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Quantum breathers in capacitively coupled Josephson junctions:
Correlations, number conservation, and entanglement
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We consider the classical and quantum dynamics of excitations in a system of two capacitively coupled
Josephson junctions. In the classical case the equations of motion admit discrete breather solutions, which are
time periodic and localized predominantly on one of the junctions. In the quantum case breather states are
found in the central part of the energy spectrum of the confined nonescaping states of the system. We perform
a systematic analysis of their tunneling frequency, site correlations, fluctuations of the number of quanta, and
entanglement. Quantum breather states show strong site correlation of quanta and are characterized by a strong
excitation of quanta on one junction which perform slow coherent tunneling motion from one junction to the
other. They suppress fluctuations of the total number of excited quanta. Quantum breather states are the least
entangled states among the group of eigenstates in the same range of the energy spectrum. We describe how
quantum breather excitations could be experimentally observed by employing the already developed tech-
niques for quantum information processing using Josephson junctions.
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I. INTRODUCTION

Josephson junctions are the subject of extensive studies in
quantum information experiments because they possess two
attractive properties: In their classical regime they are
nonlinear devices, but also show macroscopic quantum
behavior.!~3 The dynamics of a biased Josephson junction
(JJ) is analogous to the dynamics of a particle with a mass
proportional to the junction capacitance C;, moving on a
tilted washboard potential

V) =152 cos o~ g2, (1)

2 2

which is sketched in Fig. 1(b). Here ¢ is the phase difference
between the macroscopic wave functions in both supercon-
ducting electrodes of the junction, [, is the bias current, /. is
the critical current of the junction, and ®y=h/2¢ the flux
quantum. When the energy of the particle is large enough to
overcome the barrier AU (which depends on the bias current
I,) it escapes and moves down the potential, switching the
junction into a resistive state with a nonzero voltage propor-
tional to ¢ across it. Quantization of the system leads to
discrete energy levels inside the potential wells, which are
nonequidistant because of the anharmonicity. Note that even
if there is not enough energy to classically overcome the
barrier, the particle may perform a quantum escape and tun-
nel outside the well, thus switching the junction into the
resistive state.! Thus each state inside the well is character-
ized by a bias and state-dependent lifetime, or its inverse—
the escape rate.

Progress on manipulation of quantum JJs includes spec-
troscopic analysis, better isolation schemes, and simulta-
neous measurement techniques?>”’ and paves the way for
using them as Josephson-junction qubits in arrays for experi-
ments on processing quantum information. Typically the first
two or three quantum levels of one junction are used as
quantum bits. Since the levels are nonequidistant, they can
be separately excited by applying microwave pulses.
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However, improvements in experiments manipulating
Josephson-junction qubits may have applications beyond the
processing of quantum information. Operating the junctions
at larger energies in the quantum regime may give rise to
other interesting phenomena that nowadays can be experi-
mentally observed by using already developed experimental
techniques. For instance, it was suggested that JJs operating
at high energies may be used for experiments on quantum
chaos.3-10

Another interesting phenomenon is the excitation of
discrete breathers. They are time-periodic space-localized
excitations in anharmonic lattices with translational
invariance.!'"'* They localize energy exponentially in space
for short-range coupling between lattice sites and have been
experimentally observed in such different systems as bond
excitations in molecules, lattice vibrations, and spin excita-
tions in solids, electronic currents in coupled JJs, light propa-
gation in interacting optical waveguides, cantilever vibra-
tions in micromechanical arrays, cold atom dynamics in
Bose-Einstein condensates loaded on optical lattices, among
others.!3-23

In the quantum regime, quantum breathers'*?*-#! (QBs)
appear as nearly degenerate many-quanta bound states.
Though being extended in a translationally invariant system,
they are characterized by exponentially localized correlation
functions in full analogy to their classical counterparts.3%4?
When such states superpose the result is a spatially localized
excitation with a very long time to tunnel from one lattice
site to another. At variance with the classical case, the evo-
Iution of these excitations in time has not been experimen-
tally studied in detail. So far they have been indirectly
observed by spectroscopic analysis in molecules and
solids.+3->2

