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Inelastic neutron scattering measurements on aluminum metal were performed at temperatures of 10, 150,
300, 525, and 775 K using direct-geometry Fermi chopper spectrometers. The temperature dependent phonon
density of states �DOS� was determined from the scattering, and was used to fit Born–von Kármán models of
lattice dynamics. The shifts in the phonon frequencies with increasing temperature were largely explained by
the softening of the longitudinal force constants out to third nearest neighbors. A significant broadening of the
phonon spectra at high temperatures was also measured. The phonon DOS was used to determine the vibra-
tional contributions to the entropy of aluminum as a function of temperature. All other contributions to the
entropy of aluminum were calculated or assessed, and the total entropy was in excellent agreement with the
NIST-JANAF compilation �M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, 59 �1998��. Anharmonic effects
were attributed to phonon-phonon interactions. The quasiharmonic approximation was generally successful,
but its weaknesses are discussed.
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I. INTRODUCTION

Due to its abundance and the favorable thermal and me-
chanical properties of its alloys, aluminum is one of the most
widely used metals for industrial and engineering applica-
tions. Its melting temperature of 933 K is relatively low, and
the thermodynamic stability of aluminum at elevated tem-
peratures is of technological and scientific importance. Be-
cause of its simple electronic structure, aluminum metal is
frequently used as a test case for theoretical models of crys-
tals and their thermodynamics.1–10

Aluminum is nonmagnetic, so the majority of its entropy
comes from phonons. In turn, the majority of its phonon
entropy Sph can be attributed to harmonic oscillations of the
nuclei about their equilibrium positions. The “quasihar-
monic” phonon entropy Sph,Q includes both the harmonic
phonon entropy and the entropy due to a decrease in phonon
frequencies �softening� as the crystal expands. Measurements
of phonon dispersions in body centered cubic metals11–16

have shown that the quasiharmonic model is often insuffi-
cient to explain the temperature dependence of the phonon
entropy. For example, Sph,Q is an overestimate of the phonon
entropy in both niobium17 and vanadium,12 but a severe un-
derestimate for chromium.17 There is less experimental data
on the high temperature trends in phonons and phonon en-
tropy in face-centered cubic �fcc� metals, although recent
work has shown that the phonons in nickel are slightly stiffer
than predicted by the expansion of the lattice against the bulk
modulus.18

Aluminum has one natural isotope, 27Al, and scatters ther-
mal neutrons coherently. There have been a number of mea-
surements of its phonon dispersions using neutron triple-axis
spectrometers,19–23 and other work using x-ray diffuse
scattering.24,25 The phonon dispersions at 80 and 300 K mea-
sured with inelastic neutron scattering by Stedman and
Nilsson23 have been used frequently, sometimes to generate
the phonon density of states �DOS�.2,5,26–28

Previous measurements of phonons in aluminum at tem-
peratures above 300 K were limited to small numbers of

momentum transfers. Because aluminum is a coherent scat-
terer, such measurements sampled only small numbers of
phonon states, and are not optimal for determining the pho-
non DOS that is so important for thermodynamics. Neverthe-
less, Larsson et al.22 found that some phonon frequencies
shifted by approximately 15% between temperatures of 298
and 932 K. They found phonon linewidths to increase at
temperatures above 600 K. Peterson and Smith25 also sug-
gested that the longitudinal modes are anharmonic.

