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Cluster evolution in a cold Ising ferromagnet: Disappearance of magic numbers
with temperature rise
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Decay and growth of clusters at low and intermediate temperatures based on the two-dimensional square-
lattice Ising model has been studied with Monte Carlo simulations employing Glauber (or Metropolis) dynam-
ics, exploiting a procedure where the starting configuration is a cluster (that tend to grow in the applied
magnetic field) on a relatively small lattice. The behavior of such a cluster is stochastic and only when typical
several thousands of identical clusters are analyzed will the underlying deterministic behavior become appar-
ent. At 0.47,, the time-dependent cluster size distribution is relatively broad, but smooth, i.e., Gaussian, and the
decay and growth behaviors of various relative compact clusters are compared. At lower temperatures, modu-
lations in the size distribution occur with minima at magic sizes corresponding to n=mXm+1 and n=m
X (m+1)+1 with m integer values. A quantitative analysis of the amplitude of the modulations as a function of
temperature is performed. Also the relation between the distributions of size and of the number of internal

cluster bonds (or cluster perimeter) is scrutinized.
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I. INTRODUCTION

Most phase transitions proceed via nucleation and growth,
and such transitions occur in a wide variety of systems (from
atomic to astronomic length scales) in nature and technology.
For instance, nucleation plays a key role in most materials
production, having an important influence on the final prod-
uct performance. Understanding nucleation processes is,
therefore, of great importance. Complex behavior emerging
from systems based on relatively simple but (physically) in-
teresting (first principles) rules may help in understanding
nucleation.'~” In this light, the popularity of research on dy-
namic Ising models can be understood. Also, the present
work is dedicated to this field of research by focusing on
cluster evolution at relatively low temperatures within the
two-dimensional (2D) square-lattice Ising model studied us-
ing Monte Carlo (MC) simulations.

MC simulations of low-temperature processes are gen-
erally inefficient, because the transition probabilities de-
crease exponentially with temperature when the common dy-
namics, e.g., of Glauber (or Metropolis) type, are used.®1
Excessive large number of MC steps and, for certain pro-
cesses, large systems (e.g., spatial scales) have to be used
for obtaining adequate results, or the dynamics has to be
implemented in a more intelligent manner.'"'?> To avoid such
problems, many kinetic studies involving MC simulations of
the 2D square-lattice Ising model were performed at rela-
tively high temperatures."%!3-17 However, also MC simula-
tions have in recent years been performed explicitly at low
temperatures,'>!%19 albeit for strong fields such that the criti-
cal cluster size remained extremely small. Still, for 7—0,
analytical (in conjunction with numerical) work on the 2D
square-lattice Ising model dominates.®”?°2> In deriving
nucleation properties from MC simulations, particularly at
low temperatures, it has been popular to determine meta-
stable lifetimes.®1214-18:19 However, then the information on
the time-dependent distribution of cluster sizes and shapes
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intimately linked to nucleation remains generally unknown.

A major complexity of low temperatures and weak fields
(small driving forces) is that the number of different cluster
configurations involved in nucleation is huge.'”?*>* In the
isotropic case (holding, in general, at high temperatures),
cluster properties are only a function of the number of mono-
mers (spins, atoms, etc.) n they contain. Clusters decay or
grow by stepwise release or attachment of a monomer (n
—1 and n+1). Although a complete picture of (both steady
state and transient) nucleation is far from trivial in this one-
dimensional case,? the complexity strongly increases when
clusters with the same n can have a large variety in shapes
and energies, as is already the case within the relatively
simple 2D square-lattice Ising model for n=6.17-?223 For ex-
ample, for n=19, 20, and 21, the total number of distinct
cluster configurations on the 2D square lattice is over 5.9
X 10%, 22X 10%, and 88 X 10, respectively.'” In principle, all
possible transitions with their energies and probabilities be-
tween all configurations for such n—1+«<n+«n+1 have to be
considered from n=0 to n clearly larger than the critical
nucleus size n* in order to arrive at a complete picture of
nucleation. Fortunately, the situation improves at low tem-
peratures, since cluster energy will prevail over entropy and,
thus, for each n, only clusters with the lowest possible ener-
gies have to be considered. Then, most configurations can be
discarded and the one-dimensional case is again approached.
For instance, for n=19, 20, and 21, the number of clusters
with the lowest energy (two lowest energies) is 8 (922), 2
(428), and 187 (7835), respectively.!”

At such low temperatures, a cluster grows by keeping its
shape most compact, i.e., with minimal perimeter. This im-
plies square m X m and rectangular m X (m+1) shapes, i.e.,
with {10} facets. The critical nucleus, as derived by Neves
and Schonmann for T=0, is then the n*=m" X (m*+ 1) rect-
angle with an extra spin on the longer side, where m” is
defined by m" =floor(2J/H) with J(>0) the ferromagnetic
coupling constant and H the external magnetic field used in
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the standard Ising Hamiltonian [cf. Eq. (1) below].> The op-
eration “floor” means rounding to the lower nearest integer
number. Directly above 7=0, also the intermediate n=m?
+1 clusters can become critical nuclei.>? The higher the tem-
perature (below T,), the more these discrete values of n due
to the specific low energy configurations become replaced by
the continuous spectrum of all integer n values due to con-
figurational entropy. In fact, at low temperatures, not only the
critical nuclei have discrete “magic” sizes, but the whole
semiequilibrium distribution (number densities) of noninter-
acting clusters will show strong modulation as a function of
cluster size.

Recently, an impressive development has been presented
(based on considerable cumulative work), providing analyti-
cal expressions for calculating the transient nucleation
fluxes, taking into account thousands of different low energy
cluster configurations.” Although still Metropolis dynamics
was involved, the calculations did not rely on the traditional
numerical Monte Carlo simulations, and thus could be ap-
plied well to low temperatures, as should be since only low
energy configurations were considered. The most interesting
result of applying the expressions to the 2D square-lattice
Ising model at low temperatures was the observed collapse
of fluxes around selected magic cluster sizes. In the light of
the discussion given above, the occurrence of magic sizes is
not so surprising, as can be expected for a system having a
strong modulation in energy of clusters as a function of their
size and, thus, in their semiequilibrium distribution. Never-
theless, the actual observation of simplifying patterns in the
complexity of multidimensional nucleation paths is of great
importance.

