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In order to examine the excitation of intrinsic localized modes �ILMs� in a three-dimensional material, we
conducted molecular dynamics numerical simulations on �12,0�, �10,0�, and �8,0� zigzag carbon nanotubes
�CNTs� and �7,7�, �6,6�, and �5,5� armchair CNTs based on the Brenner potential. While energy localization is
observed in several regions in the zigzag CNTs, it is not seen in the armchair CNTs. In the former, fairly
constant modes, where two neighboring atoms vibrate in the opposite direction along the axial direction, are
found in the energy-localized region, and their frequencies exceed the upper bound of the phonon band. In the
armchair CNTs, atomic vibrations in the circumferential direction within high-energy regions cannot last a long
time. These results indicate that the ILM is excited in the three zigzag CNTs but not in the three armchair ones.
This is because the bond along the tube-axial direction has stronger nonlinearity under vibrations than that in
the circumferential one, and the bond direction depends on the structure of the CNT.
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I. INTRODUCTION

Since the finding of the intrinsic localized mode �ILM� or
discrete breather by Takeno and co-workers in 1988,1,2 it has
been studied extensively by many researchers, both theoreti-
cally and experimentally.3–16 The ILM is a time-periodic and
spatially localized vibration mode which appears in lattice
systems consisting of discrete elements with nonlinear inter-
action. Both the nonlinearity and the discreteness excite the
ILM because �i� waves with a frequency exceeding the upper
bound of the phonon band �max cannot spread in a system of
discrete elements, �ii� the nonlinearity in the interaction be-
tween the elements tends to wake waves with relatively large
amplitude, and �iii� some nonlinear waves can have a fre-
quency higher than �max.

Existence of the stationary ILM has been proved in a wide
range of lattice systems.4 Recently, the ILM has been ob-
served experimentally in various physical contexts, such as
Josephson junction arrays,5,6 optical lattices,7 and microme-
chanical cantilever arrays.8,9 Adding to these interesting re-
sults, the ILM in real crystals is worth studying. The ILM
may appear in atomic systems with a crystal structure be-
cause of the discreteness of their structures and the nonlin-
earity in the interaction between atoms. While most studies
on the ILM have dealt with one-dimensional lattice
systems,10–13 some studies of the ILM have been carried out
for crystal structures under imaginary potentials. Cuevas et
al. numerically analyzed the effects of a vacancy on the ILM
in a crystal using an anharmonic interatomic potential of
model material.14 Marín et al. studied the excitation of the
moving ILM in L-J crystals using simple molecular dynam-
ics simulations.15 They reported that the moving ILM which
is initially excited survives in 7000 time units �1344 lattice
cites� or more. Moreover, Russel and Eilbeck has claimed
experimental evidence which implies the excitation of the
ILM in a crystal.16 However, there are some gaps between

the theoretical or numerical results and this experiment.
Thus, more detailed analysis is required for the verification
of the ILM in crystals.

The present authors analyzed two-dimensional vibrations
of a graphene sheet by molecular dynamics simulation using
a realistic potential �Brenner potential17� and validated the
excitation of the ILM on the basis of the life and the fre-
quency of localized wave.18 This result suggests the excita-
tion of the ILM in three-dimensional materials.

The carbon nanotube �CNT�, which has been attracting
attention because of its superior mechanical strength, high
chemical and thermal resistance, etc.,19–21 is made by rolling
up a graphene sheet. Therefore, the CNT may have the ILM
as a three-dimensional material. Different CNT structures are
obtained by changing the direction and length of rolling of a
graphene sheet �see next section� and may influence the ex-
citation of the ILM. Savin and Kivshar studied the excitation
of the ILM in �m ,0� and �m ,m� CNTs.22 They showed that
three types of ILMs can exist in the �m ,0� CNT, namely,
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FIG. 1. Schematic illustration explaining the chiral vector of a
carbon nanotube.
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longitudinal, radial, and twisting ILMs, while the �m ,m�
CNT allows only the excitation of the radial ILM. However,
they modeled the CNTs by one-dimensional diatomic chains
and adopted model potentials, which indicates that further
studies are required to elucidate the ILM in CNTs as a real
three-dimensional material.

In the present study, we have examined the excitation of
the ILM in �12,0�, �10,0�, and �8.0� zigzag CNTs and �7,7�,
�6,6�, and �5,5� armchair CNTs using molecular dynamics
simulations and discuss the effects of the atomic structure.

