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We report on the calculation of the ground-state atomic kinetic energy Ek and momentum distribution of
solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is
shown to perform notably for this crystal since we obtain very good agreement with respect to experimental
thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilib-
rium by estimating the radial pair-distribution function, Lindemann’s ratio, and atomic density profile around
the positions of the perfect crystalline lattice. Our value for Ek at the equilibrium density is 41.51�6� K, which
agrees perfectly with the recent prediction made by Timms et al., 41�2� K, based on their deep-inelastic
neutron scattering experiments carried out over the temperature range 4–20 K, and also with previous path
integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions.
The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical
uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calcu-
lating some of its microscopic ground-state properties within traditional harmonic approaches. We provide
insightful comparison to solid 4He in terms of the Debye model in order to assess the relevance of anharmonic
effects in Ne.
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I. INTRODUCTION

Noble gases like He, Ne, Xe, and Ar have been inten-
sively studied during the last decades, both experimentally
and theoretically.1–3 Due to their simple electronic closed-
shell structure, they appear to be affordable many-body sys-
tems where to carry out feasible quantum computations and
test methods of calculation. Even though most of them are
regarded as classical systems, microscopic quantum ap-
proaches are required to understand the behavior of the
lighter ones, He and Ne, at low temperatures. As it is well
known, He is the most representative of the quantum many-
body systems. Unique features like Bose-Einstein condensa-
tion and superfluidity take place in the liquid at a few K, and
recently several experimental groups have detected super-
fluid signal in the solid phase in the mK range,4,5 a signal
that in the homogeneous crystal has been ruled out by accu-
rate theoretical calculations.6,7 Moreover, the atomic momen-
tum distribution n�k� of 4He differs significantly from those
of classical systems, leading to a non-Gaussian n�k� curve
sharply peaked around k=0.8–10 The reasons for those phe-
nomena to happen in helium are the light mass of the atoms,
bosonic nature of the system, and weakness of the interpar-
ticle interactions. On the other side, Ne has long attracted the
interest of condensed-matter scientists since it is an interme-
diate quantum system which provides valuable physical in-
sight when compared to other quantum and classical sys-
tems. Indeed, the De Boer quantum parameter11 defined as

�* =
h

�m��2
, �1�

where m, �, and � are the atomic mass, energy scale of the
atomic interactions, and typical interatomic distance of the
system, respectively, amounts to 0.54 in Ne �2.50 in 4He�
while in Ar and other heavier noble gases, where classical

behavior is expected, it drops significantly to zero. Essen-
tially, the quantum character of liquid and solid Ne is evi-
denced in their atomic kinetic energies and momentum dis-
tributions, which differ appreciably from the predictions
made by classical statistical mechanics. Accordingly, anhar-
monic effects in the crystal may develop important at low
temperatures due to the large zero-point motion of the
atoms.12

In this work, we study solid Ne at zero temperature by
means of the diffusion Monte Carlo �DMC� method13–15 and
the Aziz HFD-B pair potential.16 Our approach is micro-
scopic and exact in the sense that the total and partial
ground-state energies of the crystal may be calculated within
statistical uncertainty only. There are a burdensome amount
of theoretical and experimental papers dealing with the ther-
modynamics and lattice dynamics of solid neon; however,
numerical results for the atomic kinetic energy are not so
abundant. By the beginning of the 1960s, Bernades17 and
Nosanow and Shaw18 were the first in attempting to estimate
Ek theoretically. They used uncorrelated single-particle wave
functions within the variational and Hartree approaches, re-
spectively, and arrived at reasonable values not too far from
present-day calculations; however, the binding energies that
they reported were in significant disagreement with experi-
mental data. These results made evident the need of im-
proved theoretical schemes to account for the atomic corre-
lations in Ne. A few years after the work of Bernades and
Nosanow, Koehler estimated Ek=42.6 K by means of the
self-consistent phonon �SCP� approach, improving mildly
the agreement with experiments.19

On the experimental side, however, it was not until the
beginning of the 1980s, with the development of the deep-
inelastic neutron scattering technique �DINS�, that direct
measurement of Ek in the condensed phases of matter be-
came accessible. Peek et al. performed the first measure-
ments in solid Ne, covering the temperature interval
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4.5–26.5 K.20 The authors of the first study reported Ek
=49.1�2.8 K for the ground-state kinetic energy, and be-
cause of the large discrepancies with respect to calculations
based on harmonic models, they suggested substantial anhar-
monic effects in solid Ne.

