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The frustrated spin-1 /2 model with weakly anisotropic ferromagnetic nearest-neighbor and antiferromag-
netic next-nearest-neighbor exchanges is studied with use of variational mean-field approach, scaling estimates
of the infrared divergencies in the perturbation theory and finite-size calculations. The ground-state phase
diagram of this model contains three phases: the ferromagnetic phase, the commensurate spin-fluid phase, and
the incommensurate phase. The nontrivial behavior of the boundaries between these phases and the character
of the phase transitions in case of weak anisotropy are determined.
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I. INTRODUCTION

The quantum spin chains with nearest-neighbor �NN� J1
and next-nearest-neighbor �NNN� interactions J2 have been a
subject of numerous studies.1 The model with both antifer-
romagnetic interactions J1 ,J2�0 �AF-AF model� is well
studied.2–7 Lately, there has been considerable interest in the
study of F-AF model with the ferromagnetic NN and the
antiferromagnetic NNN interactions �J1�0, J2�0�.8–14 One
of the reasons is understanding of intriguing magnetic prop-
erties of a novel class of edge-sharing copper oxides which
are described by the F-AF model.15–20 In particular, these
copper oxides show at low temperature a tendency to the
formation of the incommensurate state with helicoidal mag-
netic ordering.

The Hamiltonian of the spin-1 /2 F-AF model is

H = − �
n=1

N

�Sn
xSn+1

x + Sn
ySn+1

y + �1Sn
zSn+1

z �

+ J�
n=1

N

�Sn
xSn+2

x + Sn
ySn+2

y + �2Sn
zSn+2

z � , �1�

where we set J1=−1 and J2=J�0, and the periodic bound-
ary conditions are implied.

The isotropic case of this model ��1=�2=1� is inten-
sively studied in last years.11,12,21–23 It is known that the
ground state of the isotropic version of model �1� is ferro-
magnetic for 0�J�1 /4, and it becomes a singlet incom-
mensurate state for J�1 /4.24,25 The phase transition at J
=1 /4 is the second-order one.

The model with the anisotropy of exchange interactions is
less studied, especially for the case of the small anisotropy.
For example, the phase diagram of model �1� with �1=�2
has been studied in Ref. 26 using the method of level spec-
troscopy. Unfortunately, this method becomes unreliable for
J�1 /4 and �1=�2�1 because of strong finite-size effects.

In real chain compounds, the exchange interactions are
anisotropic. The microscopic origin of these interactions is
the spin-orbit coupling. The indication on the anisotropy is a
dependence of the saturation field on the direction of the
external magnetic field.16 Though, as a rule, the anisotropy is
weak �for example, for edge-shared cuprate LiCuVO4, elec-
tron spin resonance detected a 6% anisotropy27�, it can
change the transition point from commensurate to incom-

mensurate states as well as the behavior of model �1� in the
vicinity of the transition point. Besides, the frustration pa-
rameter �J2 /J1�=J estimated for some edge-sharing copper
oxides is close to the quantum critical point 1 /4 �for ex-
ample, J�0.28–0.3 for compound Li2ZrCuO4 �Ref. 28��.
Therefore, taking into account both the frustration effects
and the small exchange anisotropy near the transition point
can be important for the analysis of the experimental data
related to these compounds.

In the isotropic case of Eq. �1�, the ground state for
0�J�1 /4 is ferromagnetic state, degenerated with respect
to total Sz. Weak easy-plane anisotropy �1 ,�2�1 lifts this
degeneracy, and the ground state is in the sector with total
Sz=0 at small J. One can expect that the increase of J in-
duces the phase transition at some Jc to the incommensurate
phase with Sz=0. Besides, the character of this transition can
be different from that in the isotropic case.

In our analysis, we focus on the behavior of the F-AF
model �1� near the transition point from the commensurate to
the incommensurate ground state and the influence of the
weak anisotropic interaction on the T=0 phase diagram. For
simplicity, we concentrate our attention on the particular case
of the Hamiltonian �1� with �2=1,

H = − �	Sn
xSn+1

x + Sn
ySn+1

y + �Sn
zSn+1

z −
1

4



+ J �	Sn · Sn+2 −
1

4

 . �2�

�We added here constants for convenience.�
However, we will show that the results for model �1� with

both �1�1 and �2�1 are qualitatively similar to those for
model �2�.

