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The continuous progress in fabricating low-dimensional systems with large spin-orbit couplings has reached
a point in which nowadays materials may display spin-orbit splitting energies ranging from a few to hundreds
of meV. This situation calls for a better understanding of the interplay between the spin-orbit coupling and
other interactions ubiquitously present in solids, in particular when the spin-orbit splitting is comparable in
magnitude with characteristic energy scales such as the Fermi energy and the phonon frequency. In this article,
the two-dimensional Fröhlich electron-phonon problem is reformulated by introducing the coupling to a spin-
orbit Rashba potential, allowing for a description of the spin-orbit effects on the electron-phonon interaction.
The ground state of the resulting Fröhlich-Rashba polaron is studied in the weak and strong-coupling limits of
the electron-phonon interaction for arbitrary values of the spin-orbit splitting. The weak-coupling case is
studied within the Rayleigh-Schrödinger perturbation theory, while the strong-coupling electron-phonon re-
gime is investigated by means of variational polaron wave functions in the adiabatic limit. It is found that, for
both weak- and strong-coupling polarons, the ground-state energy is systematically lowered by the spin-orbit
interaction, indicating that the polaronic character is strengthened by the Rashba coupling. It is also shown that,
consistently with the lowering of the ground state, the polaron effective mass is enhanced compared to the zero
spin-orbit limit. Finally, it is argued that the crossover between weakly and strongly coupled polarons can be
shifted by the spin-orbit interaction.
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I. INTRODUCTION

The Fröhlich Hamiltonian describing a single electron
coupled to longitudinal optical phonons is a paradigmatic
model of the electron-phonon �el-ph� interaction,1 and has
represented in the past, in addition to its interest for the
solid-state physics, an ideal problem for testing many math-
ematical methods in quantum field theory.2 Because of the
coupling with the phonon field, the resulting quasiparticle,
the polaron, has an effective mass larger, and a ground-state
energy lower than the free electron. These quantities have
been investigated for the three-dimensional �3D� case by
means of perturbation theory for the weak-coupling limit,3

and of variational treatments for the intermediate-4 and
strong-coupling cases.5,6 The path-integral variational calcu-
lations of Feynman,7 and subsequent refinements of this
method,8 have provided a solid description for all values of
the coupling, verified also by improved variational methods,9

and by quantum Monte Carlo studies.10,11

The interest aroused some time ago on semiconductor het-
erojunctions, or other low-dimensional systems, prompted to
modify the Fröhlich model to accounting for two-
dimensional �2D� and quasi-2D systems.12 By applying the
same methods derived for the 3D case, the ground-state
properties for the strictly 2D case were evaluated for weak,
strong, and intermediate couplings,13–16 and the obtained sys-
tematic lowering of the ground-state energy and the enhanc-
ing of the effective mass compared to the 3D case has
pointed out the role of dimensionality in enhancing the po-
laronic character.12,17

Concerning the el-ph problem in low dimensions, recent
progresses in developing high-quality low-dimensional sys-

tems and in material engineering provide hints that, for a vast
class of low-dimensional materials, the usual 2D Fröhlich
model, as considered in literature, may be incomplete. This
concern comes about by considering 2D systems exhibiting
strong spin-orbit �SO� splitting of the electronic states due to
the inversion asymmetry in the direction orthogonal to the
conducting plane �Rashba SO mechanism�. This situation is
encountered in semiconductor quantum wells with asymmet-
ric confining potentials,18 in the surface states of metals and
semimetals,19–21 and in surface alloys such as Li /W�110�,22

Pb /Ag�111�,23,24 and Bi /Ag�111�,25 with SO splitting ener-
gies ranging from a few meV in GaAs quantum wells to
about 0.2 eV in Bi /Ag�111�.25 In these systems, therefore,
the SO energy may be of the same order or even much larger
than the typical phonon frequency, rising the question of how
such state of affair affects the el-ph interaction, in general,
and the Fröhlich coupling, in particular.

As pointed out in several works,26–31 the Rashba interac-
tion describing the SO coupling can have profound effects on
the low-energy properties of the itinerant electrons. Namely,
in the low-density regime, the Rashba SO coupling induces a
topological change of the Fermi surface of the free electrons,
leading to an effective reduction of the dimensionality in the
electronic density of states �DOS�. In this situation, a 2D low
density electron gas would develop, in the presence of SO
Rashba coupling, a phenomenology similar to one-
dimensional �1D� systems, triggered by the square-root di-
vergence of the �effectively 1D� DOS at low energies.

Some interesting consequences of this scenario on the
el-ph problem have already been discussed in Ref. 30, con-
cerning the superconducting transition, and in Ref. 31 for the
effective mass and the spectral properties. The picture arising
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from these works, although being limited to the momentum-
independent Holstein el-ph interaction and to weak-to-
moderate couplings, confirms that, for sufficiently low elec-
tron densities, the coupling to the phonons is amplified by
the SO interaction through the 1D-like divergence of the
DOS.

Notwithstanding the relevance of these results for the
Holstein model, the use of a local el-ph interaction may,
however, result inadequate in the extremely low electron
density regime, where the SO effects are more evident.30,31

Indeed, the lack of effective screening in this case would
rather suggest a long-range interaction as being a more ap-
propriate description of the el-ph coupling. It is therefore
natural to consider the 2D Fröhlich polaron, and its coupling
to the SO interaction, as a model better describing the un-
screened el-ph interaction in 2D Rashba systems in the low
density limit.