Reassuringly, a few years after the measurements of Peek
et al.,20 theoretical estimations by Asger and Usmani,21 who
used a perturbational approach based on a Wigner-Kirkwood
high-temperature expansion with the Lennard-Jones �LJ� and
Aziz �Ref. 24� pair potentials, amounted to Ek�49 K at tem-
peratures near 10 K. Regardless, previous to the results of
Asger et al.,21 Cuccoli and co-workers22 arrived at kinetic
energies �7 K below the results of Peek et al., based on the
full quantum path integral Monte Carlo �PIMC� approach
and the LJ interaction. The authors of this work suggested
that their disagreement with the results of Peek et al. could
be in part due to the oversimplification of the atomic inter-
actions made by the adopted potential. Subsequently, Timms
et al.23 performed a series of new low-temperature DINS
experiments in solid Ne at high momentum tranfers with an
improved experimental setup. They found very good agree-
ment with Cuccoli et al.22 and also with Timms et al.,23 who
performed an exhaustive PIMC study of the crystal at low
temperatures using both LJ and HFD-C2 pair potentials. In
addition, a recent theoretical study by Neumann and Zoppi,
in which computational techniques and interatomic poten-
tials similar to those of Ref. 23 are used, comes to reinforce
the accuracy of the data of Timms et al.25 Very recently,
Timms et al.26 have reported new additional DINS measure-
ments in solid Ne performed within the temperature range
4–20 K. By doing this, they complement their previous re-
sults and provide a truster way to infer the value of Ek in the
groundstate, which by means of extrapolation of the excess
kinetic energy turns out to be 41�2� K.

In the present work, we report quantum Monte Carlo re-
sults of the equation of state and other thermodynamic prop-
erties of solid Ne over a range of densities near equilibrium
�−1.2� P�6 kbar� and find overall excellent agreement
with experimental data. Structural properties of the crystal—
namely, the radial pair-distribution function g�r�, atomic den-
sity profile around the positions of the perfect crystalline
lattice �sites�, and Lindemann ratio—are also provided. Re-
markably, we estimate accurately the atomic kinetic energy
of the crystal at its equilibrium density by means of the pure
estimator technique within the DMC approach.27–29 Our re-
sult Ek=41.51�6� K is in very good agreement with the re-
cent prediction of Timms et al.26 We have also calculated the
ground-state atomic momentum distribution n�k� of solid
Ne, and it is found to fit perfectly to a Gaussian within the
statistical uncertainty.

Additionallly, we have analyzed the degree of anharmo-
nicity of solid Ne in its ground state. With this aim, we have
computed the atomic kinetic energy and mean-squared dis-
placement within the self-consistent average phonon �SCAP�
approach,27,28 which is a simplified version of the self-
consistent phonon method29 that has proved successful in
reproducing a deal of thermodynamic properties of rare gas
solids. We find the SCAP results are not in full agreement
with the quantum DMC ones, thus revealing this approach

might not allow for an accurate description of Ne at the
microscopic level. In a further step, we devise an harmonic
model based on the HFD-B potential in which the interaction
between particles depends on their relative distances, equi-
librium positions, and the force constant field �second deriva-
tives of the potential energy evaluated in the perfect crystal
configuration�. By using the DMC approach, we calculate
the total and kinetic energies associated with this model and
find significant discrepancies with respect to the full HFD-B
results. According to these outcomes, solid Ne may be re-
garded as a moderate anharmonic crystal since, contrarily to
what is observed in solid 4He, its n�k� does not deviate ap-
preciably from the Gaussian pattern.

The remainder of this article is as follows. In Sec. II, we
describe the computational techniques and models that have
been used on this study. Next, in Sec. III, we present our
results and compare to previous experimental and theoretical
data. In Sec. IV, we finalize by summarizing the main con-
clusions, giving some general remarks.