Although the present work is of simpler scope, it is also
devoted to the occurrence of magic sizes during growth and
decay of clusters in the 2D square-lattice dynamic Ising
model. A comparison with analogous results for the 2D hex-
agonal dynamic Ising model will be presented in another
paper. The main aim here is to quantitatively explain the
disappearance of magic cluster sizes with increasing tem-
perature. To this purpose, MC simulations have been per-
formed at low and intermediate temperatures, i.e., for 7./ T in
between 2.5 and 6 (and relatively weak fields H<0.8, typi-
cally around 0.4), using a procedure with artificial injection
of clusters on relatively small lattices that has not been ap-
plied before to the 2D square-lattice Ising model.>> This spe-
cific approach was chosen in order to still observe significant
dynamic behavior with sufficient statistics when using MC
simulations (with Metropolis or Glauber dynamics) at low
temperatures within tractable temporal and spatial scales.

II. MODEL AND NUMERICAL METHODS

The model used is the standard 2D square-lattice Ising
model defined by the Hamiltonian:

H=-J2 s,-sj—HE Sis (1)
(i.j) i

with a ferromagnetic coupling constant J>0 between the

spins s having =1 value and with an external magnetic field

H, (i,j) indicates summation over all nearest neighbor pairs.
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Of course, an equivalent lattice gas model could have been
adopted as well. In order to study dynamic processes within
the model, stochastic Glauber dynamics was considered,
where the spin-flip probabilities are defined by®

exp(= BAE)

Pls;— —s;]= m,

(2)

with AE the energy change due to the spin flip and B
=1/kgT, with kp the Boltzmann constant and 7 the tempera-
ture. The energy change is defined by

AE:Zs,-(JE sj+H), (3)

nn

with nn meaning the nearest neighbor sites of site i. In some
explicit cases, also Metropolis dynamics was used, where the
spin-flip probability is defined by’

Pls; — —s;]=min[1,exp(— BAE)], (4)

where, of course, for T approaching zero, Glauber and Me-
tropolis dynamics become equivalent. A convenient scheme
is to scale J and kg to unity, defining the temperature with
respect to the critical temperature 7, given according to On-
sager’s exact solution:%6

T.=2/In(\2 +1).

A standard algorithm is used, in which sites on a defined
lattice (having appropriate boundary conditions) are chosen
at random and flipped according to the probabilities given by
Eq. (2) or (4). The evolution of the spin configurations on the
lattice is followed as a function of the number of Monte
Carlo steps performed. Time is given in units of Monte Carlo
steps per site (MCSS), i.e., in one unit, the number of MC
steps performed is equal to the number of lattice sites.

A standard procedure would start with a lattice where
all spins are metastably aligned in one direction, and then
studying the development and evolution of clusters with
spins aligned in the opposite stable direction for certain ap-
plied fields H and certain temperatures 7. Similarly, a system
can first be equilibrated in a certain field, after which the
direction of the field is reversed and the evolution of spins
and/or clusters can be followed. A different approach is
adopted in the present work due to the specific low-
temperature problems of MC simulations mentioned in the
Introduction. This approach is partly based on a procedure
mentioned and applied by Shneidman et al?® There, the
starting configuration was a relatively small hexagonal (tri-
angular) lattice with an artificially injected nucleus. The
decay and/or growth of such nuclei with different initial radii
R were studied in order to derive kinetic parameters. The
spin-flip probabilities were defined by the so-called Jackson-
Kilmer-Temkin model and were not small, i.e., not compa-
rable with the Metropolis or Glauber dynamics at low tem-
peratures. The work presented there gives the impression
that individual nuclei, although showing some stochastic
behavior, overall behave deterministically, satisfying decay
and growth rates that are explicit functions of R. For the
2D square-lattice Ising model with Metropolis or Glauber
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dynamics, individual nuclei behave completely stochasti-
cally. In order to obtain the underlying deterministic behav-
ior, sufficient statistics is required, i.e., meaning, for the
present work, that the evolution of typically several thousand
initially identical nuclei has to be followed. In this sense, the
present work clearly deviates from the approach in Ref. 25,
but the procedure of nuclei artificially injected in relatively
small lattices is reproduced here. Emphasis is on injection of
clusters with compact shape, since these are the clusters
naturally occurring at low temperatures.

An important question is if it is justified to study the evo-
lution of individual isolated clusters and neglect potential
coalescence with neighboring clusters. The answer to this
question for the present work is yes, since the sizes of the
clusters currently considered are, in all cases, sufficiently
smaller than the ones holding when coalescence (fusion) of
the clusters would occur. Clusters are still within the nucle-
ation regime, where they can grow but also can decay, and
are definitely not in a supercritical regime governed by
cluster-cluster interactions. Proof for this is provided in the
Appendix. The standard lattice contained 32X 32 sites, but
the results presented here, as tested, remained identical for
increased lattice sizes of 64X 64 and 128 X 128 sites, and
probably larger lattices. Only when the time scales used in
the MC simulations are much longer than considered in the
present work and when the lattice sizes are larger (than
128 X 128) does the single-droplet regime go over in the
multiple-droplet regime.

An important aspect of the simulations is the evolution of
cluster size and cluster perimeter (or number of internal
bonds in a cluster) as a function of time. These were evalu-
ated using the efficient Hoshen-Kopelman (HK) algorithm,?’
which was originally developed for percolation studies. For
the present study where on a (small) lattice a single cluster
was artificially injected, only the evolution of this single
cluster was of interest. This could be conveniently followed,
at the low temperatures considered, by always taking the size
of the largest cluster (with its perimeter and number of inter-
nal bonds) found on the lattice by the HK algorithm. The
cluster size n is defined as the total number of connected
spins with one orientation (i.e., which have at least one
neighbor with the same orientation), where a cluster is sur-
rounded by spins of opposite orientation.

Energies EZ of clusters on the 2D square lattice are de-
fined by their size n and their perimeter length LZ or the
number of internal (nearest neighbor) bonds b present within
the cluster, because Lﬁ:4n—2b (Refs. 22 and 23):

Eb=2(JLY - nH), (5a)

Eﬁ:4l‘.2n<l —5) —b‘. (5b)
4J

Based on these energies, the semiequilibrium distribution
(number density) DZ of noninteracting clusters can be
derived:??