The paper is organized as follows. In Sec. II, we consider
a qualitative physical picture of the ground-state phase dia-
gram of model �2� based on the classical approximation. In
Sec. III, we study the phase diagram of model �2� using the
variational mean-field approach. The scaling estimates of the
perturbation theory for the easy-plane case of model �2� for
J�1 /4 are presented in Sec. IV. In Sec. V, we estimate in-
frared divergencies in the perturbation theory near the tran-
sition point J=1 /4. Section VI is devoted to the phase tran-
sition in the easy-axis case of model �2�. In Sec. VII, we
present the phase diagram of model �1� in the case �1=�2
and summarize our results.

PHYSICAL REVIEW B 77, 024401 �2008�

1098-0121/2008/77�2�/024401�8� ©2008 The American Physical Society024401-1

http://dx.doi.org/10.1103/PhysRevB.77.024401


II. CLASSICAL APPROXIMATION

Let us start from the classical picture of the ground state
of model �2�. In the classical approximation, the spins are
vectors which form the spiral structure with a pitch angle �
between neighboring spins and canted angle �

Sn
x =

1

2
cos��n�sin � ,

Sn
y =

1

2
sin��n�sin � ,

Sn
z =

1

2
cos � . �3�

The classical energy per site is

Ecl��,��
N

=
1 − �

4
+

sin2 �

4
�� − cos � − J�1 − cos�2���� .

�4�

The minimization of energy �Eq. �4�� over the angles � and �
shows that there are three regions in �J, �� having different
classical energies. In region I �J�

1
4 , ��1�, the energy is

minimized by the choice of the angles �=0 and �= �
2 . These

angles correspond to the spin configuration with all spins
pointing along the x axis, and the energy is

Ecl,xy = 0. �5�

In region II �J�
1
4 , ��1� and �J�

1
4 , �−1�

2
J

�J− 1
4

�2�, the
minimum of the energy is given by the angle �=0 �and ar-
bitrary ��. This is the fully polarized state with all spins up
�or down�, and the energy

Ecl,z = − N
� − 1

4
. �6�

In region III �J�
1
4 , �−1�

2
J

�J− 1
4

�2�, the classical ap-
proximation shows helical spin structure in the x-y plane.
The corresponding angles are

� = cos−1 1

4J
,

� =
�

2
, �7�

and the classical ground-state energy

Ecl,sp = −
N

2J
	J −

1

4

2

. �8�

The phase boundaries in the classical approximation for
model �2� are shown in Fig. 1 by thin dashed lines. One can
see from Fig. 1 that the transition between phases I and II
takes place on the isotropic line �=1. This transition is a
simple spin flop, which is certainly of the first-order type. In
the easy-axis case ��1, the increase of the NNN exchange
J leads to the first-order transition to the helical phase III on
the transition line,

� − 1 =
2

J
	J −

1

4

2

. �9�

The pitch angle � on this line has a finite value, which is
according to Eqs. �7� and �9�,

� = �8�� − 1��1/4, �10�

as �→1. In contrast to the easy-axis case, in the easy-plane
part of the phase diagram, the transition to the helical phase
occurs at J=1 /4, where the pitch angle �=0, indicating the
second-order type of this transition.

The phase diagram in the classical approximation is quali-
tatively true. However, as it will be shown below, this ap-
proximation does not give the correct behavior of the bound-
aries between different phases.

III. MEAN-FIELD APPROACH

To study model �2�, we use the variational mean-field ap-
proach �MFA� developed in Refs. 21 and 29. According to
this approach, we follow the classical picture and transform
the local axes on nth site by a rotation about the z axis by �n
and then by a rotation about the y axis by �. The transfor-
mation to spin-1 /2 operators �n has a form

Sn = Rz��n�Ry����n, �11�

where Ry��� and Rz��n� are the operators of the correspond-
ing rotations.