Energy shifts and lifetime broadening of phonons in
aluminum and other fcc metals have been studied
theoretically.29–34 Björkman et al., using a pseudopotential
model,31 show how electron-phonon interactions shorten
phonon lifetimes in aluminum. Using Born–von Kármán
�BvK� fits to neutron data in conjunction with measurements
of second and third order elastic constants, Zoli et al. calcu-
lated the shifts32 and lifetime broadening33 of the phonons in
aluminum at temperatures below room temperature. More
generally, understanding the contributions of quasiparticles
and collective excitations to the free energy, entropy, and
heat capacity of crystalline solids is an active area of
research.17,35–44

Here we present results from inelastic neutron scattering
measurements of the phonon DOS of aluminum at tempera-
tures of 10, 150, 300, 525, and 775 K. We use these results to
determine the phonon contributions to the entropy of alumi-
num, and we assess the other entropic contributions, finally
obtaining excellent agreement with the total thermodynamic
entropy. The overall softening of the phonons is found to be
caused by a monotonic temperature dependence of the first
nearest-neighbor �1NN�, second nearest-neighbor �2NN�,
and third nearest-neighbor �3NN� force constants, with the
1NN force constants decreasing approximately 10% over the
temperature range of measurement. The purely anharmonic
part of the phonon entropy, not accounted for by the expan-
sion of the lattice, is approximately −0.07kB/atom at 775 K.
Additionally, we quantify the temperature dependence of the
energy widths and shifts of the phonons, and we attribute the
anharmonic effects to phonon-phonon interactions.
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II. COMPONENTS OF THE ENTROPY

As temperature increases, the entropic terms in the free
energies of materials become increasingly important. At the
same time, accurate assessment of the different components
of the entropy becomes increasingly complicated. It is fre-
quently assumed that the states of the system may be split
into combinations of independent subsystems of states such
that

S = kB ln � � kB ln��
i

�i� = kB	
i

ln��i� = 	
i

Si, �1�

where � is the number of states of the system, �i is the
number of states of the subsystem i, and Si is the entropy of
subsystem i. Especially at high temperatures, it may be nec-
essary to correct for the interactions between the subsystems.
�These corrections represent differences between simplified
models and reality, and may thus be positive or negative.
They are called “entropy” nevertheless.�

For a nonmagnetic crystalline solid, the total entropy S
may be broken up into contributions from electrons Sel,
phonons Sph, and their interactions Sel-ph, with the phonon
entropy usually dominant at high temperatures. For a poly-
atomic solid, the configurational entropy Sc is also signifi-
cant, but for crystals of a pure element, the configurational
contribution arises from defects. In either case, we have

S = Sph + Sel + Sel-ph + Sc. �2�

The quasiharmonic entropy includes both the harmonic
and dilatational contributions to the phonon entropy, Sph,H
and Sph,D, respectively. Any additional changes of the phonon
entropy with increasing temperature are termed the anhar-
monic entropy, Sph,A, so

Sph = Sph,H + Sph,D + Sph,A = Sph,Q + Sph,A. �3�

It is sometimes useful to consider the nonharmonic phonon
entropy Sph,NH, which is the sum of the dilatation and anhar-
monic contributions

Sph,NH = Sph,D + Sph,A = Sph − Sph,H. �4�

Similar divisions may be made for the electronic entropy,

Sel = Sel,G + Sel,D. �5�

where Sel,G is the ground state electron entropy and Sel,D is
the electronic entropy associated with changes in the electron
DOS from dilatation of the lattice. Both of these contribu-
tions to the electronic entropy originate with noninteracting
electrons.

The electron-phonon entropy is separated into two parts:

Sel-ph = Sel-ph,na + Sel-ph,ad. �6�

The nonadiabatic electron-phonon entropy Sel-ph,na, which
dominates at low temperatures, is associated with the mixing
of the electron ground states from the nuclear motion. At
higher temperatures, the adiabatic electron-phonon entropy
Sel-ph,ad dominates. It accounts for the thermal shifts of elec-
tron states caused by average nuclear motions. These contri-
butions to the entropy have been discussed in greater detail
previously.40–46 There should also be a contribution to the

electron-phonon entropy from the dilatation of the lattice;
however, we expect this to be negligible.