D} =w) exp(- BE)), (6)
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FIG. 1. (Color online) Results of Monte Carlo simulations (solid
lines) showing the cluster-size distributions after various times (in
MCSS ranging from 10 to 50 in steps of 10) based on the evolution
of 20 000 clusters, all initially square 5X 5, at a temperature of T’
=0.4T, in a magnetic field H=0.36. Fits to the solid lines based on
symmetric Gaussian distributions are given by dashed lines. The
inset shows the cluster-size distribution after 20 MCSS based on the
MC simulations as a solid line and a fit based on an asymmetric
Gaussian distribution as a dashed line.

where WZ is the total number of configurations possible for
given n and b. For the 2D square lattice, the wz values were
obtained recently up to n=17 (Refs. 23 and 24) and up to
n=21."7 Due to the relatively low temperatures and fields H
used in the present work, also larger clusters will be studied
for which the w” values are still unknown.

III. RESULTS AND DISCUSSION
A. T=04T,

The evolution of cluster size as a function of time (in
MCSS) is shown in Fig. 1 for T=0.4T,, H=0.36, and 20 000
clusters having an initial shape and size of square 5 X5 (i.e.,
with {10} facets). The cluster sizes during the evolution at
each time can be described well on the basis of a Gaussian
distribution, when excluding the clusters with n<<3. Sym-
metric Gaussian distributions are represented by dashed
curves in Fig. 1 and can reproduce adequately the solid
curves based on MC simulations. The inset in Fig. 1 shows,
instead of the cumulative distribution, the usual size distri-
bution, i.e., cluster fraction versus cluster size after 20 MCSS
including an asymmetric Gaussian fit. Of course, allowing
some asymmetry in the width of the Gaussian distribution
improves the fitting, which now is nearly perfect.

All curves tend to pivot around a central point from which
the final fraction of clusters that will decay and vanish (and
the complementary fraction of clusters that are able to grow)
can be extrapolated. After S0 MCSS, nearly 25% of the clus-
ters decayed to a size zero, but the pivot point indicates that
the final fraction will be about 49%-50%. A kinetic defini-
tion of the critical nucleus would imply one having an equal

024303-3



B. J. KOOI
160 T ! 160 ’
T=04TC T=0.4Tc
X6 cluster 140
140 H fi After 50 MCSS
/ 100
S ]
120 - 50 MCSS 0
50 ?7::
100 - o O
10 MCSS
9 20
R7) 80 [0 000 2000 3000 4000 5000
5 Cluster number
g 60 -
Q
40
20+
0 .
0 1000 2000 3000 4000 5000
(@) Cluster Number
140 i
T=04Tc
120t After 50 MCSS
100 -
X80
wn
5
E 60
0 |
40
20
0 1 L
0 1000 2000 3000 4000 5000

Cluster Number

(b)

FIG. 2. (Color online) Cluster-size distributions obtained by MC
simulations after a time of 50 MCSS at 7=0.4T,. and H=0.36 for
various initial cluster sizes and shapes. (a) 5000 initially identical
clusters with the following size and shapes were used for the simu-
lations: square clusters with 16, 25, and 36 spins; rectangular 5
X 6 clusters; and square 5 X5 clusters having one spin added to the
middle of a side. Also, the O distribution is shown, meaning that
initial clusters were not present in this case. The inset shows the
size distribution for the square 6 X 6 cluster after various times (in
MCSS ranging from 10 to 50 in steps of 10). (b) 5000 initially
identical clusters, with the various sizes and shapes as explicitly
indicated, were used for the simulations.

chance to grow or decay after long times.!®?3 In this sense,
the 5 X 5 square cluster can be called critical, since adding or
removing one pixel from the 25 moves the decay and growth
fractions away from 50%. For instance, compare in Fig. 2(a)
the curves denoted s(quare)5 and s5+1, where one spin is
added to the (noncorner) side of the s5 cluster. The tempera-
ture T=0.4T, is clearly too high for having critical clusters
defined by the Neves-Schonmann criterion or the intermedi-
ate m>+1 clusters. Possibly n=25 fits within the phase dia-
grams of Figs. 2 and 3 shown in Ref. 23. However, these
diagrams go up to a maximum value n=17 and, instead of a
kinetic definition, are based on thermodynamic criteria. A
unique definition of a critical cluster size does not exist. As is
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FIG. 3. (Color online) Results of MC simulations showing for
various initial cluster sizes and shapes the cluster-size distributions
after a time of 200 MCSS at 7=0.27,. and H=0.36. 5000 initially
identical clusters with the following size and shapes were used for
the simulations: square clusters with 25 and 36 spins, rectangular
5 X6 clusters, 5X 6 clusters with a spin added to (a noncorner site
on) the short side, and 5X 6 clusters with a spin added to (a non-
corner site on) the long side. Instead of the smooth distributions
occurring at 0.47, (cf. Figs. 1 and 2), now clear variations in step
lengths can be observed.

shown in Fig. 2(b) per type of shape, a critical cluster size
can be defined, but different types can have different critical
cluster sizes. In particular, for nucleation rates, the probabil-
ity (number density) that certain shapes develop is important.
In this sense, exotic shapes may have a small critical size
based on a kinetic definition, but if the probability that they
develop is minimal, their influence on the overall nucleation
rate will also be little.

The pivot point present in Fig. 1 is universally observed.
All curves rotate best around the pivot if the initial cluster is
close to the critical size, showing 50% decay and growth as
in Fig. 1. However, also when the initial cluster clearly de-
viates from the critical one, a pivot can be clearly recognized
on the scale shown in Fig. 1 and is then useful to estimate the
critical size and the final fraction growth (or decay) after
long times [see inset in Fig. 2(a)]. Apparently, already early
during the dynamic process, the fractions that decay and
grow become fixed, giving rise to the pivot point.