The second step is the Jordan-Wigner transformation to
the obtained Hamiltonian in terms of the � operators. This
transformation maps the �-spin model onto the model of
interacting spinless fermions, which is then treated by the
mean-field approximation including superconductorlike cor-
relations. The pitch and canted angles � and � are variational
parameters in this approach. We omit here the details of this
approach because it is simple modification of what was done

FIG. 1. The phase diagram of model �2�. The phase boundaries
are shown by thin dashed lines in the classical approximation and
by thick dashed lines in the mean-field approach. Empty squares
denote the phase transition points found by finite-size calculations
and thick solid line is the transition line given by Eq. �71�.
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in Refs. 21 and 29, and we present only the results.
Generally, the phase diagram of model �2� in the MFA

contains the same three phases as predicted by the classical
approximation, and the boundaries between the phases are
shown in Fig. 1 by thick dashed lines. In region I �see Fig.
1�, the MFA shows the nonzero magnetization in the easy x-y
plane. In region II, the fully polarized state �↑↑¯↑
 repre-
sents the ground state. In region III, the MFA shows helical
spin structure in the x-y plane. However, as can be seen in
Fig. 1, the boundary between the phases I and III is substan-
tially shifted. In the MFA, this boundary in the vicinity of the
point �J= 1

4 , �=1� is approximately given by

� � 8.05	1.25, �12�

where �=1−� and 	=J− 1
4 .

The boundary between the phases II and III in the MFA is
described by the equation

� � 1 + 6.3	1.7. �13�

Certainly, there is no long range order �LRO� in the x-y plane
in phases I and III, and in this respect, the MFA is incorrect.
However, the MFA gives a good estimate for the ground-
state energy in those phases. For example, in phase I at J
=0, the MFA reproduces correctly the nontrivial critical ex-
ponent for the ground-state energy,


E0 � − 0.063N�3/2. �14�

This estimate differs by 16% from the exact result,30


E0 = −
N�3/2

3�2�
. �15�

The MFA shows that the critical exponent 3 /2 for the
ground-state energy remains up to the point J=1 /4, where
the behavior of the ground-state energy is changed to


E0 � − 0.07N�9/7. �16�

As was shown in Ref. 21, the MFA gives also a good esti-
mate for a critical exponent of the ground-state energy in the
isotropic case �=1 of the helical phase III,


E0 � − 1.585N	12/7. �17�

As will be shown below, the estimates of the ground-state
energies and the phase boundaries in the MFA given by Eqs.
�12� and �13� are in a good accordance with scaling estimates
and finite-size calculations.

IV. PERTURBATION THEORY FOR EASY-PLANE CASE
AT J�1 Õ4

We are interested in the behavior of model �2� in the
vicinity of the isotropic case �=1. For this aim, it is natural
to develop the perturbation theory �PT� in small parameter
�=1−�,

H = H0 + VJ + V�,

H0 = − �	Sn · Sn+1 −
1

4

 ,

VJ = J �	Sn · Sn+2 −
1

4

 ,

V� = � � Sn
zSn+1

z . �18�

At first, let us consider the most simple case J=0, where
the ground-state energy at ��1 is given by Eq. �15�. The
ground state of H0 is ferromagnetic and is degenerate with
respect to total Sz. The perturbation V� splits this degeneracy,
and in the first order in �, we have

���Sz��V����Sz�
 =
�

4

�4Sz − N�
N − 1

. �19�

Thus, the first order shows that one should develop the PT
for the lowest state ��0
 having total spin S= N

2 and Sz=0. The
perturbation series for the ground-state energy can be written
in a form

E0��� = ��0�V� + V�

1

E0 − H0
V� + ¯ ��0
 . �20�

Suppose that the main contributions to the energy are given
by low-lying excitations, which for an isotropic ferromagnet
with the spectrum 
k=k2 /2 behave as

Ek − E0 � N−2. �21�

The higher orders of the perturbation series contain more
dangerous denominators and, therefore, possibly have higher
powers of the infrared divergency. Therefore, we use scaling
arguments to estimate the critical exponent for the ground-
state energy. Below, we will pay attention only to the powers
of the divergent terms and omit numerical factors.

Let us assume that the matrix elements of the perturbation
operator V� between low-lying states ��n
 involved in the PT
�having Sz=0 but different total S� at N→� behave as

��i�V��� j
 � � . �22�

Collecting the most divergent parts in all orders of the PT,
we express the correction to the ground-state energy as

E0��� = ��0�V���0
�
m=0

�

cmxm = �f��x� , �23�

where cm are unknown constants and

x �
��i�V���k


Ek − E0
� �N2 �24�

is a scaling parameter, which absorbs the infrared divergen-
cies.