The possibility to directly observe QB excitations evolv-
ing in time was addressed by us in a Letter> for a system of
two capacitively coupled JJs, where by calculating the eigen-
states and the spectrum of the system we identified QB states
as weakly split tunneling pairs of states.>'3337 These eigen-
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FIG. 1. (Color online) (a) Sketch of the two capacitively
coupled Josephson junctions. (b) Sketch of the washboard potential
for a single current-biased Josephson-junction. (c) Circuit diagram
for two ideal capacitively coupled Josephson junctions.

states appear in the middle of the energy spectrum of the
system and are characterized by correlations between the two
junctions—if one of them is strongly excited, the other one is
not and vice versa. By exciting one of the junctions to a large
energy (many quanta), we strongly overlap with QB tunnel-
ing states. Consequently we may trap the excitation on the
initially excited junction on a time scale which sensitively
depends on the amount of energy excited and on the applied
bias. We described how QB excitations could be directly
observed in time using the available techniques for manipu-
lating JJs in the quantum regime.

In this work we present an extended analysis of the sys-
tem, performing a systematic and comparative analysis of
different properties of QB states. We study their tunneling
rates, the site correlations of excited quanta, the fluctuation
of the number of excited quanta, and the entanglement of the
QB states.

In Sec. II we describe the model for the two coupled
JJ$3473% and briefly consider the classical dynamics, where
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the equations of motion are numerically solved finding dis-
crete breather solutions. In Sec. III we consider the quantum
model and introduce the basis we use to numerically diago-
nalize the Hamiltonian matrix. We define correlations func-
tions which, together with the energy spectrum, will help us
to identify QB states. Then we compute the time evolution of
initially localized excitations and relate it to the spectral
properties of the system. In Sec. IV we address the fluctua-
tion of the total number of quanta in the eigenstates. In Sec.
V we explore the entanglement of the eigenstates. In Sec. VI
we describe how QB excitations evolving in time could be
experimentally observed and discuss how escaping and de-
coherence (effects that are not taken into account in the
quantum model) would affect the observations. We conclude
in Sec. VIL

II. MODEL AND CLASSICAL DYNAMICS

The system is sketched in Fig. 1(a): Two JJs are coupled
by a capacitance C,, and they are biased by the same current
I,. The strength of the coupling due to the capacitor is
{=C./(C.+C)).

The Hamiltonian of the system is

2 2

Py P {
H=2_+_+U((Pl)+U(€02)+_P1P2, (2)

m 2m m

where
2
m=C,(1+g)<%> , (3)
T

A .

Pi,=(C.+C)) Py (@12=L¢21). (4)

Note that the conjugate momenta P, , are proportional to the
charge at the nodes of the circuit [which are labeled in Fig.
1(c)]. When the junctions are in the superconducting state,
they behave like two coupled anharmonic oscillators with
plasma frequency w,(y)=\2ml./®C,(1+[1-»]", y
=1,/1. being the normalized bias current. The classical equa-
tions of motion are given by

$ra=- ﬂ(sin Pra+{singy )+ &(1 +0)y. (5)
27m 27m
Despite being invariant under permutation of the junction
labels, these equations admit discrete breather solutions,'?
which are time periodic and for which the energy is localized
predominantly on one of the junctions (Fig. 2). These orbits
can be numerically computed with high accuracy using
Newton algorithms.>-38
The existence of discrete breathers is possible because the
anharmonicity in the JJ potentials makes the frequency of
these excitations (and all of their harmonics) nonresonant
with the normal modes w. =11 *{w,(y) of the coupled-
junction  system, whose corresponding orbits are
delocalized.'? For the parameters y=0.99 and /=0.1, the
normal-mode frequencies are ®,=0.394w,(0) (in-phase
mode) and ®_=0.356w,(0) (out-of-phase mode). The
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FIG. 2. (Color online) (a) Time evolution of the phase differ-
ences and (b) corresponding sketch of an exact discrete breather
solution of the equations of motion (5) with frequency €,
=0.303w,(0) [time is measured in units of the inverse plasma fre-
quency at zero bias wp(O)"]. The parameters are y=0.99 and {
=0.1.

periodic solution shown in Fig. 2 has a frequency below the
out-of-phase mode frequency; thus, the discrete breather
solution is out of phase as well.