For pure, polycrystalline, metallic aluminum, we expect
the configurational entropy Sc to be nearly equal to the con-
figurational entropy of vacancies Svac,c. Putting this all to-
gether,

S � Sph,H + Sph,D + Sph,A + Sel,G

+ Sel,D + Sel-ph,ad + Sel-ph,na + Svac,c. �7�

III. EXPERIMENT, ANALYSIS, AND COMPUTATION

Clean aluminum shot of 99.99% purity was arranged to
cover maximally the interior of a thin-walled, rectangular,
aluminum pan, whose height, width, and depth were approxi-
mately 10.0, 7.0, and 0.5 cm. The ratio of singly to multiply
scattered neutrons was designed to be approximately 10%.

One set of inelastic neutron scattering measurements was
performed with the Low Resolution Medium Energy Chop-
per Spectrometer �LRMECS� at the Intense Pulsed Neutron
Source at Argonne National Laboratory. The aluminum pan
was mounted at 45° with respect to the incident neutron
beam, and measurements were made at 10, 150, 300, 525,
and 775 K. Measurements were also made on the empty alu-
minum pan at all temperatures to allow for some removal of
background scattering. All measurements were approxi-
mately 8 h in duration, and included approximately 750 000
counts. For the lower temperatures, 10, 150, and 300 K, the
sample was mounted in a displex refrigerator. For the higher
temperatures, the sample was mounted in a low background,
electrical resistance furnace designed for vacuum applica-
tions. In both cases, temperature was monitored with several
thermocouples, and is believed accurate to within 5 K over
the bulk of the sample. The incident neutron energy, deter-
mined from the scattering, was 59.1 meV.

A second set of measurements was made with the Pharos
time-of-flight chopper spectrometer at the Los Alamos Neu-
tron Science Center. Another displex refrigerator was used
for a measurement at 10 K, and the same furnace was used
for a measurement at 775 K. The same aluminum sample
was used, again mounted at an angle of 45° with respect to
the incident neutron beam. Data were collected for a mini-
mum of 4 h at each temperature, giving on the order of 1
�106 counts. The incident neutron energy was 69.3 meV.
For both instruments, the energy resolution function R�E ,E��
was assumed to be Gaussian in energy,

R�E,E�� =
1

�I�E��
2�
exp�−

1

2
�E − E�

�I�E��

2� . �8�

The widths were approximated from the timing characteris-
tics of the two instruments as

�LRMECS�E�� � − 0.0071E� + 1.2744,

�Pharos�E�� � − 0.0091E� + 1.0620, �9�

where E� and ��E�� are in meV.
The raw data from both instruments, in time-of-flight and

scattering angle 2� were first normalized using the counts in
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the beam monitor or the integrated proton current. Bad de-
tectors were identified and masked, and the data were cor-
rected for detector efficiency using a measurement of vana-
dium, an incoherent scatterer. At each temperature, the
measured scattering from the empty aluminum pan was sub-
tracted from the data, reduced by roughly 10% to account for
the self-shielding of the sample. The data were then binned
to get intensity I�E ,2�� as a function of scattering angle 2�
and energy E transferred to the sample. Approximately, 2�
ranged from 10° to 120° with a bin width of 0.75°, and E
ranged from −60.0 to 60.0 meV with a bin width of 0.5 meV
for both instruments.

By summing the LRMECS data from −5.0 to 5.0 meV,
in situ neutron diffraction patterns were obtained. Lattice
parameters were determined from these data using
Nelson-Riley47 plots, and are listed in Table I. Their thermal
trends are consistent with thermal expansion data.

Data reduced to I�E ,2�� were then rebinned into intensity,
I�Q ,E�, where Q is the momentum transferred to the sample.
For both instruments, Q ranged from 0.0 to 12 Å−1, with a
bin width of about 0.075 Å−1. The elastic peak was removed
below 8 meV and replaced by a function ��E� of the form

��E� �
AE

1 − exp�− �E�
, �10�

where the constant A was determined from the inelastic scat-
tering just past the elastic peak. Here, we have assumed that

the phonon DOS is proportional to E2 in the low energy
regime, as in a Debye model. The phonon DOSs were then
extracted from the scattering, making the thermal corrections
and corrections for multiphonon and multiple scattering, as
described previously.18 These phonon DOSs are shown by
markers and lines in Fig. 1, and by the markers in Fig. 2.