The distribution of cluster sizes after 50 MCSS at 0.4T.. is
shown in Fig. 2 for different initial cluster shapes and sizes.
Figure 2(a) shows that the square 6 X 6 and 4 X 4 clusters (s6
and s4, respectively) are clearly beyond and below the criti-
cal size, with extrapolated decay fractions of 11% and 89%,
respectively. The curve indicated as O shows that with 5000
“empty” initial areas (32X 32 spins) only in one did a cluster
grow beyond the critical size, and more than 99% of the
areas contained a largest cluster with n<<3. This explains
why the Gaussian distributions in Fig. 1 did not apply to
clusters with n<<3; these clusters lost correlation with the
initially injected clusters and showed correlation with the
empty (initial) area. The O curve demonstrates that already at
T=0.4T, useful MC simulations of nucleation and growth
without the use of injected clusters would require large spa-
tial and temporal scales.
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Excluding the d6t curve, the other three curves in Fig.
2(b) hold for n=25 clusters. The diamond shaped d7 cluster
having {11} facets [see inset in Fig. 2(b) for its detailed
shape] shows significantly less decay than the s5 cluster. This
can be readily understood since growth of the d7 (n=25) to
the s7 (n=49) is possible by addition of spins that have two
nearest neighbors aligned parallel (“double-bonded” spins),
whereas growth of the s5 cluster to s7 requires two additions
of a “single-bonded” spin (adatom on a smooth facet), cor-
responding to a strongly activated step having a low prob-
ability. One could now tend to conclude that clusters with
{11} facets have the highest growth probability. This conclu-
sion is not justified as is demonstrated in Fig. 2(b) by the
curve of the d6t cluster with n=24 (see inset for its shape)
showing a larger growth fraction than the d7 one with n
=25. Also here a posteriori reasoning is possible. The d7
cluster contains four single-bonded spins that have large
probability to disappear first. Therefore, direct growth with
only double-bonded spins of the d7 to the s7 cluster as men-
tioned above is unlikely; it may as well transform into the s5
state. On the other hand, such single-bonded spins are absent
in the d6t cluster. This cluster is, thus, less vulnerable to
decay and is likely to grow with only double-bonded spins to
the s6 cluster.

Up to now, all curves for a certain time did not show any
crossings. However, this is possible as demonstrated in Fig.
2(b) by the curves pertaining to s5 and the 12+ 13 clusters.
This last elongated cluster type (only two units thick) is more
vulnerable to decay than the s5 cluster (i.e., exhibits larger
decay fraction), but, nevertheless, shows after 50 MCSS a
larger fraction of large clusters with n>52. Compared to s5,
the width of the Gaussian distribution for the 12+ 13 cluster
increases faster in time, indicating both faster growth and
decay kinetics.

B. T=0.2T,

When reducing the temperature from 0.47. to 0.27,
(keeping H=0.36), interesting changes are invoked. The
critical nucleus increases from, say, the 5X5 to the 5X6
cluster with one spin added. The distribution of cluster sizes
after 200 MCSS at 0.27, is shown in Fig. 3 for different
initial cluster sizes. The 5X 6, the 5X6+1s, i.e., one spin
added to a noncorner site on the short side, and the 5X6
+11, i.e., one spin added to a noncorner site on the long side,
exhibit an extrapolated growth fraction of 40%, 55%, and
63%, respectively. So, the addition of one spin on the side of
a rectangular cluster causes a large increase in growth prob-
ability at this low temperature, whereas the effect is limited
to only a few percent at 0.47 .. From these three cluster types,
the one with one spin added to the short side is closest to the
kinetic definition of a critical nucleus. Increasing H to 0.37
gives the 5X 6 cluster nearly exact 50% growth and 50%
decay probabilities. These results show that, according to the
kinetic definition, already at low temperatures the critical
cluster size exhibits a continuous spectrum of all integer
numbers and not only magic numbers like m?>+m+1 or m?
+1 as found according to the thermodynamic definition(s) of
Ref. 23. Changing from Glauber to Metropolis dynamics
does not result in important differences.
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FIG. 4. (Color online) MC simulation results holding for T
=0.2T, and H=0.36 for 10 000 initially injected 5 X 6 clusters with
a spin added to (a noncorner site on) the long side. (a) Cluster-size
distribution after 100 and 200 MCSS. Strong modulation in the
cluster-size distributions are present with minima at n=m Xm+1
and n=m X (m+1)+1. (b) Distribution of the number of internal
cluster bonds after 100 MCSS showing that on top of the modula-
tions that can be attributed to the size effect, a higher frequency
modulation (with generally a period of 2) is present, showing that
for each size the lowest-energy configuration strongly dominates.

At 0.2T,, now 80% of the 5X5 clusters decay, whereas
this fraction was 50% at 0.4T,. For the 6 X 6 cluster, also a
clear difference exists: 24% decay at 0.2T,. versus 11% decay
at 0.47,. With increasing temperature (and relatively weak
field H<1), the activated step needed for growth (addition
of a single-bonded spin) has a probability that increases more
strongly than the probability of erosion of corner sites.
Therefore, growth becomes more dominant at higher tem-
peratures and the critical cluster size decreases.

Instead of smooth curves as for 0.47,, now curves with
large nonuniformity in step length occur. Instead of the cu-
mulative distribution as presented in Fig. 3, the standard size
distribution for the 5X 6+11 clusters is shown in Fig. 4(a)
for 100 and 200 MCSS. The smooth Gaussian distributions
at 0.47, have now obtained at 0.27.. a strong modulation on
top. Analysis of the modulation shows that minima always
occur for n=mXm+1 and n=m X (m+1)+1. The values of
these minima can be readily understood, since compact m
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FIG. 5. (Color online) Cluster-size distribution for 10 000 initial
5X 6 clusters with a spin added to (a noncorner site on) the long
side holding for a magnetic field H=0.36 and after times that have
been scaled (see text for details) to allow a direct comparison of the
two temperatures 0.187,. and 0.257,. The modulations in the size
distribution become weaker, and the peak shape changes from saw-
tooth to more symmetric when the temperature is increased. Al-
though the decay and growth processes are strongly activated by
temperature, the scaling indicates that the processes occur less effi-
ciently at higher temperatures, because also higher energy paths are
followed.

Xm and m X (m+ 1) shapes with one spin added to a side are
very unstable (high energy, short living) configurations
which easily decay to mXm and m X (m+1), but also can
grow quickly to m X (m+1) and (m+1) X (m+1) or m X (m
+2). This also directly relates to the observed collapse of
fluxes around the ones pertaining to the magic cluster sizes.”