II. SIMULATION PROCEDURE

Figure 1 shows the unit vectors a1 and a2 of the hexagonal
honeycomb lattice of graphene. The circumference of any
CNT is uniquely represented by the chiral vector,

Cv = ma1 + na2 � �m,n� , �1�

which connects two crystallographically equivalent sites on a
graphene. The zigzag �n=0� and armchair �m=n� CNTs have
a characteristic structure showing no helicity. In the present
work, we focus on three zigzag and three armchair CNTs, for
which the calculated cell sizes are shown in Table I. The
periodic boundary condition is applied in the axial direction.
We have confirmed that if the length of CNTs is longer than
3 nm, the number of ILMs excited per unit length does not
change and the lifetime of ILMs is not affected by the length,
namely, there is no finite size effect in this study.

The Hamiltonian of the system is given by

H = �
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N
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where N is the number of carbon atoms in a calculation cell,
i, j, and k are the indices of the carbon atoms, � is the

coordinate x, y, or z, pi
� is the momentum of the ith atom in

the � direction, M is the mass of the carbon atom, �ijk is the
interatomic potential, rij is the distance between atoms i and
j, and �ijk is the angle between bonds i-j and i-k. An empiri-
cal bond order potential proposed by Brenner,17 which can
describe the mechanical properties of carbons,23 is adopted
as the functional �ijk in the simulation. Brenner proposed
two sets of parameters. One can precisely reproduce the bond
length between atoms, though it has a relatively large error in
the calculation of atomic force. The other gives reasonable
bond lengths and forces with errors of several percent. In the
present study, the latter is adopted because it is suitable for
the dynamic simulation.

We investigate the excitation of the ILM from specific
initial conditions. It is well known that the ILM is excited
from the modulational instability of the phonon mode which
has the maximum angular frequency �zone boundary
mode�.24 We apply displacement with the same amplitude

TABLE I. Simulation models of zigzag and armchair CNTs.

Chiral index
Diameter

�nm�
Length
�nm� No. of atoms

�12,0� 0.962 3.055 336

�10,0� 0.803 3.059 280

�8,0� 0.644 3.066 224

�7,7� 0.972 3.023 336

�6,6� 0.834 3.026 288

�5,5� 0.696 3.031 240

Zigzag Armchair

FIG. 2. Schematic illustration explaining initial
displacements.
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FIG. 3. �Color online� Change in the maximum energy of the
�7,7� CNT, �12,0� CNT, and graphene sheet.
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FIG. 4. Change in the distribution of total energy in the �12,0�
CNT.
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and momentum with a minute disturbance to all atoms. As
shown in Fig. 2, an initial displacement of 0.01 nm is applied
to the axial direction in the zigzag CNTs and to the circum-
ferential direction in the armchair CNTs, respectively, be-
cause the nonlinearity in the potential promotes the excita-
tion of ILM. Initial random momentum with a normal
distribution is applied to each atom. Here, the initial tem-
perature is 10 K because thermal vibrations under the higher
temperatures make it difficult to study localized vibrations.
The Verlet algorithm25 is used for the numerical integration
under the time step of 0.01 fs, the reason of which is that the
larger time steps cause non-negligible truncation error lead-
ing to the impossibility of extracting the exact trajectory of
atoms, namely, the impossibility of analyzing the exact vi-
bration of atoms. The molecular dynamics simulation is con-
ducted under the microcanonical condition.

III. RESULTS AND DISCUSSION

The Brenner potential allows us to calculate the potential
energy of an arbitrary atom i, Ei

pot;

Ei
pot =

1

2�
j�i

N

�
k�i,j

N

�ijk. �3�

Since the kinetic energy of an atom i, Ei
kin, can be calculated

by the momentum, we obtain the total energy of atom i as
Ei=Ei

pot+Ei
kin.

Figure 3 shows the largest energy of an atom, Emax
=max�Ei�, in the �7,7� armchair and �12,0� zigzag CNTs.
Emax of the graphene sheet18 is also shown for comparison.
For both armchair and zigzag CNTs, after the magnitude of
Emax increases significantly, it remains high from
0.50 to 1.20 ps, though the increase in the CNTs is smaller
than that in the graphene sheet.