With increasing temperature, the phonon peaks in a me-
tallic solid typically broaden and undergo a shift to lower
energies. These shifts were approximated as a constant mul-
tiplier � applied to all phonon energies E:

E → �E . �11�

The broadening of the phonons was assumed to take the
form of a damped harmonic oscillator function D�Q ,E� ,E�
centered about energy48 E�:

D�Q,E�,E� =
1

�QE�

1

�E�

E
−

E

E�
�2

+
1

Q2

. �12�

Using Eqs. �11� and �12�, the high temperature phonon DOS
was approximated as a function of the low temperature DOS,
with only two free parameters, � and Q:

TABLE I. Experimentally determined lattice parameter, a, of aluminum and shifts of the aluminum
phonon energies as a function of temperature. Fits of the 10 K DOS to the high temperature DOS by scaling
of the energy and convolution �Ref. 49� with the damped oscillator function yield the relative frequency shifts
� �Eq. �13��. �ET� / �E10� are ratios of the first moments of the DOS �Eq. �15��. Values in square brackets are
from Pharos data.

T
�K�

a±0.01
�Å� � �ET� / �E10� Sph±0.03 �kB /atom�

10 4.041 1.000 1.000 0.001 �0.001�
150 4.045 0.995 0.990 1.628

300 4.056 0.977 0.964 3.462

525 4.079 0.954 0.941 5.146

775 4.111 0.952 0.941 6.332 �6.306�

FIG. 1. �Color online� Phonon DOS of aluminum at tempera-
tures as indicated. The markers show the experimentally determined
DOS from LRMECS, and the lines show the DOS from Pharos.

FIG. 2. �Color online� Phonon DOS of aluminum at tempera-
tures as indicated. The markers show the experimentally determined
DOS, and the lines the best fits of the 10 K DOS to the high tem-
perature DOS by scaling of the energy and convolution �Ref. 49�
with the damped oscillator function �Eq. �13��.
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gT�E� = D�Q,E�,E� � g10��E�� , �13�

where gT is the phonon DOS at temperature T, and � denotes
an integral transform that is similar to a convolution.49 �The
subscript 10, as in 10 K, refers to the lowest temperature
data from this set of experiments.�

At each temperature, the best Q and � for the experimen-
tal DOS were determined through a least squares algorithm.
The Q so determined are shown in Fig. 3, and the fits to the
phonon DOS are shown in Fig. 2. The inverse of the quality
factor was well described by a quadratic function of T:

1

Q
� 3.523 � 10−7T2, �14�

where T is in degrees Kelvin. The shifts � are given in Table
I, along with the ratios of the mean phonon energies,
�ET� / �E10�, as determined from the DOS:

�ET�
�E10�

=
� EgT�E�dE

� Eg10�E�dE

. �15�

In a second analysis, the phonon DOSs were fitted with
Born–von Kármán models of the lattice dynamics.50–53 Ten-
sorial force constants to the 3NN shell were determined with
a gradient search method. For the higher temperatures, where
there is significant anharmonic broadening, these models

were sufficiently accurate. At lower temperatures, however,
they were unable to reproduce the shape of the DOS. For the
DOS at 10, 150, and 300 K, axially symmetric force con-
stants from fourth to eight nearest-neighbor shells were also
optimized. These showed little change with temperature, so
they were averaged and kept constant for a final round of
optimization.

To account for the thermal and instrument broadening, the
frequencies 	, calculated as the square root of each eigen-
value of the dynamical matrix, were taken to be the argu-
ments of delta functions in energy, 
�E−�	�. Each delta
function was convolved49 with the damped harmonic oscil-
lator function of Eq. �12�, and the Gaussian instrument reso-
lution function given by Eqs. �8� and �9�. The force constants
so determined are listed in Table II, and the best fits to the
DOS at all temperatures are shown in Fig. 4.