In this article, a single electron moving with a parabolic
dispersion in the two-dimensional x-y plane is coupled si-
multaneously to the Rashba SO potential and to the phonon
degrees of freedom through a Fröhlich interaction term. The
total system is then described by the 2D Fröhlich-Rashba
Hamiltonian H=Hel+Hph+Hel-ph, where ��=1�

Hel =
p2

2m
+ ��p� · � �1�

is the Hamiltonian for an electron with mass m and momen-
tum operator p=−i� with components �px , py ,0�, � is the
spin-vector operator with components given by the Pauli ma-
trices, and ��p� is the SO vector field which in the case of
Rashba coupling reduces to

��p� = ��− py

px

0
� , �2�

where � is the SO coupling parameter. The phonon part of
the Hamiltonian is given by

Hph = �0�
q

aq
†aq, �3�

where aq
† �aq� is the creation �annihilation� operator for a

phonon with momentum q= �qx ,qy� and optical frequency
�0. The el-ph interaction Hamiltonian for the 2D electron
coupled to longitudinal optical �LO� phonons is12,14

Hel-ph =
1

�A
�
q

1
�q

�M0eiq·raq + M0
*e−iq·raq

†� �4�

with

M0 = i�0�2�2�2

m�0
�1/4

, �5�

where �=e2���
−1−�0

−1��m /2�0 is the dimensionless el-ph
coupling constant, with e being the electron charge, and ��

and �0 the high frequency and static dielectric constants, re-
spectively.

It is worth clarifying here the significance of the 2D
Fröhlich interaction of Eq. �4� with respect to the character-

istics of specific materials. For quantum wells and 2D het-
erostructures, where the electron wave function is assumed
here to be confined in a sheet of zero thickness, Eq. �4�
describes the coupling of the electron to bulk LO phonons,
while the coupling to interface phonon modes is neglected.
The inclusion of such interface phonon contributions may be
important in describing specific materials, but it is unneces-
sary for the present study, where the focus is on the SO
effects on the unscreened �long-range� el-ph interaction, for
which Eq. �4� is a paradigm for the 2D case. Concerning the
el-ph coupling of electronic surface states, Eq. �4� coincides
�apart from a redefinition of M0� with the coupling to 2D
surface phonons when the coupling to bulk phonons extend-
ing below the surface is negligible.32 Such approximation is
coherent with the ideal 2D assumption for the electron wave
function, which is physically realized when the electronic
surface states have negligible coupling to the bulk. A further
motivation of using the 2D Fröhlich model �4� is that, in the
absence of SO interaction, the ground-state polaron energy
EP and effective mass m* have already been studied by sev-
eral authors,12–16 and the exact results obtained for the weak-
���1� and strong- ���1� coupling limits provide a useful
reference for the effect of nonzero SO coupling.

In the present work, the 2D Fröhlich-Rashba Hamiltonian
is studied by considering the weak- and strong-coupling lim-
its of the el-ph interaction, with arbitrary strength of the SO
coupling �. For ��1 the polaron energy EP and the effec-
tive mass m* are obtained from second order perturbation
theory in Sec. II, where numerical and exact analytical re-
sults are presented. It is shown that the effect of ��0 is
qualitatively similar to that observed in the Holstein
model,30,31 namely, the SO coupling enhances the effective
coupling to the phonons. In particular, EP is lowered by �
and, simultaneously, the effective mass m* is enhanced. In
Sec. III the strong-coupling limit ��1 is treated by the
variational method, providing a rigorous upper bound of the
ground state energy for arbitrary values of the SO interac-
tion. As for the weak el-ph coupling case, it is found that EP
�m*� is lowered �enhanced� by the SO interaction, implying
that the Rashba coupling always amplifies the polaronic
character, regardless of whether the el-ph interaction is weak
or strong.

II. WEAK COUPLING

In the presence of SO interaction, the electron wave func-
tion is a spinor and its Green’s function is conveniently rep-
resented by a 2	2 matrix in the spin subspace. For �=0 the
free electron Green’s function G0 is readily obtained from
Hel:

G0�k,�� = �� −
k2

2m
− ��k� · ��−1

=
1

2�
s=±

	1 + s�̂�k� · �
G0
s�k,�� , �6�

where k is a 2D electron wave number �̂�k�
=��k� / ���k�� and
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G0
s�k,�� =

1

� − k2/2m − s�k
�7�

is the free electron propagator for the two �s= ±1� chiral
states characterized by two distinct bands with shifted para-
bolic dispersions k2 /2m±�k. The lowest band has its mini-
mum value −E0 at k=k0, where k0 and E0 are the Rashba
momentum and energy defined, respectively, by

k0 = m�, E0 =
m

2
�2. �8�

For later convenience, it is useful to express the electron
energy relative to E0, so that the poles of Eq. �7� appear at
energies

E±�k� =
1

2m
�k ± k0�2. �9�

The free electron ground state is then given by the electron
occupying the lower band at wave number k=k0 with energy
�=0.