Figure 4 shows the change in the distribution of energy in
the �12,0� CNT. The atoms indicated by the arrows possess
higher energy and maintain the state for more than 300 fs. In
other words, there appear to be areas of energy localization
on the atomic scale for a fairly long lifetime. The energy is
localized in the region of two atoms, which corresponds to a
characteristic feature of the ILM. None of these atoms un-
dergo migration, which suggests excitation of the stationary
ILM.

Figure 5 shows a procedure for extracting the vibration
mode of each atom. Since the velocity represents the direc-
tion of movement, the dominant moving direction of an atom

vx
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v’x

A A
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FIG. 5. Schematic illustration of the velocity space of atom i for
explaining the extraction procedure for the vibration mode of atom
i, Vi.
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FIG. 6. �Color online� Vibration mode of atoms in the �12,0�
zigzag CNT. Vi with large norms �larger than 75% of its maximum�
are indicated by arrows in the figure.
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FIG. 7. Power spectrum distribution in the �12,0�, �10,0�, and �8,0� zigzag CNTs.
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during a time interval can be extracted by averaging the ve-
locity of the atom over the time interval. Note that if we
normally do it, the average velocity of an atom vibrating
around its equilibrium point becomes almost zero, resulting
in the impossibility of extracting the dominant vibration
mode of the atom. To resolve this issue, the trajectory of the
velocity vector vi�t� of atom i from t to t+�t �Fig. 5�a�� is
folded back along a straight line A passing through the origin
�Fig. 5�b��, where the folded velocity vector is denoted by
vi��t�. Here, �t is the period of vibration. Then, a vector Vi is
defined as the time average of vi��t�,

Vi =

�
t

t+�t

vi��t�dt

�t
. �4�

The straight line A is determined so as to maximize the norm
of Vi, which represents the vibration mode of atom i during
the time interval, �t. The norm becomes large as the atom
vibrates faster in a particular direction. Figure 6 shows Vi at
every 0.10 ps, of which the norm is larger than 75% of its

maximum in the �12,0� CNT. This reveals that fairly constant
vibration modes, in which the two neighboring atoms vibrate
in the opposite direction along the axial direction, are formed
at the localized areas. These modes correspond well to the
areas of excited waves indicated in Fig. 4. A vibration with
an opposite phase �optical mode� is one of the characteristic
features of the ILM.

The phonon dispersion is obtaind by diagonalizing the
dynamical matrix D,

D�k� = �
l�

1
�MiMj

Kli�
l�j� exp�ik · �Rl�j − Rli�� , �5�

where subscripts l and l� are the numbers of unit cells, i and
j are the indices of atoms in the unit cell, � and � are the x,
y, or z coordinates, Rli represents the space coordinates of
the ith atom in the lth cell, and k is the wave number vector.

The force tensor Kli�
l�j� is defined as the second derivative of

the potential energy P, with respect to the atomic coordi-
nates,
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FIG. 8. Change in the distribution of total energy in the �7,7�
CNT.

0.40 ~ 0.50 ps 0.60 ~ 0.70 ps

0.80 ~ 0.90 ps 1.00 ~ 1.10 ps

A
xi

al
di

re
ct

io
n

ξ

FIG. 9. �Color online� Vibration mode of atoms in the �7,7�
armchair CNT. Vi with large norms �larger than 75% of its maxi-
mum� are indicated by arrows in the figure.
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FIG. 10. Power spectrum distribution in the �7,7�, �6,6�, and �5,5� armchair CNTs.
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Kli�
l�j� =

�2P

�rli��rl�j�
. �6�

Figure 7�a� shows the frequency spectrum of the atom inside
the circle � in Fig. 6 during the high-energy state, where the
dashed line in the figure denotes the upper bound of the
phonon band �max. The spectrum is calculated by the discrete
Fourier transform of the displacement-time relation of the
atom during the high-energy state, where the sampling inter-
val is 1 fs. The spectrum of the other atoms forming vibra-
tion modes �atoms inside circles in Fig. 6� is also analyzed,
and the frequencies of their main peaks are within the error
bar shown in Fig. 7�a�. The dominant frequency exceeds
�max due to excitation of the localized vibration, which cor-
responds to a characteristic feature of the ILM. Furthermore,
the vibration with a frequency above �max continues for
about 15 cycles �about 300 fs�. These results imply excita-
tion of the ILM. Figures 7�b� and 7�c� indicate that the ILM
is also excited in the other zigzag CNTs, �10,0� and �8,0�.