II1I. QUANTUM DYNAMICS: EXCITING QUANTUM
BREATHER STATES

In the quantum case we compute the energy eigenvalues
and the eigenstates of the system. Since we are interested
only in the energy transfer between the junctions, we neglect
quantum escape for states which will not escape in the clas-
sical limit. Thus we use a changed potential energy for the
single JJ by adding a hard wall which prevents escape:

U if p<m—
Ufp =] O =T ©
© if o> 7— ¢,

where ¢y=arcsin y is the position of the minimum of the
potential and 7— ¢, gives the position of the first maximum
to the right from the equilibrium position ¢, [Fig. 1(b)]. We
will later compare the obtained tunneling times with the true

state-dependent escape times.
The Hamiltonian of the two-junctions system is given by

IA{=I:II+IA{2+§‘>, (7)

where I:I,-:f’l-z/ 2m+U,(¢,) is the single-junction Hamiltonian
and V=P P,/m is the interaction that couples the junctions.
The eigenvalues &, and eigenstates |n;) of the single-junction

Hamiltonian H; were computed by using the Fourier-grid
Hamiltonian method.>® |n;) is also an eigenstate of the num-
ber operator 7; with eigenvalue n;. In the harmonic
approximation®

jaAi’ (8)

where é}L and d; are the bosonic creation and annihilation
operators. Since only states with energies below the classical

nj=d

PHYSICAL REVIEW B 77, 024308 (2008)

AE /h (GHz)
S 5 o

£,(1.2)/f (1,1)

FIG. 3. (Color online) (a) Energy splitting and (b) correlation
function vs energy of the eigenstates of the two-junction system
(open circles, symmetric eigenstates; solid circles, antisymmetric
eigenstates). The labeled arrows mark the energy corresponding to
the peak of the spectral intensity in Figs. 4(b), 4(d), and 4(f) (see
text). The parameters are y=0.945 and ¢=0.1 (22 levels per
junction).

escape energy (barrier) are taken into account, the computed

spectra have a finite upper bound. The perturbation V does
not conserve the total number of quanta n;+n,, as seen from
the dependence of the momentum operators on the bosonic
creation and annihilation operators in the harmonic approxi-
mation:

A —— R At .
P1,2 = ((1)0/277) \’(1 + {)C]ﬁwp/2 X (a1,2 - al‘z)/l. (9)

The Hamiltonian matrix is written in the basis of product
states of the single-junction problem {|n;,n,)=|n,)® |n,)}.
The invariance of the Hamiltonian under permutation of the
junction labels allows us to use symmetric and antisymmet-
ric basis states

1
Iny.no)sa= TE(|”1,”2> * |ny,ny)) (10)
AY

to reduce the full Hamiltonian matrix to two smaller sym-

metric and antisymmetric decompositions of H, which after
diagonalization respectively give the symmetric and anti-
symmetric eigenstates of the system.

In order to identify quantum breather states, whose corre-
sponding classical orbits are characterized by energy local-
ization, we define the correlation functions

fﬂ(l’z):<ﬁlﬁ2>ﬂ7 (11)

Fu(1,1) = (i), (12)

where <A>M=<XM|A|XM>’ {Ix.)} being the set of eigenstates of
the system. The ratio 0<f,(1,2)/f,(1,1)<1 measures the
site correlation of quanta: It is small when quanta are site
correlated (i.e., when many quanta are located on one junc-
tion there are almost none on the other one) and close to 1
otherwise.

In Fig. 3 we show the nearest-neighbor energy spacing
(tunneling splitting) and the correlation function of the
eigenstates. For this, and all the rest, we used 1,=13.3 uA,
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C;=43 pF, and {=0.1, which are typical values in experi-
ments. We see that in the central part of the spectrum the
energy splitting becomes small in comparison to the average.
The corresponding pairs of eigenstates, which are tunneling
pairs, are site correlated and thus QBs. In these states many
quanta are localized on one junction and the tunneling time
of such an excitation from one junction to the other (given by
the inverse energy splitting between the eigenstates of the
pair) can be exponentially large and depend sensitively on
the number of quanta excited.

Note that the tunneling of quanta between the JJs occurs
without an obvious potential energy barrier being present
[the interaction between the junctions is only through their
momenta, as seen in the Hamiltonian (7)]. This process has
been coined dynamical tunneling,®'=%3 to distinguish from
the usual tunneling through a potential barrier. In dynamical
tunneling, the barrier—a so-called invariant separatrix
manifold—is only visible in phase space, where it separates
two regions of regular classical motion between which the
tunneling process takes place. Therefore, when referring to
the tunneling between the JJs, we implicitly mean that it is
dynamical.