The maxima show more intriguing behavior. For instance,
after 200 MCSS, maxima at n=m X m are absent, but occur
at mX (m+1) and m X (m+2) [and m X (m+3)]. When ex-
plicitly considering the fractions for n=35 and n=36, one
can see that the initial higher fraction for 36 is taken over by
35. The equilibrium number densities of the 6 X6 and 5
X7 clusters [based on Egs. (5) and (6)] would give a ratio
exp(—=22.08/T)/2 exp(—22.8/T)=2.44. However, removing
one of the four corners of the 6 X6 cluster gives identical
cluster size and energy as the 5X7 cluster and, hence, a
more correct ratio is exp(—=22.08/T)/6 exp(-22.8/T)=0.81.
So, there is a configurational (entropic) reason that the frac-
tion of m?—1 increases, in general, with respect to the one
for m?. This becomes more apparent in Fig. 5. However, the
above calculation is simplified; for instance, the large num-
ber of next lowest-energy configurations for n=36 are also
relevant. Taking them into account, the 36 peak should re-
main larger than the 35 peak. So, another reason should exist
that makes the occurrence of m>—1 clusters more likely than
m? ones. The reason has interesting kinetic origin, because
the (m—1) X (m+1) clusters have difficulty to grow, i.e., they
have only one-sided connection with the lowest-energy path
and are, thus, in a “metastable trap,”7 and will thus be longer
living “droplets” than the m X m or m X (m+1) clusters. This
is also exactly the reason why the 5 X 6 cluster with one spin
added to the short side shows more decay and less growth in
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Fig. 3 than when the extra spin is added to the long side.

Instead of the distribution of the cluster sizes n, also that
of the number of internal cluster bonds b can be shown; this
is done in Fig. 4(b) for the 100 MCSS curve presented in
Fig. 4(a). The sawtooth modulation observed in Fig. 4(a) can
be traced back in Fig. 4(b), but on top, an even stronger
modulation with a shorter period of generally 2 can be
found; i.e., a strong variation in the fractions (number densi-
ties) for b and b+ 1. From this variation, it can be concluded
that for each n, the cluster-size distribution at 0.27. is (al-
ready) strongly dominated by the lowest-energy configura-
tion.

C. Magic sizes versus temperature

An intriguing issue is how, as a function of temperature,
the size distribution evolves from smooth at relatively higher
temperature (0.47,) to strongly peaked at lower temperature
(0.2T.). Size distributions for 0.187,. and 0.257T,. are pre-
sented in Fig. 5 based on injected 5 X 6+ 11 clusters. As will
be explained in the next paragraph, the times were scaled in
order to obtain comparable results for different temperatures.
Compared to 0.27,, the distribution at 0.187,. shows even
more pronounced sawtooth behavior that can be related di-
rectly to the lowest possible energies of clusters “having an
overall classical (Gibbs) outlook plus sharp sawtooth
modulation.””??> At 0.257,, the minima remain at identical
position (m?+1 and m?>+m+1), but the maxima shift such
that the sawtooth is replaced by more symmetric peaks. Most
importantly, the contrast between minima and maxima de-
creases for increasing temperature and, thus, vanishes ap-
proximately at T7=0.4T, (see the inset in Fig. 1).

At low temperatures, growth occurs via compact shapes.
The rate-determining step for growth is the addition of the
first extra spin (adatom) to the side of a square or rectangular
cluster. The probability p_, of this activated step is directly
obtainable from Eq. (2) or (4), giving approximately the
same result for lower temperatures (for relatively weak fields
H):

p-r=exp(- B[4J - 2H]) (7a)

and time can be scaled according to 7=1/p_,. This scaling
was also applied in Ref. 7. Note that H is taken positive and
that clusters are composed of positive spins in a surrounding
of negative spins. However, when this first spin is added, it
has a large probability to be removed in the next (MCSS)
time periods. Only when it is stabilized by a second neigh-
boring positive spin, transition from one compact shape to
the next is likely. Therefore, for a compact cluster having a
perimeter length L, a better approximation of the time scale
for its transition to the next compact shape is

r={{®)5+ -85} @=8), ()
where p, is given by
po=exp(2BH)/[1 +exp(2BH)]. (7c)

In Fig. 5, time scaling (with p_, as dominant term) was
applied to make the comparison between the results of
0.187, and 0.25T.. It is interesting that after scaling, growth
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at lower temperatures proceeds relatively faster. This can be
deduced from Fig. 5, but is a general feature observed for
many more temperatures and initial clusters. Apparently, the
scaling factor causes an overestimation that was already
slightly reduced by the introduction of the p, factor. The
reason for this overestimation is that at lower temperatures,
growth proceeds via lower energy paths than at higher tem-
peratures, i.e., occurs clearly more selective and efficient. At
higher temperatures, growth also occurs via less favorable
cluster configuration for further growth (e.g., metastable
traps). This is not accounted for in the scaling factor since it
assumes that growth proceeds via the same path(s) with the
same rate-limiting step(s).

Quantification of the evolution of the contrast C between
the maxima and minima as a function of temperature was
done as follows. 5 X6 or 5 X 6+11 clusters were injected and
followed during their dynamic evolution. Based on these re-
sults, the ratio of the peak fraction for n=30, F3), and the
cusp fraction for n=31, F5, is obtained as a function of time,
i.e., C=F5y/F3;. Injection of 5X6+11 clusters quickly re-
sults in a stable value for this ratio (the contrast C). The 5
X 6 clusters are used to see if they converge to the same
contrast value, but this occurs much slower. For instance, at
0.2T,, the 5X6+11 clusters converge to a stable contrast
value within 20 MCSS, whereas for the 5X 6 clusters, a
similar value is approached after 200 MCSS. In this way,
reliable converged values for the contrast C were obtained
for various temperatures. Apart from Glauber dynamics, also
for various temperatures, Metropolis dynamics was used to
obtain C. No significant differences were found, although
decay and growth dynamics itself occurs generally faster
when using Metropolis (where the difference vanishes when
approaching zero temperature). In Fig. 6, In(C) is plotted
versus 7,/ T using data points. One can see that below 0.47.,
the contrast slowly increases, but below 0.227., In(C) is
nearly a linear function of 7,/T.

It would be interesting to model and understand the re-
sults in Fig. 6. The ratio of the 30 peak with respect to the 31
cusp was chosen because it has minimum kinetic influence.
The 30 peak has no problems with a (nearby) metastable trap
like that present for the 35-36 region. Moreover, the Gauss-
ian distribution on top of which the strong contrast modula-
tion occurs is for the magnetic field used, generally peaked
near n=31. The contrast C would be kinetically affected if
the peak and cusp would be positioned on the flank of the
Gaussian distribution. Now the C values in Fig. 6 should
have dominant thermodynamic origin, i.e., based on the
semiequilibrium distribution [Eq. (6)]:

F30 b max , b max , b max ,
C=F_22D30 2D31=2W30
31 b min b min b min
b max
Xexp(— BEgo) 2 Wl3)1 exp(- 3E21)~ (8)

b min

However, it is currently not possible to obtain the W1370 and
w5, values from literature.'”?32* Instead, a first naive picture
for C is that it is based on one 5 X 6 cluster versus 22 pos-
sibilities (perimeter length of the 5X6 cluster) to add a
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In(C)