The scaling function f��x� at x→0 is given by the first-
order correction. In the thermodynamic limit �x→��, the
behavior of f��x� is generally unknown, but the natural con-
dition E0����N at N→� requires

f��x� � �x �25�

and, finally,
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E0��� � − N�3/2. �26�

The obtained expression is in agreement with the exact equa-
tion �Eq. �15�� for the ground-state energy, which justifies
our assumption about the behavior of the matrix elements
�Eq. �22��.

Moreover, exploiting the fact that the system in region
��1 is in a spin-fluid phase, the correction to the ground-
state energy has a form31

E0 = Ne0 −
�c�sound

6N
, �27�

where e0 is the ground-state energy at N→� and the central
charge is c=1 in our case. In order to reproduce such 1 /N
correction to the energy, the asymptotic of f��x� at large x
should have a form

f��x� = a�x +
b
�x

, �28�

with some constants a and b. So, from Eq. �23�, we find

E0��� = − Na�3/2 −
b�1/2

N
�29�

and, therefore,

�sound � �� , �30�

which agrees with an exact result vsound=�� /2 at ��1.32

Thus, the scaling estimates give us the correct exponent for
the sound velocity as well.

Now, let us consider PT �Eq. �18�� containing both chan-
nels V� and VJ. Each channel can produce infrared divergen-
cies and is described by its own scaling parameter.34 We have
already obtained the scaling parameter x��N2 for the per-
turbation V�, and now, we are going to determine the scaling
parameter for the perturbation VJ. For this aim, one needs to
know the N dependence of the matrix elements ��i�VJ�� j
. In
general, it is unknown. However, one can restore these ma-
trix elements from the known exact expression for NNN spin
correlator in the ground state ��0���
 at J=0 and some small
value of �:33

��0����	Sn · Sn+2 −
1

4

��0���
 = −

�2

3�
�3/2 �31�

or, in other words,

��0����VJ��0���
 = −
�2

3�
�3/2JN . �32�

On the other hand, collecting all contributions of the PT to
the linear term in J similar to what was done in Eq. �23�, we
arrive at a scaling form in small parameter �,

��0����VJ��0���
 � ��i�VJ�� j
fJ�x� , �33�

with x=�N2.
The comparison of Eqs. �32� and �33� immediately leads

to the results

��i�VJ�� j
 � JN−2 �34�

and

fJ�x� � x3/2. �35�

So, the matrix elements ��i�VJ�� j
 are small enough to
eliminate dangerous denominators,

y �
��i�VJ�� j

Ek − E0

� J , �36�

which, in turn, implies the absence of infrared divergencies
in VJ channel. Thus, the perturbation VJ does not form a
scaling parameter, and the ground-state energy has regular
expansion in J.

It is natural to expect that the behavior of the matrix ele-
ments of type �34� remains the same up to the point J=1 /4.
It results in the following expression for the ground-state
energy for J�1 /4:

E0 = − N�3/2gJ�J� , �37�

where gJ�J� is some unknown smooth function, which at
small J has the expansion in accordance with the exact re-
sults �Eqs. �15� and �32��,

E0 = −
N�3/2

3�2�
�1 + 2J� . �38�

However, as J→1 /4, one should take into account that
the excitation spectrum is 
k= � 1

2 −2J�k2 and the excitation
energies become

Ek − E0 �
1
4 − J

N2 . �39�

This modifies the scaling parameter,

x �
�N2

1
4 − J

, �40�

and the expression for the energy,

E0 � −
N�3/2

�1

4
− J

. �41�

Similarly, the sound velocity at J→1 /4 behaves as

�sound ��1

4
− J�� . �42�

V. PERTURBATION THEORY NEAR THE TRANSITION
POINT J=1 Õ4, �=1

At J=1 /4 and �=1, the ferromagnetic ground state be-
comes degenerate with a singlet spiral state.25 For ��1, the
ground state obviously lies in the Sz=0 sector. Therefore, in
order to determine the transition line between phases I and
III, one should develop the PT both to the ferromagnetic
state with Sz=0 and to the singlet spiral state.