The longitudinal force constants were found by projecting
the tensor onto the bond vectors �xyz�. The 3�3 force con-
stant tensors were then diagonalized. The longitudinal force
constant was matched to one of the eigenvalues, and the

FIG. 3. �Color online� Markers show the inverse of the quality
factor, 1 /Q, as a function of temperature for aluminum phonons,
circles are LRMECS data, and the square is Pharos data. The line is
a parabolic fit �Eq. �14��.

FIG. 4. �Color online� Phonon DOS of aluminum at tempera-
tures as indicated. The markers show the experimentally determined
DOS, and the lines the best BvK models found by fitting the data.

FIG. 5. �Color online� Longitudinal force constants for fcc alu-
minum as a function of temperature. Filled markers and solid lines
are from BvK fits, unfilled markers and dashed lines are from cal-
culations using VASP �Refs. 54 and 55� and PHON �Ref. 58�. The fits
to the BvK force constants are given by Eqs. �16�–�18�. For the
BvK models, the higher order force constants were fixed as de-
scribed in the text.

FIG. 6. �Color online� Averaged transverse force constants for
fcc aluminum as a function of temperature. Filled markers and solid
lines are from BvK fits, unfilled markers and dashed lines are from
calculations using VASP �Refs. 54 and 55� and PHON �Ref. 58�.
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average transverse constant was taken to be the mean of the
remaining eigenvalues. Longitudinal force constants to 3NN
are shown in Fig. 5, and the averaged transverse force con-
stants out to 3NN are shown in Fig. 6. The XNN longitudinal
force constants, LX�T�, decrease with increasing temperature
approximately as

L1�T� = 21.022 − 2.559 � 10−3T , �16�

L2�T� = 2.463 − 7.384 � 10−4T , �17�

L3�T� = − 0.862 − 2.066 � 10−4T , �18�

where T is in degrees Kelvin and LX�T� is in N/m. The fits
are also shown in Fig. 5.

In a third computational effort, we used the plane-wave
code VASP �Refs. 54 and 55� to calculate the electronic DOS
of aluminum as a function of unit cell volume. The calcula-
tions used projector augmented plane waves and the Perdew-
Burke-Ernzerhof generalized gradient approximation.56 A

conventional fcc cell was used, and it was relaxed using the
“accurate” setting for the kinetic energy cutoff, with a 20
�20�20 Monckhorst-Pack k-point grid.57 The relaxed vol-
ume �which matched the experimentally determined volume
to better than 0.2%� was taken to be the 0 K volume of the
unit cell, and the values of the linear coefficient of thermal
expansion from Wang and Reeber1 were used to determine
the volumes at temperatures corresponding to our experi-
ments. At each of these volumes, the electronic DOS was
determined on a larger, 70�70�70 k-point grid. The elec-
tronic DOS at 10 and 775 K are shown in Fig. 7.

The interatomic forces and the phonons were calculated
from first principles in the direct method using VASP in con-
junction with the program PHON.58 At volumes consistent
with the temperatures 0, 300, and 775 K, the total energy
was minimized for a 4�4�4 �64 atom� supercell with a 4
�4�4 electronic k-point grid. A single displacement whose
length was 1% of the interatomic separation was used, and
testing showed that the effects of the size of the displacement
on the calculated force constants was negligible. The longi-

TABLE II. Optimized tensor force constants in N/m as a function of temperature for fcc aluminum. They
are given in a Cartesian basis, where �xyz� is the bond vector for the given tensor components.