In the weak el-ph coupling limit ���1� the ground-state
properties are obtained by the electron self-energy evaluated
in the second order perturbation theory. At zero temperature,
the resulting single electron self-energy is therefore

��k,�� = �M0�2� dk�

�2��2

1

�k − k��
G0�k�,� − �0� . �10�

Because of the momentum dependence of the Fröhlich inter-
action, and contrary to the Holstein el-ph case considered in
Ref. 31, the self-energy is not diagonal in the spin subspace.
However, since the momentum dependence enter only
through the modulus of the momentum transfer, Eq. �10� can

be rewritten in a quite simple form. By using 	�̂�k� ·�
2

=1 and

	�̂�k� · �
	�̂�k�� · �
 = k̂ · k̂� + �k̂ 	 k̂��
x
y , �11�

then the quantity �̂�k�� ·� appearing in Eq. �10� through

G0�k� ,�−�0� can be replaced simply by 	�̂�k� ·�
k̂ · k̂� be-
cause the second term of Eq. �11� vanishes after the integra-
tion over k�. In this way, the resulting self-energy reduces to

��k,�� = �d�k,��1 + �o�k,���̂�k� · � , �12�

where 1 is the unit matrix and �d and �o are, respectively,
the diagonal and off-diagonal contributions to the self-
energy, both depending solely on the modulus of k.33 Their
explicit expressions are

�d�k,�� =
�M0�2

2
� dk�

�2��2�
s

1

�k − k��
1

� − �0 − Es�k��
,

�13�

�o�k,�� =
�M0�2

2
� dk�

�2��2�
s

1

�k − k��
sk · k�

� − �0 − Es�k��
.

�14�

In the limit of zero SO coupling, since Es�k�→k2 /2m,
�o�k ,�� vanishes because of the summation over s= ±1 in
Eq. �14�. Notice also that, independently of �, �o�k ,��=0
when the factor 1 / �k−k�� in Eq. �14� is replaced by a con-
stant, as in the momentum-independent Holstein el-ph cou-
pling model.

By using Eq. �12� the Dyson equation for the interacting
propagator G reduces to

G−1�k,�� = G0
−1�k,�� − ��k,��

= � −
k2

2m
− �d�k,�� − E0

− 	�k + �o�k,��
�̂�k� · � , �15�

and the poles �± of G are then given by

�± = E±�k� + �d�k,�±� ± �o�k,�±� . �16�

Now, the Rayleigh-Schrödinger perturbation theory permits
us to evaluate the lower-energy pole �− at the lowest order in
the el-ph coupling �. This is accomplished by replacing �−
by the unperturbed energy E−�k� in the energy variables of
�d and �o. In this way, the lower pole reduces to �−
=E−�k�+�−�k�+O��2�, where

�−�k� = �d	k,E−�k�
 − �o	k,E−�k�
 . �17�

Finally, by expanding �−�k� up to the second order in k−k0,
the polaron dispersion in the vicinity of k0 can be written as

�− = EP +
1

2m* �k − k0
*�2, �18�

where the polaron ground-state energy EP, the effective mass
m*, and the effective Rashba momentum k0

* are given, re-
spectively, by

EP = �−�k0� −
m*

2
�−��k0�2 = �−�k0� + O��2� , �19�

m*

m
= 	1 + m�−��k0�
−1 = 1 − m�−��k0� + O��2� , �20�

k0
*

k0
= 1 −

m*

k0
�−��k0� = 1 −

m

k0
�−��k0� + O��2� . �21�

Let us first consider EP and m*. In the zero SO limit, Eqs.
�19� and �20� at k0=0 lead, respectively, to EP=���0 /2 and
m* /m=1+�� /8, which correspond to the results already re-
ported in Refs. 13–15. For finite values of the SO coupling
the ground-state energy and the effective mass can be ex-
pressed as

EP = −
�

2
��0fEP

��0� , �22�
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m*

m
= 1 +

�

8
�fm*��0� , �23�

where the factors fEP
��0� and fm*��0� contain all the effects

of the SO interaction and depend solely on the dimensionless
SO parameter

�0 

E0

�0
=

m�2

2�0
. �24�

In the weak SO limit, the self-energy terms �13� and �14� can
be expanded in powers of the SO interaction, allowing for an
analytical evaluation of the integrals. In this way, up to the
linear order in �0, fEP

��0�, and fm*��0� are found to be

fEP
��0� = 1 +

�0

4
+ O��0

2� , �25�

fm*��0� = 1 +
9

8
�0 + O��0

2� , �26�

indicating that the polaronic character is strengthened by the
SO interaction since, through Eqs. �22� and �23�, the polaron
energy EP is lowered and, simultaneously, the effective mass
m* is enhanced when �0
0. This feature is not limited to the
small �0 limit, but holds true for arbitrary strengths of the SO
coupling. This is shown in Fig. 1, where fEP

��0� and fm*��0�,
obtained from a numerical integration of Eqs. �13� and �14�,
are plotted as a function of �0 by solid lines and compared
with Eqs. �25� and �26� �dashed lines�. The same quantities
calculated for a wider range of �0 are plotted in the insets of
Fig. 1 and confirm that the ground-state energy EP and the
effective mass m* are continuous functions of �0 and are,
respectively, further lowered and enhanced by the SO cou-
pling. In the strong SO limit �0�1, it is found that
fEP

��0�grows as ln��0� while fm*��0� grows linearly. It is in-
teresting to note that the Holstein-Rashba model studied in
Ref. 31 predicts results qualitatively similar to the Fröhlich
model, indicating that the SO interaction strengthen the po-
laronic character independently of the specific form of the
el-ph interaction.34

In addition to EP and m*, the interplay between the el-ph
coupling and the SO interaction modifies also the Rashba
momentum k0 through Eq. �21�. In the weak SO limit, the
effective quantity k0

* is found to be

k0
*

k0
� 1 −

�

32
��0, �27�

indicating a reduction of the bare Rashba momentum k0, con-
firmed also by the numerical calculation of Eq. �21� reported
in Fig. 2 by the solid line. As shown in the inset, for fixed
el-ph coupling �, k0

*, however, does not deviate much from
its bare limit k0, even for large values of the SO parameter
�0.

