methods as Monte Carlo
and exact diagonalization, when knowledge of an optimal
cluster size makes it possible to obtain the thermodynamic
functions of the infinite system within a reasonable volume
of calculations. The dependence of the thermodynamic func-
tions on L is also of practical interest, because of the isle
structure of 3He layers at some coverages.24

Figure 12 displays temperature dependences of the heat
capacity at h /J=0.1 and 1 for different cluster sizes L up to
L0. It is seen that with decrease in L, the maximum in the
curve C�T� decreases and shifts to higher temperatures. At
small L and very low fields, a second maximum resulting
from the finite size of the system arises in the low-
temperature part of the heat capacity. At higher fields, the
Zeeman energy increases and suppresses the size effect

caused by the boundary spins. A similar additional heat ca-
pacity maximum at small h was found by ED for the 4�4
square lattice in Ref. 39. This result is also reproduced by
our calculations.

Figure 13 shows dependences L0�h /J� for the square and
triangular lattices. At h /J�0.2, even a small variation in
field leads to a sufficient change in L0. As the field increases,
this dependence weakens, so that beginning with h /J�0.2
rather small-sized clusters are appropriate for the numerical
simulations of the real infinite systems.

Temperature dependences of the magnetization for a 16
�16 triangular lattice together with the corresponding QMC
data44 are shown in Fig. 14. Our results agree well with
QMC.

Now we check the two criteria outlined in Sec. II, as
applied to the triangular lattice HFM. The limiting value of
the entropy is equal to 0.708 and 0.713 at h /J=0.05 and 1,

FIG. 11. Field dependences of the heights and positions of the
heat capacity maxima for HFMs on square and triangular lattices.

FIG. 12. Temperature dependences of the heat capacity for HFM
on a triangular lattice �from bottom to top�: h /J=0.1 and L=4, 6, 8,
and 10 �solid line�, and h /J=1 and L=4 and 6 �dashed line�.

FIG. 10. Temperature dependences of the heat capacity for HFM
on a triangular lattice at h /J=0.1, 0.5, 1.0, and 1.5 �from left to
right�. The present theory �solid line�, HTSE �Ref. 43� �dashed
line�, and RPA �dotted line�. Thin lines correspond to h=0.
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respectively, which slightly exceeds ln 2. At low and high
temperatures, the function R�T ,h� is close to zero as it was
for HFMs on the chain and square lattice. At fixed field in the
intermediate temperature region, R�T ,h� has a maximum,
whose height decreases as h /J increases. The maximum
value of R is �0.094 at h /J=0.05, whereas at h /J=1, it does
not exceed 0.046.

IV. SUMMARY

The thermodynamics of the low-dimensional spin-1
2

Heisenberg ferromagnets in an external magnetic field is in-
vestigated within a second-order two-time Green function
formalism in the wide temperature and field ranges. The self-
consistent set of equations for the correlation functions, ver-
tex parameters, and magnetization is obtained in the univer-
sal form appropriate for the description of low-dimensional
HFMs on a chain and square and triangular lattices. The
fundamental point of our consideration is the account of the
correct analytical properties for the approximate transverse
commutator Green function, from which the equation for the
magnetization follows. This enables us to extend the range of
adequate description for the HFM thermodynamics to lower

fields as compared to the scheme proposed in Ref. 39.
The thermodynamics of a triangular lattice HFM in a

magnetic field is studied within a second-order Green func-
tion formalism. The temperature dependences of the magne-
tization, susceptibility, correlation functions, and heat capac-
ity at different values of the magnetic field are calculated and
analyzed in detail. For square and triangular lattices, the po-
sitions and heights of the heat capacity maxima vs field are
obtained. The dependences of the thermodynamic functions
of the 2D HFM on the cluster size are investigated. For both
types of lattices, the cluster sizes corresponding to the ther-
modynamic limit are found as functions of field.

The temperature and field dependences for the thermody-
namic functions calculated within our scheme are in close
agreement with the corresponding results obtained by Bethe
ansatz, quantum Monte Carlo simulations, high-temperature
series expansion, and exact diagonalization. Thus, we can
conclude that the scheme used in this paper provides a good
quantitative description for the thermodynamics of the low-
dimensional HFM in an external magnetic field on the three
considered types of lattices for infinite as well as for finite-
sized systems.
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