Figure 8 shows the change in the distribution of energy in
the �7,7� CNT. Although some atoms have high-energy mo-
mentarily, the state does not even continue for 50 fs, which is
much shorter than that in the zigzag CNTs �300 fs�. This
implies that the ILM is not excited in the �7,7� CNT. Figure
9 shows Vi in the �7,7� CNT. Here, atoms vibrate in the
circumferential direction. They do not form vibration modes
with a fairly long lifetime. Figure 10�a� shows the frequency
spectrum of the atom inside the circle 	 in Fig. 9 during the
high-energy state. The frequencies of the main peaks of the
other atoms which have momentarily-large amplitude are
within the error bar shown in Fig. 10�a�. The dominant fre-
quency is below �max, which indicates that the ILM is not
excited in the �7,7� CNT. Figures 10�b� and 10�c� indicate
that the ILM is not excited in the other armchair CNTs, �6,6�
and �5,5�, either.

In the zigzag CNTs, the optical vibration mode forms an
in-plane vibration along the axial direction of the tube �Fig.
11�a��. Since this possesses the strongest nonlinearity in the
interaction between atoms, the ILM is excited in the zigzag
CNTs. On the other hand, in the armchair CNTs, atoms vi-
brate in the circumferential direction �Fig. 11�b��. As this
out-of-plane vibration has weak nonlinearity, the ILM is not
excited. Note, however, that a CNT with a large diameter has
properties indistinguishable for a graphene sheet. Therefore,
if the diameter of armchair CNTs is larger than a critical
value, the ILM should also be able to exist in armchair
CNTs. These points indicate that the ILM is dependent on the

structure of the CNT. Further research is necessary to iden-
tify the critical bonding direction and diameter in the CNTs
for the excitation of ILM. Table II summarizes the simulation
results. In the zigzag CNTs, the number of ILMs in the sys-
tem is estimated to be around five, and the ILMs continue for
about 15 cycles, which is nearly equivalent to 300 fs. The
reason why the number and the lifetime of the ILMs are
almost the same among the zigzag CNTs is that the forma-
tion of vibration modes along the axial direction is indepen-
dent of the diameter.

IV. CONCLUSION

Molecular dynamics simulations were conducted in order
to examine the excitation of the ILM in zigzag and armchair
CNTs. Energy localization is observed in the �12,0�, �10,0�,
and �8,0� zigzag CNTs, wherein two atoms vibrate. The op-
tical modes, in which two neighboring atoms vibrate in the
opposite direction along the axial direction of tube, are
formed at the energy-localized areas. The frequency of the
localized vibration in the zigzag CNTs exceeds the upper
bound of the phonon band, which is a characteric feature of
the ILM. These indicate excitation of the ILM.

Energy localization is not observed and the vibrations do
not last a long time in the �7,7�, �6,6�, and �5,5� armchair
CNTs, wherein atoms vibrate in the circumferential direc-
tion. The frequency in the armchair CNTs is below the upper
bound of the phonon band.

Due to the in-plane vibration, the nonlinearity is the stron-
gest in the optical mode of the zigzag CNTs. On the other
hand, out-of-plane vibration of the optical mode in the arm-
chair CNTs weakens the nonlinearity. Thus, the ILM is ex-
cited in the former while it is not in the latter.

In the future, we will analyze the vibrations of chiral
CNTs in order to clarify the effect of structural differences
on the excitation of the ILM in more detail. The excitation of
the ILM in some chiral CNTs with almost the same diameter
will be examined.

ACKNOWLEDGMENTS

This study was supported in part by the Center of Excel-
lence for Research and Education on Complex Functional
Mechanical Systems �COE program of the Ministry of Edu-
cation, Culture, Sports, Science and Technology, Japan�.

TABLE II. Summary of simulation results.

Chiral
index

Vibration
direction

Excitation
of ILM

No. of
ILMs

Average number
of ILM cycles

�12,0� Axial � 5 14

�10,0� Axial � 4 15

�8,0� Axial � 4 15

�7,7� Circumferential 


�6,6� Circumferential 


�5,5� Circumferential 


�

�

� � � �

(a) Zigzag (b) Armchair

FIG. 11. Schematic illustration explaining the vibration mode in
the zigzag and armchair CNTs.
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