Let us compare now the present results with those ap-
peared recently in literature. In Ref. 35 the ground-state en-
ergy of a polaron near a polar-polar semiconductor interface
with Rashba SO coupling has been evaluated with the Lee-
Low-Pines method.4 As a function of the SO splitting, the

polaron ground state is found to be lowered, in qualitative
agreement therefore with the present results. A more quanti-
tative comparison is however precluded by the different
model of Ref. 35, where contributions from interface phonon
modes and confining potentials are considered as well. In
another work,36 the Rayleigh-Schrödinger perturbation

FIG. 1. �a� Ground-state energy factor fEP
��� as a function of the

SO parameter �0=E0 /�0. The solid line is the numerical calcula-
tion, while the dashed line is the weak SO limit Eq. �25�. Inset:
fEP

��� plotted for a wider range of �0. �b� The effective mass factor
fm*��0� from numerical integration �solid line� and from Eq. �26�
�dashed line�. Inset: fm*��0� plotted for a wider range of �0.

FIG. 2. Effective Rashba momentum k0
* as a function of the SO

parameter �0=E0 /�0. The numerical integration of Eq. �21� �solid
line� is compared with the weak SO result �27� �dashed line�. Inset:
the same quantity plotted for a wider range of �0.
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theory has been applied to the polaron ground state of the 2D
Fröhlich-Rashba model, permitting therefore a direct com-
parison with the analysis presented here. Despite that the
authors of Ref. 36 find that the polaron ground state is low-
ered by �0, their values of EP differ from those plotted in Fig.
1�a�. In Ref. 36, in fact, the ground-state energy factor fEP

is
found to be fEP

��0�=1 /�1−�0, which implies a small �0 ex-
pansion different from Eq. �25� and, more importantly, a di-
vergence of EP at �0=1. In Fig. 1�a�, instead, nothing of
special happens at �0=1. This discrepancy is easily traced
back in the fact that in Ref.36 the expansion of �−�k�, Eq.
�17�, is made around k=0, instead of k=k0 as done here,
which does not correspond to a perturbative calculation of
the ground-state energy.

The results presented in this section have been derived by
assuming a weak coupling to the phonons. However, as it is
clear from the plots in Fig. 1, the enhancement of the po-
laronic character driven by �0 for fixed � unavoidably ren-
ders the perturbative approach invalid for sufficiently large
�0 values. For example, from Eq. �23�, the validity of the
weak-coupling results for m* /m are subjected to the condi-
tion �fm*��0��1, otherwise higher order el-ph contributions
should be considered for a consistent description of the SO
effects. The question remains therefore whether the SO en-
hancement of the polaronic character survives also for large
� values, or it is instead limited to the weak-coupling limit.
In the next section, this problem is studied for the limiting
case of strong el-ph interaction ��1, providing therefore,
together with the weak-coupling results, a global understand-
ing of the SO effects on the Fröhlich polaron.

III. STRONG COUPLING

It is well known that a perturbative scheme such that em-
ployed in the previous section fails to describe the Fröhlich
polaron ground state when the el-ph coupling is very large.
This is due to the fact that for ��1 the lattice polarization,
and resulting “self-trapping” effect experienced by the
electron,37 renders the plane wave representation of the un-
perturbed electron inappropriate for obtaining the polaron
ground state. Instead, as originally proposed in Ref. 5 and
rigorously proved in Refs. 38 and 39, the asymptotic descrip-
tion of the polaron wave function in the strong-coupling limit
��1 is that of a product between purely electronic ��r� and
purely phononic ��� wave functions. Within such an adiabatic
limit, the ground-state energy and the effective mass of a 2D
Fröhlich polaron have been calculated in Refs. 14 and 15 by
using the variational method with different Ansatz wave
functions. From Ref. 14, one realizes that exponential,
Gaussian, and Pekar-type wave functions provide increas-
ingly better estimates of EP with accuracies, respectively, of
14, 0.3, and 0.03 % with respect to the exact ground-state
energy EP /�0=−0.40474�2, obtained by a numerical solu-
tion of the integrodifferential equation for the electron wave
function.16 In the following, the variational method is used to
evaluate the SO effects on the polaron ground state.

A. Trial wave functions

For the nonzero SO case, due to the presence of the Pauli
matrices in Eq. �1�, suitable Ansatz wave functions must take

into account the electron spin degrees of freedom. Hence, in
full generality, the strong-coupling polaron wave function
may be represented as �� ,��=��r� ���, where ��r� is a
two-component spinor for the electron. The corresponding
expectation value of the total Hamiltonian H is

��,��H�,� = ���Hel��� + ���Hph���

+
1

�A
�
q

1
�q

	M0��q����aq��� + H.c.
 ,

�28�

where

��q� = ���eiq·r��� =� dreiq·r���r��2. �29�

The form of Eq. �28� permits to integrate out the phonon
wave function in the usual way. Hence, by introducing the

phonon coherent state ���=Ne�q�qaq
†
�0�, where N is a nor-

malization factor and �q a variational parameter, minimiza-
tion of Eq. �28� with respect to �q leads to the functional

E	�
 = ���Hel��� −
�M0�2

�0
� dq

�2��2

1

q
���q��2, �30�

where the continuum limit A−1�q→�dq / �2��2 has been per-
formed. By choosing an appropriate functional form for
��r�, and by minimizing E	�
 with respect to the varia-
tional parameters defining ��r�, an upper bound for the
ground-state energy is then E	�0
, where �0�r� is such that
E	�0
=min�E	�
�. As done in the previous section, the po-
laron energy is then obtained from

EP = E	�0
 + E0, �31�

where E0 is the free-electron SO energy defined in Eq. �8�.
Of course, the functional form of ��r� is decisive for

obtaining accurate estimates of the ground-state energy, and
a suitable choice must be guided by looking at the properties
of the true ground-state spinor �G�r�. These can be deduced
by a formal minimization of the functional E	�
 with re-
spect to �. By introducing the Lagrange multiplier � to en-
sure that the wave function is normalized to unity, minimi-
zation of Eq. �30� leads to