II. TECHNIQUES AND MODEL

A. Diffusion Monte Carlo method

The DMC method is a zero-temperature method which
provides the exact ground-state energy of the many-boson
interacting systems within some statistical errors.13–15 This
technique is based on a short-time approximation for the
Green’s function corresponding to the imaginary time-
dependent Schrödinger equation, which is solved up to a
certain order of accuracy within an infinitesimal interval �	.
Despite this method being algorithmically simpler than the
domain Green’s function Monte Carlo method,15,30 it pre-
sents some ��	�n bias coming from the factorization of the
imaginary time propagator e−��	/
�H. Nevertheless, our imple-
mentation of DMC is quadratic;31 hence, the control of the
time-step bias is efficiently controlled since the required
�	→0 extrapolation is nearly eliminated by choosing a suf-
ficiently small time step. The Hamiltonian H describing our
system is

H = −

2

2mNe
�
i=1

N

�i
2 + �

i�j

N

V2�rij� , �2�

where mNe is the mass of a Ne atom, rij the distance between
atoms composing an i , j pair, and V2�rij� the interatomic in-
teraction that we have chosen as the Aziz HFD-B potential.16

The corresponding Schrödinger equation in imaginary time
�it�	�,

− 

���R,	�

�	
= �H − E���R,	� , �3�

with E an arbitrary constant, can be formally solved by ex-
panding the solution ��R ,	� in the basis set of the energy
eigenfunctions �
n�. It turns out that ��R ,	� tends to the
ground-state wave function 
0 of the system for an infinite
imaginary time as well as the expected value of the Hamil-
tonian tending to the ground-state value E0. The Hermiticity
of the Hamiltonian guarantees the equality
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E0 =
	
0
H

0�
	
0

0�

=
	
0
H
�T�
	
0
�T�

= 	H�DMC, �4�

where �T is a convenient trial wave function which depends
on the atomic coordinates of the system R��r1 ,r2 , . . . ,rN�.
Consequently, the ground-state energy of the system can be
computed by calculating the integral

	H�DMC = lim
	→�

�
V

EL�R�f�R,	�dR , �5�

where f�R ,	�=��R ,	��T�R� and EL�R� is the local energy
defined as EL�R�=H�T�R� /�T�R�. The introduction of
�T�R� in f�R ,	� is known as importance sampling, and it
certainly improves the way in which integral �5� is computed

for instance, by imposing �T�R�=0 when rij is smaller than
the core distance of the interatomic interaction�.

In this work, all the operators diagonal in real space
which do not commute with the Hamiltonian—that is,


H , Ô��0—have been sampled with the pure estimator
technique.32–34 With this method, essentially, the possible

bias induced by �T in the mixed estimator 	
0 
 Ô 
�T� is
removed by proper weighting of the configurations along the
simulation.

B. Trial wave function and pair potential

We have modeled solid Ne by assuming pointlike atoms
interacting via a radial pairwise potential and with equilib-
rium positions distributed according to the fcc structure.
Neon is observed to remain stable in the fcc structure up to
pressures of 1100 kbar and at ambient temperature;35 there-
fore, no other configuration apart from this has been consid-
ered in the present study. The potential chosen for the inter-
atomic interactions is the semiempirical Aziz HFD-B one,16

which has proved excellent in reproducing some of the mac-
roscopic and microscopic properties of Ne over a wide range
of temperature and pressure,36 and appears to be more real-
istic than the Aziz �Ref. 24�, and LJ models at short dis-
tances. Explicitly,

V�r� = ���x� , �6�

where

��x� = A exp�− �x + �x2� − F�x��C6

x6 +
C8

x8 +
C10

x10 �
and

F�x� = �exp�− �D

x
− 1�2� , x � D ,

1 x � D .
�

The value of the parameters of the potential are A
=895 717.95, �=13.864 346 71, D=1.36, rm=3.091 Å, �
=−0.129 938 22, �=42.25 K, C6=1.213 175 45, C8
=0.532 227 49, and C10=0.245 707 03, with x�r /rm. It is
known that, upon high pressure, the introduction of addi-
tional terms in the effective atomic potentials of rare gases is

required to account for many-body effects taking place in
them; for instance, in solid Ar this limit is posed around
50 kbar.37,38 This circumstance, however, does not affect the
reliability of the results that we are to present shortly, since
the pressure range involved in our simulations is −1.2� P
�6 kbar.