D. V. DMITRIEV AND V. YA. KRIVNOV PHYSICAL REVIEW B 77, 024401 �2008�

024401-4



A. Perturbation theory to the ferromagnetic state with Sz=0

Let us represent the Hamiltonian in a form

H = H0 + V� + V	,

H0 = − �	Sn · Sn+1 −
1

4

 +

1

4 �	Sn · Sn+2 −
1

4

 ,

V� = � � Sn
zSn+1

z ,

V	 = 	 �	Sn · Sn+2 −
1

4

 . �43�

We assume that the behavior of the matrix elements of op-
erators V� and V	 remains the same as in region J�1 /4 �see
Eqs. �22� and �34��. However, the scaling parameters are
modified due to the changes in one-particle excitation spec-
trum, which is 
k=k4 /8 at J=1 /4.10 So, the low-lying ex-
cited states involved in PT �Eq. �43�� behave as

Ek − E0 � N−4. �44�

Now, according to Eqs. �24� and �36�, both channels V� and
V	 produce the scaling parameters,

x = �N4,

y = 	N2. �45�

Thus, as follows from Eq. �23� exactly at J=1 /4 �y=0�, the
ground-state energy can be written in a scaling form

E0��� = − N�5/4f�x� . �46�

This scaling and the critical exponent are confirmed by
numerical calculations, where the function f�x� is calculated
on finite chains with different N and � for the ground state
with k=0 �see Fig. 2�. As one can see in Fig. 2, all data lie
perfectly on one curve f�x� and in the thermodynamic limit,
the function f�x�→0.08. We show in Fig. 2 that the same
scaling �Eq. �46�� is valid for the lowest excited state with

k=� as well and that the corresponding scaling function has
the same thermodynamic limit f�x�→0.08.

The system at J=1 /4 and ��0 is in a spin-fluid phase,
which is verified by 1 /N behavior of low-lying excitations
calculated on finite chains �see Fig. 3�. From the scaling �Eq.
�46��, we can extract also the critical exponent for the sound
velocity

�sound � �3/4. �47�

In case when both V� and V	 act simultaneously, the scaling
estimates �Eq. �45�� give

E0��,	� = − N�5/4f�x,y� . �48�

In the thermodynamic limit, when both x→� and y→�, the
scaling function f�x ,y� becomes a function of one variable
�independent of N�,

� =
y2

x
=

	2

�
, �49�

and the ground-state energy takes a form

E0��,	� = − N�5/4g��� . �50�

B. Perturbation theory to the singlet spiral state

The PT to the singlet spiral state with pitch angle � in the
isotropic case �=0 was developed in Ref. 34, where it was
found that the energy has a scaling form

E�0,	,�� = − N
	�2

2
+ N�5f�	N2,�N� , �51�

where the first term comes from the first order of the PT in 	
and the second one originates from the scaling estimates of
the infrared divergencies of higher orders of the PT. Com-
parison of Eqs. �48� and �51� leads to a general expression
for the energy, which correctly reduces to both cases at �
→0 and �→0,

FIG. 2. The scaling function f�x� in Eq. �46� for the ground-state
energy and the lowest excited state at J=1 /4.

FIG. 3. N dependence of the energy gap between the ground
state and the lowest excitation of model �2� at J=1 /4 and �=0.96.
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E��,	,�� = − N
	�2

2
+ N�5f��N4,	N2,�N� �52�

�in fact, this equation can be derived in a similar manner as
was done in Ref. 34�.

In the thermodynamic limit, when all variables in the scal-
ing function in Eq. �52� tends to infinity, the scaling depen-
dence transforms to a function of two variables,

E��,	,�� = − N
	�2

2
+ N�5g��,�� , �53�

where

� =
�

�4 ,

� =
	2

�
. �54�

Generally, the function g�� ,�� is unknown. However, we
can identify some of its properties. At first, in the limit �
→0, we should reproduce Eq. �50�. Moreover, in the spin-
fluid phase, the spiral states with ��N−1 should describe
soundlike excitations with the sound velocity �Eq. �47��.
These requirements suggest that in the limit �→�, the func-
tion g�� ,�� has an asymptotic behavior,

lim
�→�

g��,�� � − �5/4g1��� + �3/4g2��� + o��3/4� . �55�

One can check that this expression reproduces the soundlike
excitations at 	=0,

E��,0,�� − E��,0,0� � N�3/4�2 �
�3/4

N
. �56�

In the limit �→0, according to Ref. 34, we have

lim
�→0

g��,�� � A + o�1� , �57�

where constant A describes the excitation spectrum at the
transition point �=0 and 	=0. Finite-size calculations give
for this constant the value A�0.0065.