Hel��r� + V�r���r� = ���r� , �32�

where, by using the definition of ��q� given in Eq. �29�:

V�r� = −
2�M0�2

�0
� dq

�2��2

��q�*

q
eiq·r

= −
�M0�2

��0
� dr�

���r���2

�r − r��
. �33�

From the above expression of V�r�, the functional �30� can

be rewritten as E	�
= �� �Hel ���+ V̄ /2, where V̄
= �� �V�r� ���. Now, if �G is the exact ground-state wave
function, with ground-state energy EG=E	�G
, then, from

Eq. �32� and EG= �� �Hel ���+ V̄ /2, it is found that �=EG

+ V̄ /2, so that Eq. �32� reduces to
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Hel�G�r� + 	V�r� − V̄/2
�G�r� = EG�G�r� . �34�

As noted in Ref. 29 �see also Refs. 40 and 41�, the ground-
state wave function of a 2D electron subjected to a SO
Rashba interaction and to a 2D central potential �i.e., a po-
tential depending only upon r= �r�� is of the form

�G�r� = � �1�r�
�2�r�ei� � , �35�

where � is the azimuthal angle of r. Now, if Eq. �35� is used
in Eq. �33�, the resulting self-consistent potential depends
only upon r, V�r�→V�r�, so that Eq. �35� is consistently also
the correct form for the polaron ground-state wave function.
Hence, passing to polar coordinates, Eq. �34� can be rewrit-
ten as a system of integrodifferential equations for the spinor
components �1 and �2:

�−
1

2m
� d2

dr2 +
1

r

d

dr
� + U�r���1�r� − �� d

dr
+

1

r
��2�r�

= EG�1�r� , �36�

�−
1

2m
� d2

dr2 +
1

r

d

dr
−

1

r2� + U�r���2�r� + �
d

dr
�1�r�

= EG�2�r� , �37�

where U�r�=V�r�− V̄ /2 and the polaron energy is obtained
from EP=EG+E0. By introducing the dimensionless variable
�=r / lP, where lP=1 /��m�0�1/2 is a measure of the polaron
spatial extension in the zero SO limit, and by noticing that
EG does not depend on the sign of �, it is straightforward to
realize from Eqs. �36� and �37� that the polaron ground-state
energy scales as

EP = F� �0

�2��2�0, �38�

where �0=E0 /�0 is the dimensionless SO energy introduced
in Eq. �24� and F is a generic function. It is found therefore
from Eq. �38� that the dependence of EP on the SO interac-
tion is through the effective parameter �0 /�2, which is
treated in the following as an independent variable. Although
�0 /�2 is then formally allowed to vary from 0 to �, it is
nevertheless important to estimate the range over which
�0 /�2 is expected to vary for reasonable values of the micro-
scopic parameters E0, �0, and �. To this end, it must be
reminded that the strong-coupling limit of a 2D Fröhlich
polaron �in the absence of SO interaction� is appropriate only
for ��5,12 and that the typical phonon energy scale is of the
order of few to tens meV, say �0�5–10 meV. The largest
value of the Rashba energy E0 reported so far is of about
0.2 eV,25 so that �0 /�2�1−2 is a rather conservative esti-
mate compatible with material parameters and with the
strong-coupling polaron hypothesis.

Let us now evaluate the behavior of �1�r� and �2�r� for
r� lP and r� lP. By requiring a regular solution at the ori-
gin, it turns out by inspection of Eqs. �36� and �37� that the

spinor components of Eq. �35� behave as �1�r�=const and
�1�r��r as r→0, while the behavior for r� lP is obtained
from the large r limit of Eqs. �36� and �37�:

−
1

2m

d2�1�r�
dr2 − �

d�2�r�
dr

= W�1�r� , �39�

−
1

2m

d2�2�r�
dr2 + �

d�1�r�
dr

= W�2�r� , �40�

where the quantity W=EG+ V̄ /2 is negative for bound states.
Solutions of Eqs. �39� and �40� which are finite for r→� are
linear combination of exp�−�+r� and exp�−�−r� with

�± = �− 2m�EP + V̄/2� ± ik0, �41�

implying an exponential decay of the polaron wave function,
accompanied by periodic oscillations of wavelength 2� /k0.

The informations gathered on the limiting behaviors of
the ground state wave function are sufficient for guessing
some appropriate trial wave functions to be used in Eq. �30�.
By assuming that for zero SO coupling the electron is in a
spin-up state, then a simple Ansatz compatible with the limits
discussed above is

��r� = f�r�� cos�br�
sin�br�ei� � , �42�

where b is a variational SO parameter vanishing for �=0 and
f�r� is an exponentially decaying function for r→� and such
that f�0��0. The advantage of Eq. �42� is that one can use
exponential or Pekar-type functions for f�r�, automatically
recovering therefore the known results for the zero SO
case.14 It should be noted, however, that in the U�r�→0 limit
Eq. �42� does not reproduce correctly the behavior of the
exact ground-state wave function, which is instead given by
Eq. �35� with �1�r� and �2�r� proportional to the Bessel
functions J0�k0r� and J1�k0r�, respectively.40,41 Hence, Eq.
�42� is not expected to provide a reliable ground-state energy
in the strong SO regime, for which U�r� can be treated as a
perturbation. To remedy to this deficiency, the following al-
ternative form of the polaron Ansatz is proposed:

��r� = f�r�� J0�br�
J1�br�ei� � , �43�

where, as before, b is a variational SO parameter. As it will
be shown below, the lowest value of EP is given either by
Eq. �42� or by Eq. �43�, depending on the specific form con-
sidered for f�r� and on the value of the SO coupling.