The fact that the strongest site-correlated eigenstates oc-
cur in the central part of the energy spectrum may be easily
explained as follows: Let N be the highest excited state in a
single junction, with a corresponding maximum energy AU
(Fig. 1). For two junctions the energy of the system with
both junctions in the Nth state is 2AU, which roughly is the
width of the full spectrum. Thus states of the form |N,0) and
|0,N) that have energy AU are located approximately in the
middle.

Having the eigenvalues and eigenstates, we compute the
time evolution of different initially localized excitations and
the expectation value of the number of quanta at each junc-
tion (7;)(t)=(W(#)|A;|¥(z)). Results are shown in Figs. 4(a),
4(c), and 4(e). We also compute the spectral intensity IZ
=|<XM|‘P0> 2, which measures the strength of overlap of the
initial state |\W,) with the eigenstates. Results are shown in
Figs. 4(b), 4(d), and 4(f), where we can see a peak in each
case, which corresponds to the arrows in Fig. 3(b). We can
see that the initial state |¥()=]0,5) overlaps with eigenstates
with an energy splitting between them being relatively large
and hence the tunneling time of the initially localized exci-
tation is short. For the case |W)=|0,19), QBs are excited:
The excitation overlaps strongly with tunneling pairs of
eigenstates in the central part of the spectrum, which are site
correlated and nearly degenerate. The tunneling time of such
an excitation is very long and thus keeps the quanta localized
on their initial excitation site for corresponding times. Fi-
nally the initial state |W()=]9,19) overlaps with weakly site-
correlated eigenstates with large energy splitting. Hence the
tunneling time is short again.

We computed also the time evolution of the expectation
values of the number of quanta for initial conditions which
are coherent or incoherent (mixtures) superpositions of prod-
uct basis states with equal weights. This is relevant for ex-
periments, since it may be hard to excite one junction to a
determined state but easier to excite several states of the
junction at the same time. We used coherent superpositions
(characterized by well-defined states |W()) and mixtures
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FIG. 4. (Color online) Time evolution of expectation values of
the number of quanta at each junction (left panels) for different
initial excitations with corresponding spectral intensities (right pan-
els). (a) and (b) |[¥)=|0,5), (c) and (d) |¥y)=]0,19), and (e) and (f)
[Wy=19,19). Open circles, symmetric eigenstates; solid circles, an-
tisymmetric eigenstates. The energies of the peaks in the spectral
intensity are marked by labeled arrows in Fig. 3(b) (see text). The
parameters are y=0.945 and {=0.1 (22 levels per junction).

(characterized by their corresponding density operators pg)
of four basis states around the already used initial states: For
the state [0,5) we superposed the basis states |0,5), [0,6),

0,7), and |0,8), for |0,19) the basis states |0,20), |0,19),
0,18), and |0,17), and for |9,19) the basis states |9,20), [9,19),

9,18), and |9,17). Both for superposition and mixture of ba-
sis states, the results are qualitatively similar to those shown
in Fig. 4. Therefore we expect that some imprecision in ex-
citing an initial state in the junctions would not affect in a
relevant way the results. We may also conclude that the ex-
citation of QB states does not rely on the phase coherence.
That conclusion will be supported later by the study of
entanglement.

Let us estimate how many quanta should be excited in the
junctions in order to obtain QBs (tunneling pairs). We com-
pute the density p(n;,n,)=|(n;,ny|x)|* of the asymmetric
state [ x)=( X(bs)>+ | X(bA)>)/ \2, where | X(bS’A)> are the eigenstates
belonging to a tunneling pair.’” In Fig. 5 we show a contour
plot of the logarithm of the density for the tunneling pair
with energy marked by the arrow labeled by number 2 in Fig.
3(b). We see that the density has its maximum around n,
=19 and n,=0 which is consistent with the result shown in
Figs. 4(c) and 4(d) where QBs were excited by using this
combination of quanta in the junctions.
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FIG. 5. (Color online) Contour plot of the logarithm of the den-
sity of the asymmetric state |x)=(| XE,S)>+| )(EJA)))/ V2 as a function of
the number of quanta at junctions 1 and 2 (see text). The parameters

are y=0.945 and {=0.1 (22 levels per junction).