Regarding the trial wave function chosen for importance
sampling, �T, we have adopted the extensively used and
tested Nosanow-Jastrow model,39–41

�T�r1,r2, . . . ,rN� = �
i�j

N

f2�rij��
i=1

N

g1�
ri − Ri
� , �7�

with f2�r�=e−�br�c/2 solids and g1�r�=e−ar2/2. The best param-
eter values are a=6.5 Å−2, b=4.0 Å, and c=5.0, optimized
using the variational Monte Carlo method. Their dependence
with the pressure is small and therefore neglected for its use
in the DMC simulations. The first factor in �T accounts for
the correlations between particles induced by the interac-
tions, while the second enforces the atomic ordering within
the system by attaching each particle to one site of the per-
fect lattice through a Gaussian function. The indistinguish-
ability of the Ne atoms has been neglected throughout this
work since the Nosanow-Jastrow model is not symmetric
under the exchange of particles. This choice is fairly justified
since quantum effects derived from a correct symmetrization
are not expected to play any significant role in the solid
properties calculated in this work. In fact, the same conclu-
sion for the same quantities also holds for solid 4He, a solid
with a larger quantum behavior. The parameters of the
simulation—namely, the number of particles per box, time
step, and target walker population �that is, the mean number
of walkers along the simulation�—have been chosen in order
to ensure the correct asymptotic behavior; their respective
values are N=256, �	=2.7�10−4 K−1, and nw=260.

At each density, finite-size effects have been corrected by
including the tails of the kinetic and potential energies into
the total energy, both estimated assuming g�r�=1 beyond
half the length of the simulation box. This assumption could
be too crude for solids �see Fig. 2�, and therefore we have
checked the reliability of this approximation in our system.
To this end, we have carried out some simulations with 500
atoms and compared the energetic and structural results with
the ones obtained for a box of 256 particles at the same
density. For instance, at a density �=0.045 Å−3 the energies
are E /N=−238.88�4� K and −238.69�8� K and the Linde-
mann ratios �Ne=0.077�1� and 0.079�3� for N=256 and 500
particles, respectively. The differences observed are therefore
not significant within our statistical uncertainty, and the size
corrections are reasonably included.

III. RESULTS

A. Thermodynamic properties

In Fig. 1 we show our results for the total atomic energy
of solid Ne at zero temperature. The solid line in it corre-
sponds to the polynomial curve e���=E��� /N,
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e��� = e0 + a�� − �0

�0
�2

+ b�� − �0

�0
�3

, �8�

which has been fitted to the DMC energies reported in Table
I �solid points in the figure�. The values of the parameters of
the best fit are a=938�3� K, b=871�20� K, e0

=−239.21�3� K, and �0=0.045 82�2� Å−3, where e0 and �0

are the equilibrium energy per particle and density, respec-
tively. The agreement between our results and experiments is
reasonably good for energy e0

expt=−232�1� K and density
�0

expt=0.0449 76�3� Å−3.42,43

Once e��� is known, it is straightforward to deduce the
pressure P��� �see Fig. 1�, and compressibility ���� of the
system at any density through the relations

P��� = �2�e���
��

,

���� =
1

�

��

�P
. �9�

The compressibility at the equilibrium density that is ob-
tained, �0=0.084�4� kbar−1, compares excellently to the ex-
perimental value �0

expt=0.089�2� kbar−1.43

An interesting magnitude in the study of condensed phase
systems is the spinodal density �S, which is the thermody-
namical limit for the system to remain in a homogeneous
phase. At this density, the relation �P /��=0 is fulfilled,
which is equivalent to requiring infinite compressibility or
zero speed of sound in the system. Our prediction for �S is
0.035 75�5� Å−3, which corresponds to a pressure P��S�
=−1.102�4� kbar. In Ref. 44, Herrero presents a comprehen-
sive study of solid Ne at negative pressures by means of the
PIMC method. The author models the interatomic interac-
tions with the LJ potential and estimates the pressure at the
spinodal density and zero temperature by means of a linear
fit to the squared bulk modulus with respect to pressure; he
obtains P��S�PIMC=−0.91 kbar and �S

PIMC=0.0356 Å−3. The
disagreement between this and our value for P��S� can be
explained in terms of the adopted interatomic potential, since
small differences in the total energies may develop into large
ones within successive derivatives.