B. Ground-state energy

To evaluate the polaron ground-state energy, three differ-
ent trial wave functions for f�r� are considered: exponential,
Gaussian, and Pekar type. As shown below, the Gaussian
Ansatz will provide results comparable to those coming from
the exponential and Pekar functions, despite its faster decay
for r→� compared to Eq. �41�. These three trial wave func-
tions will be used in combination with the sinuisodal and the
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Bessel-type spinors of Eqs. �42� and �43�, respectively, giv-
ing a total of six different Ansätze for the Fröhlich-Rashba
polaron wave function.

Exponential Ansatz. Let us start by evaluating the func-
tional E	�
, Eq. �30�, by using the exponential Ansatz f�r�
=A exp�−ar�, where a is a variational parameter and A is a
normalization factor, in combination with the sinuisodal trial
wave function �42�. By introducing the dimensionless quan-

tities ã=alP, b̃=blP, and �̃=k0lP, for nonzero SO interaction
the functional �30� evaluated with the exponential-sinuisodal
Ansatz reduces to

E	�

�2�0

=
1

2
�ã2 + b̃2 + ã2 ln�1 +

b̃2

ã2��
− �̃b̃�1 +

ã2

ã2 + b̃2� −
3�ã

8�2
. �44�

For weak SO couplings, Eq. �44� has its minimum at b̃= �̃
=�2�0 /� and ã=3�2� /16, so that the resulting polaron en-
ergy EP=E	�0
+E0 becomes

EP

�2�0
= − �3�

16
�2

−
�0

�2 + O� �0
2

�4� . �45�

In the �0=0 limit, Eq. �45� reduces to EP /�2�0=
−�3� /16�2�−0.3469, recovering therefore the result of Ref.
14, while for �0
0 the polaron energy is lowered by the SO
interaction, in qualitative analogy with the weak electron-
phonon behavior discussed in Sec. II. The lowering of EP is
confirmed by a numerical minimization of Eq. �44� whose
results are plotted in Fig. 3�a� �open circles�. For �0 /�2=1,
the polaron energy has dropped to EP /�2�0�−0.65, which
is about two times lower than the zero SO case. However,

upon increasing �0 /�2, EP displays a minimum at �0 /�2

�3.98 	inset of Fig. 3�a�
 and for larger values of the SO
interaction the polaron energy increases. Eventually, for
�0 /�2�14 the calculated ground-state energy becomes
larger than the zero SO value EP /�2�0=−�3� /16�2. Such
upturn of EP for large �0 stems from the inadequacy of the
sinuisodal components of Eq. �42� in treating the oscillatory
behavior in the strong SO regime which, as pointed out
above, should instead be given by Bessel-type functions. In-
deed when the exponential Ansatz for f�r� is used in Eq.
�43�, rather than in Eq. �42�, not only is the resulting EP
lower than the previous case, but also the upturn of EP dis-
appears, leading to a monotonous lowering of the polaron
energy as �0 /�2 increases 	filled circles in Fig. 3�a�
. As
�0 /�2→�, however, the polaron energy does not decrease
indefinitely but rather approaches a limiting value. Although
an accurate numerical evaluation of EP for �0 /�2
100 has
turned out to be difficult, the asymptotic value of EP can
nevertheless be obtained analytically from the strong SO
limit of the exponential-Bessel expression for E	�
:

E	�

�2�0

=
ã2 + b̃2

2
− b̃�̃ −

�

�2
ã , �46�

whose minimum is at b̃= �̃ and ã=� /�2, leading to

lim
�0/�2→�

EP

�2�0
= −

�2

4
� − 2.467. �47�

Gaussian Ansatz. The results obtained by using a Gauss-
ian wave function of the form f�r�=A exp�−a2r2� are plotted
in Fig. 3�b�. Compared to the exponential wave function, the
Gaussian Ansatz gives an overall lowering of the polaron
energy for both sinuisodal and Bessel forms of the spinors.

FIG. 3. Polaron ground-state energy as a function of �0 /�2 for different trial wave functions for f�r�. �a� Exponential, �b� Gaussian, �c�
Pekar. The sinuisodal and the Bessel type of Ansätze are given, respectively, by Eq. �42� and Eq. �43�. Inset: the polaron energy for a wider
range of �0 /�2 values.
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In the �0 /�2�1 limit, and independently of which particular
spinor is used, the ground-state polaron energy is found to be

EP

�2�0
= −

�

8
−

�0

�2 + O� �0
2

�4� , �48�

confirming in this regime the linear dependence on the SO
coupling of Eq. �45�. For larger values of the SO coupling,
and contrary to the case shown in Fig. 3�a�, the sinuisodal
and Bessel-type spinors give basically the same values of EP
for all SO couplings up to �0 /�2�1. Beyond this value, as
for the case with the exponential wave function, the polaron
energy obtained from the sinuisodal Ansatz becomes larger
than that obtained from the Bessel spinor and, as shown in
the inset of Fig. 3�b�, rapidly increases while the Gaussian-
Bessel ansatz gives a monotonous lowering of EP. For
�0 /�2�1, the Gaussian-Bessel energy functional has the
same form of Eq. �46� with the latter term substituted by
−2.279ã, which implies

lim
�0/�2→�

EP

�2�0
� − 2.579. �49�

Pekar-type Ansatz. Let us now evaluate EP by using in
Eqs. �42� and �43� the Pekar-type Ansatz f�r�=A�1+a1r
+a2r2�exp�−ar�. For zero SO coupling, this Ansatz gives
EP /�2�0�−0.4046,14 which is a lower energy than those
obtained from the exponential and Gaussian trial wave func-
tions and only 0.03% higher than the exact result −0.40474
of Ref. 16. As shown in Fig. 3�c�, the Pekar-type Ansatz
gives slightly better estimates of EP also for nonzero SO
couplings, with an overall behavior similar to the previous
cases. Namely, in the weak SO regime one finds