TJ/T
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FIG. 6. (Color online) Ratio of the number density of clusters
with a size n=30 and n=31, called contrast C, as a function of the
reciprocal temperature 7,./7. The data points are results of MC
simulations and the lines are based on theory, where the number
density can be described by Dﬁ:wﬁ exp(—Es/kBT), with Eﬁ the en-
ergy of a cluster with size n and number of internal bonds b, kg the
Boltzmann constant, and wﬁ the number of distinct configurations
for given n and b. The inset shows the ratio of 49 and 48 internal
cluster bonds in the cluster with a size n=30 as obtained with the
MC simulations and based on the same theoretical result from
which the solid curve in the main graph was obtained. The excellent
agreement between theory and MC simulations shows that, under
kinetic conditions, local equilibrium conditions hold to a great
extent.

single spin to the sides of the 5X 6 cluster. The result is
given by the dashed straight (red) line in Fig. 6, and obvi-
ously does not match the “experimental” data. Nevertheless,
it explains the observed slope of the experimental data at low
temperatures. This leads to the conclusion that below 0.227,
only the lowest-energy configurations for n=30 and n=31
dominate; the occurrence of other higher energy configura-
tions is negligible. This is in agreement with the results pre-
sented in Fig. 4(b).

In order to shift the theoretical prediction on the data,
other configurations for the same cluster energy has to be
introduced. The n=31 clusters are not only 5X 6 clusters
with one spin added to their sides, but identical energy holds
if one of the corner spins of the cluster is removed and (in-
stead of the single spin) one spin pair is added to the sides
(4 X 16 possibilities). Similarly, two spins can be removed
from the corners (either a pair from one corner or two singles
from two corners) and one row of three spins (triplet) is
added to the sides (8 X 11+6 X 10 possibilities—nine con-
figurations that are now produced for the second time). Simi-
larly, the second lowest-energy configuration of n=30 clus-
ters can be introduced by removing one, two, or three spins
from the corners and adding a single spin, a spin pair, or a
spin triplet to the sides [4X20, (8 X 15+6X14), (12X 10
+24X9+4 X 8-60) possibilities, respectively]. The result
obtained in this way is the dashed (green) curve in Fig. 6. It
is already close to the experimental data and shows reason-
able curvature. If the next configurations with rows of four or
five spins are added to the sides with additional removal of
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the correct number of spins from the corners to obtain n
=30 or n=31, the dashed curve first moves to the right away
from the data. Only after finally obtaining the compact 6
X 5 cluster out of the initial 5 X 6 cluster does the prediction
jump back to the left and the solid (blue) curve is obtained.
This curve explains the observations very well.

A check of internal consistency can be performed based
on the predictions for the probabilities that each of the two
lowest-energy configurations occur for n=30. The most com-
pact shape for n=30, i.e., the 5 X 6 and 6 X 5 clusters contain
49 internal bonds. Removing 1-5 spins from the corners and
adding the same number in a single row to the side of these
compact clusters yield the second most compact cluster with
48 internal bonds. The ratio of the number of clusters with 49
and 48 bonds versus the reciprocal temperature is shown in
the inset of Fig. 6 both based on the MC simulations (data
points) and theoretically based on Eq. (6) (straight line). The
agreement is again excellent, showing that under dynamic
kinetic conditions, locally thermodynamic equilibrium can
prevail. Of course, equilibrium in the local size distribution
cannot be present exactly, since, otherwise, further decay and
growth would not occur at all.

What can we learn from the above results? For 0.47.
>T>0.2T,, for each n, only the configurations with the two
lowest energies are relevant to explain the contrast. These
two energies are definitely necessary for the clusters with
magic numbers (m? and m>+m), where the next higher en-
ergy configurations occur by erosion of corner sites (removal
of double-bonded spins), which is compensated by an addi-
tional row of spins on a side. For the cluster configurations
corresponding to the cusps, the second lowest-energy con-
figurations are clearly less important. Note that when the
contrast vanishes, the relative error due to considering only
lowest-energy contributions strongly increases, but the abso-
lute error remains small.

Below 0.2T,, for each n, only the lowest energy configu-
ration is relevant. For the clusters with magic numbers (m?
and m?+m), erosion of corner sites is possible, but these
states are so short living that they have negligible influence
on the number density of states with magic numbers. Inter-
estingly, the conclusions drawn in the present and previous
points do not depend on the magnetic field H, but depend on
the cluster size. This is an exact result, because it can be
derived directly from Egs. (5) and (6) that the dependence on
H disappears when comparing the relative importance of the
configurations with different energies (i.e., with a difference
in number of bonds p) for a certain n:

DY Wi exp(— BEPTP)  whP
Db = Wb exp(—ﬁEb) = Wb eXP(—,34JP)- )

The dependence on cluster size can also be understood via
Eq. (9), because the ratio of the number of configurations
with the lowest (having number of bonds b,,,,) and second
lowest energy (having one bond less) wZmax!/ybmax s in-
creasing with increasing cluster size'’?* and, therefore, the
temperature below which only the lowest-energy configura-
tion is relevant decreases with increasing cluster size.
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Growth occurs for 7<<0.47T, via a layer by layer, i.e.,
step-flow mechanism. The probability that on a second {10}
facet of a compact cluster a single spin (adatom) is formed
(i.e., with only one neighboring spin aligned parallel) before
another layer has completely closed (either by decay or
growth) is negligible. Erosion occurs by removal of corner
sites (spins having two neighbors aligned parallel). The final
result is, of course, the interplay of simultaneously occurring
growth and erosion, leading to the stochastic behavior with
broad size distributions.

D. Simulation of cluster size and bond distributions

The contrast C, shown in Fig. 6, holds for a particular
field H and for a particular pair of cluster sizes (n=30 and
31). Larger fields H or larger sizes of the cluster pair [n=Y
and Y+1, where Y is mXm or mX (m+1)] leads to a de-
crease of the contrast C at a certain (low) temperature. It is
clear that in the limit of large Y, the contrast C has to disap-
pear.