IV. FLUCTUATIONS OF THE TOTAL NUMBER
OF QUANTA

Even though the Hamiltonian does not commute with the
total number of quanta, N=ﬁ1+ﬁ2, in Figs. 4(a), 4(c), and
4(e), we see that its expectation value has very small fluc-
tuations (less than 1). We can see this approximate conser-
vation of the number of quanta also in the density plotted in
Fig. 5, where shows a rim along the line n,+n,=N (=19).
This might be computationally advantageous when consider-
ing larger systems because the strict conservation of N=n,
+n, would allow us to truncate the Hilbert space and work
within a subspace with fixed N. Each time the interaction

operator V acts on a basis state with given N, it will generate
also states with N =2, as can be seen from first-order pertur-
bation theory in { at the harmonic approximation. To study
these fluctuations numerically we computed the following
weight function for each eigenstate, which measures the rela-
tive contribution of all basis states with a given N to the
eigenstate under consideration:

W)= 2 Knmolx )P (13)

ny.ny

ny+n,=N

In Fig. 6 we show the weight function for the three symmet-
ric eigenstates which correspond to the peaks of the spectral
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FIG. 6. (Color online) From left to right: weight function as a
function of the total number of quanta, N=n;+n,, for the three
symmetric eigenstates at the peaks of the spectral intensities shown
in Figs. 4(b), 4(d), and 4(f), respectively. The parameters are y
=0.945 and {=0.1 (22 levels per junction).
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FIG. 7. (Color online) Fluctuation of the total number of quanta
for the eigenstates of the coupled-junction system (open circles,
symmetric eigenstates; solid circles, antisymmetric eigenstates).
The parameters are y=0.945 and {=0.1 (22 levels per junction).

intensities shown in Figs. 4(b), 4(d), and 4(f), respectively.
For the lowest-energy state we can see the expected appear-
ance of two satellite peaks separated by two quanta from the
central one. For the higher-energy eigenstates the harmonic
approximation does not hold. Most importantly we see that
for states in the lower and middle parts of the energy spec-
trum, the fluctuation of the number of quanta is weak and
corresponding states contribute less than 1% to the eigen-
state. This is apparently not true at the upper end of the
energy spectrum.

Note that the obtained amplitude of fluctuations in the
time evolution is much less due to averaging effects and the
smallness of the strength of the perturbation {. The calcula-
tion of (N)() from perturbation theory in the harmonic ap-
proximation shows that this quantity oscillates in time with
an amplitude that is proportional to ?nym,, where n, and m;
are the energy levels initially excited in the junctions. For
£=0.1 one finds that the fluctuations are of the order of 107
in the case shown in Fig. 4(a) and of the order of 107! in the
cases in Figs. 4(c) and 4(e). Numerical results are consistent
with these estimates.

To characterize the variation in the total number of quanta
in the eigenstates we computed the fluctuation

VAN, = (R, — (2. (14)

In Fig. 7 we plot the relative fluctuation \,<AN2>M/(1\A]># for
the eigenstates, where we can see that it is very small, and
for the QB states in the central part of the spectrum it has the
smallest values. This follows from the fact that QBs are close
to eigenstates having the form

n,0) *

1
X)o5 = = ( 0.n)), (15)
V2
with n<N (N is the number of levels per junctions). These

are eigenstates of the total number operator N =i +7,, for
which the corresponding fluctuations given by Eq. (14)
vanish.

V. ENTANGLEMENT OF QB STATES

Since QB states are close to eigenstates of the {=0 case
given by (15), one expects that the degree of entanglement in
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FIG. 8. (Color online) Entanglement of the eigenstates of the
coupled-junction system for different values of the coupling
strength  (open circles, symmetric eigenstates; solid circles, anti-
symmetric eigenstates). Here y=0.945.