EP

�2�0
= − 0.4046 −

�0

�2 + O� �0
2

�4� �50�

and, as before, for stronger SO couplings the energy obtained
from the sinuisodal spinor increases indefinitely with �0 /�2.
However, contrary to the exponential and Gaussian Ansätze,
the Pekar-type wave function may give a lower polaron en-
ergy when used in combination with the sinuisodal spinor.
This holds true as long as �0 /�2�2.72, while for stronger
SO couplings it is the Bessel-type spinor which gives the
lower EP 	inset of Fig. 3�c�
. A numerical minimization of
the asymptotic limit of the Pekar-Bessel functional for
�0 /�2�1 gives

lim
�0/�2→�

EP

�2�0
� − 2.91, �51�

which is lower than the asymptotic values of Eqs. �47� and
�49�.

The results plotted in Fig. 3 clearly demonstrate that,
since the variational method provides an upper bound for
true ground-state polaron energy, the lowering of EP induced
by the SO coupling is a robust feature of the strong-coupling
Fröhlich-Rashba polaron. Among the different Ansätze stud-
ied, the lower polaron energy is obtained by using a Pekar-
type wave function for f�r� in combination with the sinui-
sodal spinor for weak to moderate values of �0 /�2 or with

the Bessel-type spinor for stronger SO couplings. Given that,
as discussed above, reasonable values of �0 /�2 for strongly
coupled polarons fall in the range 0��0 /�2�1−2, the
Pekar-sinuisodal wave function provides therefore the best
description of the Fröhlich-Rashba polaron in this regime.

C. Effective mass

As demonstrated in Sec. II, the effective mass m* of a
weakly coupled polaron is enhanced by the SO interaction
and, given the results above, the same phenomenon is rea-
sonably expected to occur also for the strong-coupling case.
To quantify the polaron mass enhancement within the local-
ized wave function formalism, it is useful to follow the ap-
proach of Refs. 42–44, briefly described below, where a
moving wave packet is constructed from the localized wave
function. The quantity to minimize is

J�	��,��
 = ���,���H − � · P���,��� , �52�

where � is a Lagrange multiplier, which will turn out to be
the mean polaron velocity, and p=p+�qqaq

†aq is the total
momentum operator. The wave function ��� ,��� is given by
the product ���r� ����, where

���r� = eip0·r��r� �53�

is the electron wave packet with p0 being a variational mo-
mentum, ��r� is the Ansatz localized wave function, and

����=Ne�q�q�aq
†
�0�. Minimization of Eq. �52� with respect to

�q� gives now the functional

J�	��
 = ����Hel − � · p����

− �M0�2� dq

�2��2

���q���2

q

1

�0 − q · ���������
,

�54�

where p is the electron momentum operator and ��q��
= ��� �eiq·r ����. By using Eq. �53�, it is easily shown that
J�	��
 reduces to

J�	��
 = ���Hel��� +
p0

2

2m
− p0 · �

− �M0�2� dq

�2��2

���q��2

q

1

�0 − q · �
, �55�

where ��q�= �� �eiq·r ���. Equation �55� is minimized with
respect to p0 by setting p0=m� and, by expanding the last
term of Eq. �55� up to the second order in �, the correspond-
ing minimum J�	�
 becomes42

J�	�
 = E	�
 −
m

2
�2�1 +

2�M0�2

m�0
3 � dq

�2��2

�q · û�2

q
���q��2� ,

�56�

where E	�
 is given in Eq. �30�. From the above expression,
it is clear that J�	�
 differs from J0	�
 at least to order �2.
Hence, if �� and �0 are the wave functions which minimize
J�	�
 and J0	�
, respectively, then the difference ��−�0

is also of order �2. As a consequence, the minimum of Eq.

C. GRIMALDI PHYSICAL REVIEW B 77, 024306 �2008�

024306-8



�56�, J�	��
, differs from J�	�0
 only to order ���−�0�2

=O��4� so that, by neglecting terms of higher order than �2,
minimization of Eq. �56� is achieved by the best wave func-
tion which minimizes E	�
. Therefore, by using E	�0

=EP−E0 and evaluating ��0 �P ��0�, from Eqs. �52� and
�56� it turns out that

EP��� = EP +
m

2
�2�1 +

2�M0�2

m�0
3 � dq

�2��2

�q · û�2

q
��0�q��2� ,

�57�

permitting us to identify the quantity within square brackets
as the mass enhancement factor m* /m. By integrating over
the direction of q and by using Eq. �5�, m* /m becomes in the
strong-coupling limit

m*

m
=

�2��

�m�0�3/2�
0

� dq

2�
q2���0�eiq·r��0��2, �58�

which, by replacing the momentum variable by the dimen-
sionless quantity q̃=qlP, gives a mass enhancement propor-
tional to �4 in the zero SO case. By using the exponential,
Gaussian, and Pekar-type Ansätze in Eq. �58�, the resulting
mass enhancement factor becomes m* /m= �3 /16�3�4�4