Summarizing all above, we extract explicitly the corre-
sponding terms and obtain the following expression:

1

N
E��,	,�� = −

	�2

2
− �5/4g1��� + �3/4�2g2��� + A�5

+ �5g3��,�� , �58�

where the function g3�� ,�� has limits

lim
�→0

g3��,�� � o�1� ,

lim
�→�

g3��,�� � o��3/4� . �59�

The minimization of energy �Eq. �58�� over the pitch angle
�,

�E��,	,��
��

= 0, �60�

gives the following equation for �min:

	 = �3�5A + 2�3/4g2��� + 5g3��,�� − 4�
�g3��,��

��
� . �61�

We see that in the isotropic limit ���4 ��→0�, the pitch
angle is defined by the constant term on the right-hand side
of Eq. �61� �using Eq. �59��,

�min = 	 	

5A

1/3

, �62�

which reproduces the result of Ref. 34.
In order to find the commensurate-incommensurate tran-

sition line, where the pitch angle �min vanish, it is more
convenient to rewrite Eq. �61� in a form

	

�3/4 − 2g2��� =
1

�3/4�5A + 5g3��,�� − 4�
�g3��,��

��
� . �63�

From Eqs. �63� and �59�, one can see that the right-hand side
of Eq. �63� tends to zero at �→�, which corresponds to the
limit �→0. The left-hand side of Eq. �63� is independent of
� and vanishes on the transition line,

	 = 2g2�0��3/4 �64�

�we note that on the transition line �Eq. �64�� �=0�.
Hence, in approaching to the transition line �Eq. �64��, the

pitch angle �min smoothly goes to zero. So, the line �Eq.
�64�� determines the second-order transition line between the
commensurate spin-fluid phase I with �=0 and the incom-
mensurate spiral phase III with ��0.

Another question that can be studied concerns the low-
lying excitations in the incommensurate phase. According to
Eq. �60�, the behavior of the energy near �min is expanded as

E��,	,�� = E��,	,�min� +
�� − �min�2

2

�2E��,	,��
��2 .

�65�

The second-order derivative of the energy at �=�min can be
estimated as

�2E��,	,�min�
��2 � N	 . �66�

Thus, the states with

�k = �min ±
2�

N
k �67�

describe gapless excitations with the energy


E �
	

N
. �68�

Certainly, there is no helical LRO in the spiral phase, and
the spin correlations decay on large distances. However, the
nature of the spiral phase manifests itself in the incommen-
surate position qmax of the maximum of structure factor,
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S�q� = �
n,r

eiqr�Sn · Sn+r
 . �69�

When the O�3� rotation symmetry is broken by the aniso-
tropic term V�, the incommensurate nature of the spiral
phase remains in the x-y plane. So, in this case, we associate
the pitch angle of the spiral � with the position of maximum
of the structure factor qmax in the easy plane,

Sxx�q� = �
n,r

eiqr�Sn
xSn+r

x + Sn
ySn+r

y 
 . �70�

The numerical calculations on finite chains show that for a
fixed small value of 	, the finite-N value of qmax�N� de-
creases stepwise by the amount 2�

N from some finite value at
�=0 to zero on the transition line, when � is

� � 13.9	4/3. �71�

On this line, the incommensurate phase III terminates �see
Fig. 1� and the transition into commensurate spin-fluid phase
takes place. Thus, the numerical calculation confirms the
found critical exponent for the transition line �Eq. �64��. The
fact that the pitch angle � tends to zero at approaching to the
transition line ensures that this line is the second-order tran-
sition.

VI. EASY-AXIS CASE

In the easy-axis case for J�1 /4, the fully polarized state
�↑↑¯↑
 is evidently the ground state. In region J�1 /4, one
should compare the fully polarized state energy with the en-
ergy of the spiral state. The finite-size numerical calculations
show that for a fixed small 	, the increasing of easy-axis
anisotropy leads to the decrease of the pitch angle �, but the
ground state remains in the sector with total Sz=0. At some
critical value of �c, the transition from the state with Sz=0
and some finite value of the pitch angle � to the fully polar-
ized state occurs. Thus, in contrast to the easy-plane case, the
transition from the spiral phase to the ferromagnetic phase is
the first-order one.