Instead of calculating the contrast on the basis of only
a single cluster pair, it would be interesting to see if the
whole size distribution can be simulated at low temperatures.
At 04T, the size distribution could be described well by
a (symmetric) Gaussian one. Based on this result, one can
consider that actually the semiequilibrium distribution (num-
ber density) has to be multiplied with a Gaussian distribu-
tion. However, then it is needed that the (whole) semiequi-
librium distribution is quantifiable. At present, this is only
possible for n=<21, since only for these n values the wﬁ
values required in Eq. (6) were obtained'” by using the re-
markably smart and short algorithm of Redner.”® To apply
Redner’s algorithm up to n=25 is currently practically
impossible.!”?32* Therefore, at the moment, it is appropriate
to consider the size distributions for n<21. To take a part of
the above distributions, where the maximum of the Gaussian
distribution and the injected cluster size occur at clearly
higher values than n=21, is not useful. Therefore, results
were generated where the field H was increased from 0.36 to
0.45 and the injected cluster was reduced in size to 4 X4
+1. The cluster-size distribution as obtained from the corre-
sponding MC simulations are shown in Fig. 7(a) for T
=0.2T, after 50 MCSS and for T=0.37, after 25 MCSS. An
attempt was made to reproduce these MC results by using
the semiequilibrium distribution as calculated from Egs. (6)
and (5), where for each n only the two lowest-energy con-
figurations were included. The deviation in the results when
including the third lowest-energy configuration is not more
than a few percent for only the compact cluster shapes at
0.3T,, whereas in all other cases the deviation is clearly less.
The equilibrium distribution contains no free (adjustable) pa-
rameters. In order to reproduce the MC simulation, the equi-
librium distribution was multiplied by a Gaussian distribu-
tion containing three adjustable parameters, i.e., the position
and height of the maximum and the width of the distribution.
The result is shown in Fig. 7(b) again for 0.27, and 0.3T,. In
quantitative sense, some clear deviations are present between
the MC calculations in Fig. 7(a) and the size distribution
simulation in Fig. 7(b), particularly at 0.37,, but in a more
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FIG. 7. (Color online) (a) Cluster-size distributions obtained
with MC simulations for 10 000 initial 4 X4 clusters with a spin
added to a noncorner site in a magnetic field H=0.45 at 7=0.2T,.
after 50 MCSS and at 7=0.3T, after 25 MCSS. (b) Cluster-size
distributions obtained in order to reproduce the results in (a) by
multiplying the known semiequilibrium distribution based on the
two lowest-energy configurations at each size n (<21) with a sym-
metric Gaussian distribution having three adjustable parameters
(position, height, and width).

general and qualitative sense the agreement is remarkably
good. For instance, the reduction in contrast when going
from 0.27, to 0.37,, corresponding to the reduction in height
of the maxima and simultaneous increase in the minima, is
well captured in the simulations. Moreover, also the change
from clear sawtooths at 0.27, to broader, more symmetric
peaks as observed at 0.37. in Fig. 7(a) and similarly ob-
served in Fig. 5 is also reproduced in Fig. 7(b). In particular,
the relative fractions at n=15 and 16 when going from 0.27,
to 0.3T,, where m?>—1 increases strongly with respect to m?,
is nicely reproduced. See also the similar discussion with
respect to the observed relative fractions for n=35 and 36 at
the end of Sec. III B.

The distribution of the number of internal cluster bonds b,
D,, can now be calculated directly from the known size n
distribution, D,,, without the use of any adjustable parameter.
This is definitely not trivial as also shown by the cluster
enumeration literature (or literature on counting lattice ani-
mals), where only in recent work the number of configura-
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FIG. 8. (Color online) Distribution of the number of internal
cluster bonds based on MC simulations (solid line) and based on
theory (dashed line), which was also used to reproduce the results
of Fig. 7(a) in Fig. 7(b). Note that in the transition from Fig. 7(b) to
Fig. 8, only the lowest-energy configuration for each number of
internal cluster bond is taken into account and that there are no
adjustable parameters. (a) MC results hold for H=0.45 at T
=0.2T, after 50 MCSS. (b) MC results hold for H=0.45 at T
=0.3T, after 25 MCSS.

tion with a given size and given number of internal bonds
was calculated.!”?3 Earlier, the total number of configura-
tions for a given size was determined without subdivision
into different numbers of internal bonds for the same size.
Calculating D, from D, was done using the following as-
sumptions: (i) for each b value, only the lowest-energy con-
figuration is taken into account, meaning that for most n
values, the two lowest-energy configurations are included
[only at the minima in the size n distribution, i.e., at n=m
Xm+1 and n=mX(m+1)+1, not two but one lowest-
energy configuration is included], and (ii), that for each n,
the division over these two b values is determined by Eq. (6).
If this procedure is applied to the theoretically calculated size
n distribution of Fig. 7(b) holding for 0.27., the dashed curve
in Fig. 8(a) is obtained. When it is compared with the results
directly provided by the MC simulations (solid line), the
agreement is in most instances excellent. The dominant de-
viations are already caused by the differences in the size n
distribution present between Figs. 7(a) and 7(b), because if
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the same procedure is applied to the size n distribution di-
rectly obtained from the MC simulations and compared with
the distribution of the number of internal cluster bonds ob-
tained from the MC simulations, no visual difference be-
tween the two curves can be observed. If this last procedure
is applied at 0.37T,, the results in Fig. 8(b) are produced. In
this case, the deviations between the experimental and theo-
retical curves become visible, but are still small, indicating
that taking only the lowest-energy configuration associated
with each b value into account still produces adequate results
at this temperature. The results at 0.27,, [Fig. 8(a)] show that
the second lowest-energy configuration for a given n pro-
duces states in the b distribution in Fig. 8(a) very close to
zero, implying that at 0.27 ., only the lowest-energy configu-
ration for each n is important. At 0.37, definitely the two
lowest-energy configurations for each n are relevant. More-
over, the comparison between MC simulations and the theory
shows that, for the dynamic conditions used, the thermody-
namic Egs. (5) and (6) are appropriate to calculate how the
total number of states at each n is distributed over the differ-
ent b configurations having this n.

IV. CONCLUSIONS

The growth and decay of clusters at low and intermediate
temperatures within the two-dimensional square-lattice Ising
model (in various magnetic fields H) were studied using
Monte Carlo simulations employing Glauber (or Metropolis)
dynamics, exploiting a procedure with “injection” of a clus-
ter on a relatively small lattice. The behavior of individual
clusters is stochastic and only when typical several thou-
sands of identical clusters are injected does their underlying
deterministic evolution become apparent.