B. Structural properties

We have explored several structural properties of solid
Ne. In Fig. 2, we plot the averaged radial pair-distribution
function g�r�, which is proportional to the probability of
finding a particle at a certain distance r from another. Ac-
cording to what is expected in crystals, g�r� emerges peaked
with maxima corresponding to the distances between succes-
sive shells of atoms within the perfect lattice, though the
peaks broaden with respect to the profiles which are obtained
in classical solids.

A characteristic parameter in the study of quantum solids
is the Lindemann’s ratio �, which is defined as the ratio
between the squared root of the mean-squared displace-
ment 	u2� and the distance between first nearest neighbors
in the perfect crystalline lattice. Our estimation of the Lin-
demann’s ratio at the equilibrium density �pure estimation� is
�Ne=0.088�2�, which is significantly smaller than in 4He
��0.26� and H2��0.18�, but still larger than in classical sol-
ids at finite temperature and far from melting ��0.03�. The

−240

−230

−220

−210

−200

−190

−180

−170

0.036 0.039 0.042 0.045 0.048 0.051 0.054 0.057

E
/N

(K
)

ρ (Å−3)

−2

−1

0

1

2

3

4

5

6

7

0.036 0.039 0.042 0.045 0.048 0.051 0.054 0.057

P
(ρ

)
(K

ba
r)

ρ (Å−3)

FIG. 1. Top: energy versus density for solid Ne at zero tempera-
ture. The solid line corresponds to the polynomial curve of Eq. �8�
and the dots to the calculated DMC total energies per particle; er-
rors bars are smaller than the size of the symbols. Right: equation of
state of solid Ne at zero temperature computed with the DMC
method and the Aziz HFD-B potential.

TABLE I. Total, potential, and kinetic energies per particle of
solid Ne at absolute zero as computed with the DMC method and
the pure estimator technique. Energies are in units of K.

� �Å−3� E /N Ep /N Ek /N

0.040 −225.84�4� −256.26�8� 30.34�8�
0.043 −235.83�4� −272.04�8� 36.23�8�
0.044 −237.88�4� −276.50�8� 38.57�8�
0.045 −238.88�4� −279.43�8� 40.61�8�
0.047 −238.55�4� −283.76�8� 45.17�8�
0.050 −230.76�4� −282.81�8� 52.17�8�
0.053 −212.83�4� −272.15�8� 59.31�8�
0.056 −183.20�4� −249.61�8� 66.41�8�
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corresponding mean-squared displacement 	uNe
2 � amounts to

0.077�1� Å2. In Table II, we quote the value of �Ne at several
densities out of the equilibrium. As is observed therein, the
general trend of �Ne is to reduce when the density is in-
creased; this behavior is easily understood in terms of gain of
cohesion energy, which must balance with the increasing of
kinetic energy of the system arising from atomic localization.

Aimed at characterizing the spatial distribution of the at-
oms around the equilibrium positions in solid Ne, we have
calculated the atomic density profile function �averaged for
all directions� ��r� and kurtosis �Q. The averaged atomic
density profile function ��r� yields the probability of finding
a particle at a distance within the interval �r ,r+dr� from any
arbitrary site of the lattice. According to this definition, the
mean-squared displacement 	u2� can be obtained as

	u2� = 4��
0

�

��r�r4dr . �10�

In Fig. 3, we plot ��r� at the equilibrium density �dots�,
together with the Gaussian curve that we have adjusted to it
�solid line�. To check the reliability of this fit, we have as-
sumed the Gaussian curve in Eq. �10�, instead of ��r�, and
then recalculated 	u2�. Proceeding so, we obtain 0.079�1� Å2

which agrees perfectly with the direct calculation
0.077�1� Å2. Next, we compute �Q in several directions of
the cubic cell so as to discern whether the atoms distribute

isotropically in average or not around the sites. The kurtosis
is defined as

��ijk� =
	u�ijk�

4 �

	u�ijk�
2 �2 − 3, �11�

where u�ijk� are the projections of the position vectors which
relate each lattice site to its nearest particle along the �ijk�
direction �Cartesian basis�. As is well known, if the atomic
density distribution over the equilibrium positions is of
Gaussian type, the kurtosis is null. In the case of solid Ne,
we have obtained ��100�=0.0078�63� and ��010�=0.0062�59�,
which indeed might be regarded as values compatible with
zero. Additional results for �Q obtained with the pure estima-
tor technique are quoted in Table II.