QB states is similar to the degree of entanglement in such
states. Since only two basis states are involved, it cannot be
a state of maximum entanglement. We measured the degree
of entanglement in the eigenstates of the system by minimiz-
ing the distance of a given state to the space of product
states, which depends on the largest eigenvalue of the re-

duced density matrix:4-6
N
A= E (Xgl,nz_flllgn2)27 (16)
nyiy

where X#l,n2=<”1’”2| X, and the functions f, and g, are
such that A is minimum (see the Appendix for explicit for-
mulas). A measures how far a given eigenstate of the two-
junction system is from being a product of single-junction
states and has values 0<XA<1 (see the Appendix). For
{=0 the eigenstates of the system are the basis states given
by Eq. (10), where for n,=n, it follows that A=0 and for
n, #n, [which includes the state in Eq. (15)] A=0.5. This
measure has a direct relation to the distance of a given eigen-
state from a possible one obtained after performing a Hartree
approximation.®

In a quantum-integrable model with two degrees of
freedom?! it was shown that the region of existence of QB
states in the energy spectrum is separated from other states
by the energy threshold for which discrete breathers exist in
the corresponding classical model. Pairs of eigenstates with
energies beyond this threshold show exponentially decreas-
ing energy splitting. In a similar quantum model,®”-%® it was
shown that at the mentioned energy threshold the entangle-
ment (using the von Neumann entropy) becomes maximum
and then decreases with energy. From these two results we
expect that QB states in our case show decreasing entangle-
ment A with energy, tending to 0.5.

In Fig. 8 we show the entanglement of the eigenstates for
different values of the coupling strength {. For {=0 the en-
tanglement has the values 0 and 0.5 corresponding to the
basis states with equal and distinct number of quanta at each
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FIG. 9. (Color online) Contour plots of the logarithm of the
density of the symmetric eigenstates marked by labeled arrows in
Fig. 8 for the case {=0.1: (a) S-5 (arrow 1), (b) S-117 (arrow 2), (c)
S-95 (arrow 3), and (d) S-246 (arrow 4). The normalized bias cur-
rent is y=0.945 (22 levels per junction).

junction, respectively. When (>0 the eigenstates become
linear superpositions of the basis states and the entanglement
rises, being larger as long as more basis states are involved in
building up an eigenstate. This can be seen in Fig. 9, where
we plot contours of the density of four symmetric eigenstates
marked by labeled arrows in Fig. 8 for {=0.1: The low-
energy eigenstate marked by the arrow 1 in Fig. 8 consists
mainly of a superposition of a few basis states |n;,n,) ful-
filling n,+n,=3 as seen in Fig. 9(a); hence, the entanglement
is relatively small. When going up in energy the entangle-
ment in the eigenstates quickly increases, becoming maxi-
mum in the central part of the energy spectrum and then
decreases. An eigenstate in this region of the spectrum like
the one marked by the arrow 2 in Fig. 8 involves many basis
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states fulfilling n;+n,=20 [Fig. 9(b)]; hence, the entangle-
ment is large. However, for QB states residing in the same
energy region like the one marked by the arrow 3 in Fig. §,
which has the form shown in Eq. (15) as visible in Fig. 9(c),
the entanglement is smaller and tends to 0.5 as expected.
Finally, high-energy eigenstates like the one marked by the
arrow 4 in Fig. 8 involve not so many basis states [Fig. 9(d)];
therefore, the entanglement is also smaller.

We also computed the von Neumann entropy® (see the
Appendix for explicit formulas), which is another standard
measure of entanglement, and the results were consistent
with those discussed above.

We thus conclude that when QBs appear in a certain part
of the energy spectrum, their entanglement drops as com-
pared to the typical entanglement of nearby states. The rea-
son is that QB states predominantly excite two symmetry-
related basis states, as opposed to the typical excitation of
many other basis states.

VI. POSSIBLE EXPERIMENTAL OBSERVATION
OF QUANTUM BREATHERS

The experimental observation of QBs may be possible by
using the scheme of McDermott et al. for simultaneous state
measurement of coupled Josephson phase qubits,® where by
applying current pulses in the bias current through each junc-
tion the time evolution of the occupation probabilities in the
qubits is measured. By applying a microwave pulse on one
of the junctions we excite it into a high-energy single-
junction state with energy ¢; and leave the other one in the
ground state. In this way we have an initial state similar to
the ones shown in Figs. 4(c) and 4(d). After a variable period
of time we apply simultaneous current pulses to the junctions
to lower their energy barriers AU and enhance the probabil-
ity of tunneling outside the potential well. Then we test
which junction switches to the resistive state (detected by a
measurable voltage across it). By repeating the measuring
many times we obtain the populations in the junctions as a
function of the time between the initial pulse and the simul-
taneous measuring pulses.