At 04T, (or higher temperature), initially identical clus-
ters show after a certain time a relatively broad Gaussian size
distribution. Below 0.4T., modulations in the size distribu-
tion appear, with minima at magic sizes corresponding to n
=mXm+1 and n=m X (m+1)+1, with m integer values. At
sufficiently low temperature, typically <0.27,., maxima oc-
cur at sizes corresponding to n=mXm and n=m X (m+1),
and the modulations have clear sawtooth shape. Increasing
the temperature from 0.27, to 0.47,, the sawtooth shape is
gradually replaced by more symmetric peaks and the depres-
sions at the minima gradually vanish.

This temperature-dependent behavior could be repro-
duced well on the basis of the semiequilibrium distribution
(number density) of noninteracting cluster [cf. Eq. (6)]. Un-
fortunately, this equilibrium distribution is only known for
cluster sizes up to 21, recently obtained using Redner’s al-
gorithm. However, for larger clusters, still calculations can
be made because of the simplifying fact shown by the
present MC simulations that below 0.47,., only the two
lowest-energy configurations for each cluster size have to be
taken into account and, below 0.27,, only the lowest-energy
configuration (a result that is independent of magnetic field
H, but dependent on cluster size n; for larger clusters, these
transition temperatures go down). In this way, the relative
presence of clusters with n=30 and n=31 could be calcu-
lated, showing excellent agreement with the results of MC
simulations.
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The results show that, under kinetic conditions, locally in
the size distribution the equilibrium distribution can be used;
the kinetic size distribution can be reproduced by multiply-
ing the equilibrium distribution with a Gaussian distribution.
If the size distribution is known, also the perimeter-length
distribution or the distribution for the number of internal
cluster bonds can be calculated directly via Egs. (5) and (6).

APPENDIX

Analysis of the growth of individual isolated clusters, as
performed in the present work, is only justified if they re-
main smaller than the size at which, under normal condi-
tions, they would meet and coalesce with neighboring clus-
ters. Therefore, it is important to derive the length scale
associated with coalescence D, and compare it with the one
holding for a critical nucleus D.. Using droplet theory and
Monte Carlo simulations, extensive analysis of the various
length scales involved in the two-dimensional square-lattice
Ising model has been performed at 0.87,.'%!> At this tem-
perature, it was shown (Fig. 11) in Ref. 15 that for magnetic
fields H<0.8(J), D always remained (typically a factor 5)
smaller than D,.?° At temperatures lower than 0.87,, the dif-
ference between D, and D is expected to increase. To show
explicitly that this expectation is correct, the analysis given
below is performed.

For a constant nucleation rate / and a constant growth
velocity v in d-dimensional space, the following relation can
be derived for D, (Refs. 14 and 15):

v \ 1@+
DO=A - .

] (A1)

Depending on the specific (growth) conditions, A can vary,
but its value will be near 1 and A=1 is adopted here, like in
Ref. 14. A constant nucleation rate pertains to the kinetic
Ising model,'*!3 but the growth velocity increases with clus-
ter size, where a maximum constant growth velocity v, oc-
curs for a (infinitely long) planar interface. An explicit for-
mulation of v, for the 2D square-lattice Ising model with
Glauber dynamics and an interface that is parallel to one of
the symmetry directions of the lattice is given by!>3°

tanh(,BH){ 1+X> X

T,H) = + +——
voLH) =733 1+ 1-x2

><[X2+—2(l +25()”,

1+Y
where X=exp(-28J)cosh(BH) and Y=sinh(28J)/cosh(BH)
(other symbols have been defined in Sec. II). In Eq. (Al),
v=vy/2 will be used.

Since nucleation in the Ising model in the present context
is governed by discrete microscopic effects, we cannot rely
on a continuum meso- or macroscopic theory like droplet
theory to estimate 7 for a large range of temperatures (and
fields). Instead, we use an upper bound for the nucleation
rate, derived in Ref. 23, that employs information from the
semiequilibrium distribution on the 2D square lattice [Egs.
(5) and (6) in Sec. IT]:

(A2)
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1< (2n" +2)exp(= BW),*), (A3a)
where
H bmax(n*)
(W)= = 8Jn*<1 - —) - 'Im| X wlkexp(4BJb)
4] —_—
b=bpin(n ")
(A3b)

Since we use an upper bound for I, the coalescence length
scale D, calculated with Eq. (A1) will be a lower bound,
since [ will still compensate the effect of a potentially too
high value for the velocity v. Results of the calculation are
shown in Fig. 9. First, a value for the magnetic field H was
chosen. At low temperatures, H determines n" over a large
temperature range.>? Then, for such a H, n pair, Egs. (Al)-
(A3) allow calculation of D as a function of temperature.
For n" =7, 13, and 21, the summation in Eq. (A3) contains 3,
7, and 13 terms, respectively.

The results in Fig. 9 show that below about 0.57,, the
lower bound of D, is already larger than D.. Note that at
these low temperatures clusters tend to have compact shapes
such that the n*:7, 13, and 21 clusters will fit in 3X 3, 4
X4, and 5 X5 areas and, thus, D can be taken as 3, 4, and
5, respectively. At higher temperatures, less compact, more
elongated shapes come into play and D due to anisotropy is
less well defined, but, of course, cannot exceed n*, the length
of a linear chain. Figure 9 also indicates that below 0.5T, the
ratio Dy/ D¢ increases for decreasing fields H.

At temperatures higher than 0.57,, the present results in-
dicate that D, is smaller than D.. This is probably not actu-
ally true since the obtained Dy, is a lower bound. Also, the
use of the fixed H, n' pairs is, in principle, not correct at
higher temperatures (for a certain H, n" decreases with in-
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FIG. 9. (Color online) Length scale D, giving a lower bound
for the size that the clusters can grow before they meet and coalesce
with neighboring clusters, versus the relative temperature 7/7T, for
three different values for the magnetic field H. The results clearly
indicate that below 0.57, the critical cluster size is smaller than D,.
The analysis of the evolution of individual isolated clusters, as per-
formed in the present work, is thus justified.

creasing temperature®®), gives some underestimation of Dy,
but the effect is calculated to be minor. The fact that the
present D, calculations give a lower bound is in agreement
with the results at 0.87 . presented in Ref. 15, where D is
still larger than D . The purpose of the present appendix is to
demonstrate that at the relatively low temperatures used for
the calculations in the main text (7<0.47T, and for not too
high fields, i.e., H<1, in the 2D square-lattice Ising model),
it is correct to consider individual isolated clusters with sizes
around the critical ones. Indeed, already the conservative es-
timation presented here proves this to be correct.
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