�0.6421�4, m* /m= �� /4�2�4�0.617�4, and m* /m
�0.73�4, respectively.45

The results for nonzero SO coupling are plotted in Fig. 4
for the sinuisodal �open circles� and Bessel �filled circles�
spinors evaluated with exponential �a�, Gaussian �b�, and
Pekar-type �c� wave functions. For all cases, m* /m increases
with �0 /�2 without much quantitative differences between
the various Ansätze as long as �0 /�2�2. As shown in the
insets of Fig. 4, for larger values of the SO coupling the use
of the sinuisodal spinor largely overestimates the increase of
the effective mass compared to the Bessel-type spinor re-

sults. However, despite of the weaker enhancement of
m* /m, the Bessel-type spinors give nevertheless an infinite
effective mass at �0 /�2=�. Indeed, independently of the par-
ticular form of f�r�, for �0 /�2→� the expectation value
��0 �eiq·r ��0� appearing in Eq. �58� goes like a /q for q
→�, rendering the integral over qof Eq. �58� divergent.

IV. DISCUSSION AND CONCLUSIONS

The results presented in the previous sections consistently
show that, for both the weak and strong-coupling limits of
the el-ph interaction, the ground-state energy EP of the
Fröhlich-Rashba polaron is lowered by the SO interaction
and the mass is enhanced, leading to the conclusion that the
Rashba coupling amplifies the polaronic character. This sce-
nario suggests also that a weak-coupling polaron at �0=0
may be turned into a strong-coupling one for �0
0 or, more
generally, that the crossover between weakly and strongly
coupled polarons may be shifted by the SO interaction. This
possibility can be tested by looking at the curves plotted in
the main panel of Fig. 5, where the weak- and strong-
coupling results for EP /�0 are reported as a function of the
el-ph coupling � for different �0 values. For �0=0, the po-
laron energy follows EP /�0�−�� /2 for small � and
EP /�0�−0.4046�2 for large �. These two limiting behav-
iors are plotted in Fig. 5 by the uppermost curves and com-
pared with a numerical solutions of the Feynman variational
path integral for the 2D polaron �filled circles�. The largest
deviation of the path integral solutions from the weak and
strong-coupling approximations falls in the range of interme-
diate values of � and signals a region of crossover between
the weakly and strongly coupled polaron. A rough estimate
of the crossover position is given by a “critical” coupling,
say �*, obtained by equating the weak- and strong-coupling

FIG. 4. Polaron mass enhancement m* /m in units of �4 as a function of �0 /�2 for different Ansatz wave functions. �a� Exponential, �b�
Gaussian, �c� Pekar. Inset: m* /m�4 is plotted for a wider range of SO values.
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results. For �0=0 therefore one has �� /2=0.4046�2, which
gives �*�3.9. Now, as shown in Fig. 5 for �0=5 and �0
=20, the increase of the SO interaction systematically re-
duces, for fixed �, the polaron ground-state energy and, at
the same time, shifts the intersection point between the
weak- and strong-coupling curves towards smaller values of
the el-ph interaction. The “critical” value �* of the crossover
is therefore reduced by the SO interaction. For �0=5 and
�0=20 it is found that �*�3.6 and �*�2.7, respectively.
The systematic reduction of the crossover coupling by the
SO interaction is made evident in the inset of Fig. 5, where
�* is plotted as a function of �0. From Fig. 5 it is also
expected that, beside the reduction of �*, the crossover re-
gion is likely to be narrowed by �0. Indeed, the intersection
between the weak and strong coupling solutions for �0=20 is
apparently smoother than the case for �0=0, suggesting that

the true ground-state energy would deviate less, and in a
narrower region around �*, from the weak and strong-
coupling solutions.

The scenario illustrated above, and in particular the SO
effect on the crossover coupling, may be verified by quantum
Monte-Carlo calculations of the Fröhlich-Rashba action or,
more simply, by generalizing the Feynman Ansatz for the
retarded interaction to �0
0.7 The results presented here on
the limiting cases ��1 and ��1 may then serve as a ref-
erence for such more general calculations schemes for arbi-
trary values of the el-ph coupling and of the SO interaction.

Let us discuss, before concluding, possible generaliza-
tions of the Fröhlich-Rashba model employed here and the
consequences on the polaronic character. Let us remind the
reader that in Ref. 31 it has been demonstrated that also for a
momentum independent el-ph interaction model, the Rashba
SO term leads to an effective enhancement of the el-ph cou-
pling. The SO induced lowering of the polaron ground state
is therefore robust against the specific form of the el-ph in-
teraction, so that a similar behavior is expected to occur also
when considering the contributions from interface or surface
phonon modes. However, a different form of the SO interac-
tion term may lead to a much weaker effect. Consider for
example the situation in which, in addition to the Rashba SO
coupling, the system lacks also of bulk inversion symmetry,
as in III-V semiconductor heterostructures, leading to an ex-
tra SO term of the Dresselhaus type.18,46 When both SO con-
tributions are present, the square root divergence of the DOS
at the bottom of the band of the free electron disappears, and
it is replaced by a weaker logarithmic divergence at higher
energies. In this situation therefore, at least for weak el-ph
couplings, the SO interaction is expected to have a weaker
effect on the polaron ground state, which tends to vanish as
the Dresselhaus term becomes comparable to the Rashba
one.

Let us conclude by noticing that, recently, the possibility
of varying the coupling of 2D Fröhlich polarons in a con-
trolled way has been experimentally demonstrated by acting
on the dielectric polarizability of organic field-effect
transistors.47 The results presented here suggest that tunable
2D Fröhlich polarons may be achieved also by acting on the
SO coupling, which can be tuned by applied gate voltages in
quasi-2D structured materials.
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