C. Kinetic energy and momentum distribution

In Table I, we summarize the value of the atomic ground-
state kinetic and potential energies of solid Ne near equilib-
rium �P�0�. All the Ep and Ek results have been computed
within the pure estimator technique and DMC method, and
thus any possible errors associated with them are of statisti-
cal kind or stem from the modelization of the interatomic
interactions. In particular, we have estimated Ek
=41.51�6� K at the equilibrium density. In Fig. 4, we plot the
values of the excess kinetic energy of solid Ne, defined as
Eexc=Ek− �3 /2�T, as measured by Peek et al.20 and Timms
et al.26 within the temperature range 4–20 K. Therein, we
also include estimations of Eexc as obtained with the PIMC
approach over the same T interval, together with our ground-
state result which is located at the ordinate axis. By perform-
ing linear fits to the excess kinetic energy, it is shown that
our ground-state prediction is in very good agreement with
the measurements of Timms et al.26 and the PIMC
estimations,23 whereas not so with the results of Peek et al.20

The causes for this disagreement may be explained, as has
been suggested elsewhere,25,26 in terms of systematic experi-
mental errors, since the temperature dependence of Eexc ob-
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FIG. 2. Averaged radial pair-distribution function g�r� of solid
Ne at zero temperature and the equilibrium density.

TABLE II. Lindemman’s ratio �Ne and kurtosis �Q of solid Ne at
different densities close to equilibrium.

��Å−3� �Ne ��100� ��010�

0.040 0.099�2� 0.017�12� 0.012�14�
0.043 0.092�2� 0.000�8� −0.001�8�
0.044 0.091�2� 0.000�10� 0.000�10�
0.045 0.087�2� −0.006�7� −0.014�7�
0.047 0.086�2� 0.000�20� 0.000�10�
0.050 0.083�2� 0.000�10� −0.010�10�
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FIG. 3. Atomic averaged density profile ��r� of solid Ne at zero
temperature and the equilibrium density.
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tained by Peek and co-workers appears to coincide with the
results of Timms et al. results. A likely explanation can rely
on the range of neutron momentum transfers involved in
those first DINS experiments, about two orders of magnitude
less intense than in posterior measurements, which might not
be sufficiently large so as to reach the high-Q regime re-
quired for the impulse approximation of the dynamic struc-
ture factor to be valid.26

Another physically rich quantity in the study of quantum
liquids and solids is the one-body density matrix ��r ,r��,
which is defined as

��r,r�� = 	
0
�̂†�r��̂�r��

0� , �12�

where �̂�r�� and �̂†�r� are, respectively, the field operators
which destroy a particle from position r� and create one at
position r and 
0 is the ground-state wave function. In boson
systems the asymptote limr→���r� provides the condensate
fraction of the associated homogeneous system n0. The Fou-
rier transform of ��r� is directly the atomic momentum dis-
tribution,

n�k� = �� dr eik·r��r� . �13�

In the quantum Monte Carlo formalism, the one-body
density function can be estimated by averaging the
coordinate operator A�r ,r1 , . . . ,rN���T�r1+r ,r2 , . . . ,rN�
/�T�r1 ,r2 , . . . ,rN� within customary DMC 
known as mixed
estimation, �mix�r�= 	A�r��DMC�.48 However, a more accurate
evaluation of ��r�, known as extrapolated estimation, is
given by the expression

��r� = 2�mix�r� − �VMC�r� , �14�

where �VMC�r� results from averaging A�r ,r1 , . . . ,rN� within
the variational Monte Carlo approach. In Fig. 5, we plot our

results for ��r� as given by Eq. �14�. In the same figure, we

also enclose the Gaussian curve G�r�=e−br2

given that

��0�=1�, which best fits our calculations, with an optimal
parameter value b=5.743�36� Å−2. In order to test the quality
of this fit �which in the reduced �2 test gives the value 0.99�,
we have calculated the atomic kinetic energy of solid Ne
through the formula