Let us discuss the so far neglected quantum escape. For
that we computed 7., by using the semiclassical formula’®

1 _w(e)
Tescape(s) - 2

2 b
exp —gf plede (, (17)

where a and b are the turning points of the classical motion
in the reversed potential at U(¢)=¢, p(¢)=+2[U(¢)—¢], and
w(g)/ 2 is the frequency of the oscillations inside the initial
well. In Table I we show the escape time from different
metastable states and we compare it with the tunneling time
Tmmer OF an initial excitation |¥(0))=|0,l) between the two
junctions, estimated from the energy splitting of the
(symmetric-antisymmetric) pair of eigenstates with the larg-
est overlap with the initial excitation. We see that for /=19,
where we excite QBs, the escape time is long enough for
observing at least one tunneling exchange between the two
junctions before escaping to the resistive state. Note that the
cases /=18 and 17 also excite QBs which would show even
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TABLE I. Escape times for metastable states in a single Joseph-
son junction 7,y estimated by formula (17), and the tunneling
time of the initial excitation |W(0))=|0,/) between the two junc-
tions 7,,,,. €stimated from energy splittings.

l Trunnel (ns) Tescape (IIS)
20 348 42

19 1.8% 103 3.5%10°
18 10.16 X 103 503.2% 103
17 2.3%10° 71.2% 100
16 366 1.62 %X 10°

more tunneling exchanges before escaping. The case /=16
does not excite QBs but eigenstates that, though having
small energy splitting, do not show strong site correlation of
quanta as in the previous cases. From these results we expect
that escaping to the resistive state will not prevent from the
experimental observation of QB excitations.

Another phenomenon that was not taken into account in
our quantum model is decoherence. To be able to observe
tunneling between the junctions the coherence time has to be
longer than the shortest tunneling time between the junc-
tions, which is on the order of 1 ns in the cases shown in
Figs. 4(a) and 4(e). In the experiment shown in Ref. 54 using
a few levels per junction they obtained a coherence time on
the same order. However, in the experiment in Ref. 6 the
coherence time was about 25 ns, and more recently in Ref. 7
the coherence time was approximately 80 ns. We expect that
further improvements in experiments® will give us even
longer coherence times.

Note that the above coherence times are shorter than the
tunneling times of QB excitations (see Table I); hence, deco-
herence is an effect that can not be ignored if one wants to do
a more realistic quantum description of the system. When
exciting a JJ to high-energy states relaxation (over dephas-
ing) is usually the main source of decoherence. We can make
a crude estimation of the corresponding relaxation time 7'} by
using T, =hQ/¢; (Q is the quality factor of the junctions),
which holds for a harmonic potential.”"’> For /=19, 18, and
17, &,/ h is around 150 GHz [see Fig. 3(b)]. For the JJs used
in Ref. 5, Q is between 500 and 1000, which leads to a
relaxation time between 3 ns and 6 ns. It is much smaller
than the tunneling time of the QB excitations; therefore, one
would expect to see instead of tunneling, a freezing of these
excitations on one of the junctions before they decohere due
to relaxation.

One could obtain more feasible results by increasing the
bias current in such a way that there are less energy levels in
the junctions. With this, exciting a QB would need less en-
ergy and the relaxation time becomes longer. The tunneling
time of that QB excitation is shorter and might be even
shorter than the relaxation time, allowing one to observe tun-
neling before relaxation. This possibility and the inclusion of
decoherence in our model are issues that will be addressed in
a future work.

VII. CONCLUSIONS

We have studied the classical and quantum dynamics of
high-energy localized excitations in a system of two capaci-
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tively coupled JJs. In the classical case the equations of
motion admit time-periodic localized excitations (discrete
breathers) which can be numerically computed. For the
quantum case we showed that excitation of one of the junc-
tions to a high level, leaving the another junction in the
ground state, may strongly overlap with QBs (tunneling-pair
eigenstates) that reside in the central part of the energy spec-
trum and localize energy on one of the junctions for a long
(tunneling) time. This result would not qualitatively change
if we excite a (coherent or incoherent) superposition of sev-
eral product basis states instead of only one. By using the
density function for asymmetric superpositions of QB states
one can realize how many quanta can be excited at each
junction in order to excite QB states.