The finite-size numerical calculations also show that in
the spiral region 1����c, it is sufficient to take into ac-
count only the first-order correction in ��−1� to the spiral
state. That is, the energy of the spiral state is

Esp = − aN	5/3 − N
� − 1

12
, �72�

and the transition to the fully polarized state with the energy,

Ef = − N
� − 1

4
, �73�

takes place at

�c = 1 + 6a	5/3. �74�

Unfortunately, the factor a in Eq. �74� cannot be deter-
mined by finite-size calculations because of the irregular be-
havior of �c with N. However, we believe that the MFA
gives a good estimate for this transition line �Eq. �13��.

VII. SUMMARY

We have studied spin-1 /2 zigzag chain with weakly an-
isotropic ferromagnetic nearest-neighbor and antiferromag-
netic next-nearest-neighbor interactions. It was shown that
the ground-state phase diagram consists of three phases: the
fully polarized ferromagnetic phase, the commensurate spin-
fluid phase, and the incommensurate phase. Thus, the incom-
mensurate phase established for the isotropic case survives
weak anisotropy of interactions, though in this case, the in-
commensurate nature of the ground state reveals itself in the
x-y plane.

Using scaling estimates of the infrared divergencies in the
perturbation theory, we obtained the scaling expression for
the ground-state energy both for commensurate and incom-
mensurate phases. This allowed us to determine nontrivial
critical exponents in the behavior of the phase transition
lines, which were confirmed by finite-size calculations. We
found also that in the easy-plane case, the transition from the
commensurate spin-fluid to the incommensurate phase is of
the second-order one, while in the easy-axis case, the transi-
tion from the fully polarized state with Sz=Smax

z to the incom-
mensurate state with Sz=0 is evidently of the first order.

In this paper, we have focused on model �2�, which is a
particular case of the more general model �1�. However, the
obtained results for model �2� remain valid at least qualita-
tively for model �1�. The reason is that the matrix elements
of the operators �Sn

zSn+1
z and �Sn

zSn+2
z have the same N be-

havior. Therefore, in general case, a variable ��2−1� / ��1

−1� will appear in the scaling functions �Eqs. �50� and �53��,
but all obtained scaling properties and the critical exponents
of the system remain the same. As an example, we present in
Fig. 4 the phase diagram near the transition point J=1 /4 of
model �1� for the particular case �1=�2. We see that the
phase diagram in this case is very similar even quantitatively
to that shown in Fig. 1.

There is one remark related to the phase diagram in Fig.
4. Our analysis shows that for J close to the transition point

FIG. 4. The phase diagram of model �1� with �1=�2=�. The
phase boundaries are shown by dashed lines in the mean-field ap-
proach. Empty squares denote the phase transition points found by
finite-size calculations and thick solid line is the fitting line to these
points.
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J=1 /4, the incommensurate phase exists for both cases �
�1 and ��1 and the pitch angle is a smooth function of �
in the vicinity of �=1. We note that similar smooth behavior
of the pitch angle near the isotropic case has been observed
for the model with both AF NN �J1�0� and NNN �J2�0�
interactions and �1=�2=�.36 At the same time, as was sug-
gested in Ref. 26, the phases in the easy-axis and the easy-
plane cases can be different: for ��1, the system has AF
LRO of the type ↑↑↓↓ in contrast to the case ��1, when
there is no AF LRO. On the other hand, the classical approxi-
mation shows that the transition from the incommensurate
phase to the AF phase takes place at �=1+ 1

8J2 , which lies
out of the range shown in Fig. 4. Certainly, quantum fluctua-
tions can substantially change the classical phase diagram.

As we noticed, the used approach is valid for values of J
not too far from the transition point J=1 /4, and it is unclear

what happens with the incommensurate and AF phases in the
region of large values of J. Therefore, an important and in-
teresting question about the boundaries of the incommensu-
rate phase and the possibility of the commensurate-
incommensurate transition in the region of large values of J
is out of scope of this paper and requires further studies.
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