Ek = − � 
2

2mNe
�2��r��

r=0
, �15�

but assuming G�r� instead of ��r�. In fact, it may be shown
that Eq. �15� derives from the kinetic-energy sum rule

Ek =

2

2mNe

1

�2��3�
� dk k2n�k� . �16�

Proceeding so, we have obtained Ek=41.43�26� K, which
fully agrees with the direct estimation 41.51�6� K. This find-
ing allows us to conclude that ��r� in solid Ne at T=0 can be
well considered Gaussian shaped at all effects.

We have also computed the atomic momentum distribu-
tion of solid Ne by taking the Fourier transform of ��r� over
a set of k-vector points, as expressed in Eq. �13�. In Fig. 6,
we plot the results of these calculations �dots� and addition-
ally the Fourier transform of the aforegiven Gaussian fit to
��r� �solid line with width signalizing the associated uncer-
tainty�. Obviously, once ��r� has proved Gaussian, n�k� turns
out to be of the same kind.

D. Degree of anharmonicity

The self-consistent phonon approach29 has proved very
accurate in characterizing solids in the middle way between
classical and quantum behavior. Very essentially, this theory
makes the assumption of particles coupled harmonically with
frequencies and modes depending on the crystal symmetry
and lattice parameter and which are determined through a
self-consistent procedure. A simplified version of this
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FIG. 4. Excess atomic kinetic energy of solid Ne at low tem-
peratures. Experimental data of Ref. 26 are represented by �, mea-
surements of Ref. 20 by �, PIMC estimations of Ref. 23 by �, and
our ground state estimation by � �in the ordinate axis�. The lines in
the plot correspond to linear fits to the experimental data of Refs. 20
and 26.
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FIG. 5. One-body density matrix of solid Ne at the equilibrium
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curve that we have fitted to the results.
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method is the self-consistent average phonon approach,27,28

which adopts the expressions of the SCP approach but re-
placing the summation over the different vibrational frequen-
cies by an averaged one: namely, the Einstein frequency �0.
Despite this crude simplification, the agreement between
measurements and SCAP results for rare gase solids like Ar,
Kr, and also Ne is excellent in what concerns thermodynamic
properties �isothermal bulk modulus, specific heat, etc.�.45

However, we want to know to what extent harmonic assump-
tions in solid Ne are accurate enough for deriving micro-
scopic properties of its ground state. With this aim, we have
calculated the atomic kinetic energy and mean-squared dis-
placement within SCAP through the formulas

�0
2 =

1

3mNeN
��

i=1

N

�i
2V2�r�� �17�

and

	u2��SCAP� =
3


2mNe�0
,

	Ek��SCAP� =
1

2
mNe	u2��SCAP��0

2 =
3

4

�0, �18�

where V2�r� is the Aziz HFD-B pair potential. We first com-
pute the exact value of �0 with the pure estimator technique
within the DMC approach and then calculate the value of
expressions �18�. The results that we have obtained are

�0=62.04�1�K, 	uNe

2 �SCAP=0.058�3� Å2, and 	Ek�SCAP

=46.5�1� K, which disagree noticeably from the DMC val-
ues 	uNe

2 �=0.077�1� Å2 and 	Ek�=41.51�6�K. This outcome
reveals that crude simplifications made on the vibrational
properties of solid Ne may lead to important inaccurracies on
the quantum description of such crystal.

In a further step, we have devised an harmonic model46 in
which the interaction between particles is pairwise and reads

V2
harm�rij� = V2�r0,ij� +

1

2
�ui − u j�T� �2V2

�rij � rij
�

rij=r0,ij

�ui − u j� ,

�19�

where V2�r� is the Aziz HFD-B interaction, ui is defined as

ri−Ri, and the terms V2�r0,ij� and � �2V2

�rij�rij
�

rij=r0,ij
in the right-

hand side of Eq. �19� are evaluated, only once, for the atoms
in the perfect crystal configuration �r0,ij �
Ri−R j 
 �. This ap-
proach is equivalent to assuming the pair of atoms i and j
coupled through an harmonic spring of constant equal to the
second derivative of V2�r� evaluated at the equilibrium dis-
tance r0,ij. Within the DMC method and with the pure esti-
mator technique, we have computed the exact ground-state
total and kinetic energies of this model, arriving at the values
e0

harm=−251.35�4� K and Ek
harm=35.1�3� K, which differ no-

tably from the results obtained with the full Aziz HFD-B
interaction.