In addition to what was described above, the system
showed other interesting properties: We found that the sys-
tem nearly conserves the total number of quanta, which
comes from the fact that the coupling between the junctions
couples just slightly eigenstates components with different
total number of quanta. This opens the possibility to study
larger systems without too big computational cost. When
computing the fluctuation in the total number of quanta for
each eigenstate, QB states show the smallest fluctuations. We
showed that entanglement, which reflects how many basis
states have significant weight in an eigenstate, increases with
energy in most of the eigenstates, becoming maximum at the
center of the spectrum and then decreases. QB states from
the same energy region are less entangled. This is because a
QB state mainly consists of a symmetric or antisymmetric
combination of two product basis states localizing many
quanta on one of the junctions.

With the available techniques for manipulating
Josephson-junction qubits the experimental observation of
QB excitations is possible. Escaping to the resistive state of
the junctions (which together with decoherence was not
taken into account in our quantum model) would not prevent
us from doing that, and we expect that improvements on
preparation (higher quality factors) and isolation techniques
of JJs make it possible to reach long enough coherence times
in order to observe the phenomena we described in this
work. By changing the parameters of the system (bias cur-
rent and coupling strength) one could vary the energy, and
hence the tunneling time, of a QB excitation with respect to
the coherence time, in such a way that it becomes larger than
that tunneling time.
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APPENDIX: MEASURES OF ENTANGLEMENT

Let X'+ 0 be a real eigenstate written in a basis of product
states {|n,,ny)}={|n|)®|n,)} with n;,n,=1,...,N. Itis a N
X N matrix with elements an,n2=<”1’”2| Xx)- We define the
geometric measure of entanglement of this eigenstate by the
following quantity:

PHYSICAL REVIEW B 77, 024308 (2008)

N
A= E (an,nZ_fnlgn2)2a (Al)

ny,ny

where the vector functions f=(fi,....f,,...)" and g

=(gy>... +Bny> ...)" are such that A is minimum. The quantity

A measures how far the eigenstate is from being a product of

functions depending respectively on the numbers n; and n,.
The minimization of A leads to the formula®-%

A= ”‘XHZ - )\max’

where X' is a NX N matrix with elements Xy Nmax is the
maximum eigenvalue of the N X N reduced density matrix

A=x(x), (A3)

and [AP=SY (s 0%

Another standard measure of entanglement in the eigen-
states is the von Neumann entropy, which is used in informa-
tion theory:%°

(A2)

S(py) =—"Tr{p, log, p\} (A4)

=— > N logy(\y), (A5)
k

where log, refers to the logarithm taken in base 2. p; is the

reduced density operator of either of the subsystems:

p1=Try(p), (A6)

where Tr, is the partial trace over the subsystem 2. {\;} is the
set of eigenvalues of the reduced density operator p;.
For the system of coupled JJs an eigenstate has the form

N
|X>: 2 an,n2|nl’n2>- (A7)
ny,ny
Then the density operator is
p=xxl (A8)
N N
* ! !
= 2 E an,nZXn'yn’|nlsn2><nlsn2; (A9)
mLy ot 1"
hence, the reduced density operator is
p1=Try(p) (A10)
N [ W~ .
= 2| 2 Xy o (I (A11)
nl,n; m
The matrix elements of this reduced operator are
N
(n|ﬁ1|m) = 2 Xn,n2X1;1,n2 (Alz)
n
=Ayms (A13)

where A, , is a matrix element of A defined in Eq. (A3).
To compute the von Neumann entropy one diagonalizes this
matrix and uses Eq. (A5).
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Despite the fact that we found similarity in the variation
of the two measures when studying QB eigenstates, it is
interesting to note that monotonicity does not hold in gen-
eral; i.e., if one measure is showing that a given state is more
strongly entangled than another one, that property may be
reversed when using the other measure. The geometric mea-
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sure is an unambiguous number of the shortest distance from
a given state to the subspace of product states, it allows one
to reconstruct the optimum product state, and it has a clear
relation to the Hartree approximation.®* For these reasons we
presented the numerical results using the geometric measure,
rather than the entropy measure.
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