The relative failure of the previous approximations allow
us to conclude that traditional harmonic approximations in
solid Ne are not adequate for an accurate evaluation of its
microscopic properties. Aimed at yielding a rough estimation
of the degree of anharmonicity of solid Ne and to finalize
with this section, we now compare solid Ne with solid 4He,
the most anharmonic among all the crystals, by invoking the
Debye model. In the Debye approach for solids, particles are
assumed as noninteracting quantum harmonic oscillators
which vibrate with frequencies within a spectrum that is top
bounded by the Debye frequency �D. Consequently, the
atomic kinetic energy is expressed as Ek

D= �9 /16��D, where
�D is the Debye temperature and is equal to 
�D. It is
readily shown that �D=9
2 /4m	u2�, which in the case of
solid Ne at equilibrium turns out to be 70.3�9� K 
here, we
have used the value 	uNe

2 �=0.077�1� Å2�, which in turn leads
to Ek

D=39.5�5� K. Next, we define the dimensionless param-
eter ��1.0− �Ek

D /Ek�, which in fact vanishes for the case of
a pure harmonic solid �Debye model� and it progressively
increases towards unity as anharmonic effects develop larger.
For solid Ne and 4He at their respective zero-temperature
equilibrium volumes, we assess the values �Ne=0.05 and
�He=0.44, where for helium we have used the data found in
Ref. 47. By comparing these two figures, one could claim
that anharmonic effects in solid Ne are about one order of
magnitude less substantial than in 4He.

IV. DISCUSSION AND CONCLUSIONS

In this work, we report the calculation of the ground-state
atomic kinetic energy, one-body density matrix, and momen-
tum distribution of solid Ne by means of the DMC method
and the realistic Aziz HFD-B pair potential. Our approach is
proved to perform notably for this crystal, as is shown by the
very good overall agreement obtained with respect to ther-
modynamic experimental data. Our value for the atomic ki-
netic energy of solid Ne at the equilibrium volume, Ek
=41.51�6� K, is in accordance with the low-temperature ex-
perimental data found in Refs. 23 and 26 and also with pre-
vious PIMC calculations performed with the LJ and Aziz
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FIG. 6. �Color online� Momentum distribution of solid Ne at the
equilibrium density �green dots and bars�. The solid line in the
figure corresponds to the Fourier transform of the Gaussian curve
previously fitted to ��r� �the width of the line represents the uncer-
tainty of the fit�.
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HFD-C2 pairwise interactions.22,23,25 However, our result
does not agree with the results obtained by Peeks and co-
workers �previous to the work of Timms et al.� based also on
deep-inelastic neutron scattering measurements. We have
calculated the one-body density function of solid Ne and
shown that it perfectly fits to a Gaussian curve. Conse-
quently, the atomic momentum distribution, which is evalu-
ated by performing the Fourier transform of ��r�, is of the
same kind. Interestingly, Withers and Glyde49 have shown
very recently by means of simple models that the deviation
of n�k� from a Gaussian pattern in quantum solids may arise
by effect of anharmonicity and/or the introduction of atomic
exchanges. We have checked that anharmonic effects in the
ground state of solid Ne are relevant by calculating some of
its microscopic properties within traditional harmonic
schemes and quoting significant discrepancies with respect to

the full quantum results. It is noted that we have not at-
tempted to include atomic exchange effects in the present
work since a priori and very reasonably, these are not ex-
pected to play any substantial role in the ground state of solid
Ne �contrarily to what may occur in 4He, for instance�. Even
so, we do not appreciate, within the statistical uncertainty,
any deviation from a Gaussian pattern in the ��r�, or equiva-
lently n�k�, of solid Ne; therefore, the degree of anharmonic-
ity of Ne at zero temperature may be regarded as fairly mod-
erate.
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