�xyz� 10 K 150 K 300 K 525 K 775 K

�1xx �110� 10.112 9.708 9.708 10.542 10.112

�1xy 11.148 10.697 10.378 9.232 8.970

�1zz −1.356 −1.201 −2.059 −3.370 −3.463

�2xx �200� 2.454 2.408 2.224 1.972 1.956

�2yy −0.532 −0.508 −0.367 −0.148 −0.144

�3xx �211� −0.634 −0.636 −0.635 −0.707 −0.706

�3xy −0.185 −0.301 −0.294 −0.301 −0.299

�3yy −0.298 −0.183 −0.181 −0.225 −0.222

�3yz −0.149 −0.147 −0.148 −0.151 −0.151

�4xx �220� 0.273 0.273 0.273 0.000 0.000

�4xy −0.051 −0.051 −0.051 0.000 0.000

�4zz 0.324 0.324 0.324 0.000 0.000

�5xx �310� 0.469 0.469 0.469 0.000 0.000

�5xy 0.090 0.090 0.090 0.000 0.000

�5yy 0.229 0.229 0.229 0.000 0.000

�5zz 0.199 0.199 0.199 0.000 0.000

�6xx �222� 0.144 0.144 0.144 0.000 0.000

�6xy −0.110 −0.110 −0.110 0.000 0.000

�7xx �321� −0.061 −0.061 −0.061 0.000 0.000

�7xy 0.032 0.032 0.032 0.000 0.000

�7xz 0.016 0.016 0.016 0.000 0.000

�7yy −0.088 −0.088 −0.088 0.000 0.000

�7yz 0.011 0.011 0.011 0.000 0.000

�7zz −0.105 −0.105 −0.105 0.000 0.000

�8xx �400� −0.536 −0.536 −0.536 0.000 0.000

�8yy −0.117 −0.117 −0.117 0.000 0.000
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tudinal and average transverse force constants were deter-
mined as for the BvK models, and are shown in Figs. 5 and
6, respectively. The values of the longitudinal force constants
to 3NN at 0 K are given in Table III.

IV. RESULTS

The force constants obtained from BvK models need not
be unique, especially for more distant nearest-neighbor shells
and for off-bond directions.26 Nevertheless, Wallis et al.
found that their BvK models for aluminum showed reason-
able agreement with pseudopotential calculations for longi-
tudinal force constants of the first three nearest-neighbor
shells.26 Table III presents the longitudinal force constants
from the pseudopotential and empirical models �at 0 and
80 K, respectively� of Wallis et al., from the empirical model
�at 80 K� of Gilat and Nicklow, from our empirical model �at
10 K�, and from our plane-wave calculations �at 0 K�. The
table shows remarkable agreement of the major longitudinal
force constants, giving confidence in our values of these
force constants as a function of temperature.

As seen in Fig. 5, thermal changes in the 1NN force con-
stants are dominant, and are expected to have the largest
effect in shifting the DOS to lower energies with increasing
temperature. The transverse force constants shown in Fig. 6
have small changes with temperature. They have negative
signs, indicating some instability in the off-bond directions.
At all temperatures, the magnitudes of both the longitudinal
and transverse force constants decrease rapidly with increas-
ing distance in the first two or three shells. The behavior of
the fit force constants for longer bonds is less structured,
owing mainly to noise in the data and the difficulty in fitting
parameters that have smaller impacts on the DOS. Neverthe-
less, fluctuations of sign could be consistent with Friedel
oscillations in Al.26

The frequencies of the transverse modes and longitudinal
modes have slightly different temperature dependencies,
leading to modest differences in the second and third col-
umns of Table I. Stedman et al.27 reported �E300� / �E80�
=0.98, which seems in reasonable agreement with the value
of 0.969, obtained as the average of our values at 10 and
150 K. A previous study by Larsson et al.22 found signifi-
cantly larger shifts in the mean frequency at higher tempera-
tures: �E775� / �E300�=0.925,59 where we find �E775� / �E300�

=0.976, perhaps because these early results were based on
the central energies of broadened phonon peaks, and also
because the much greater region of Q space sampled in the
present measurements gives a better average of the phonon
softening.

From the values of 1 /Q shown in Fig. 3, at the highest
energy of the phonons, 38.0 meV, we find maximum values
of the full width at half maximum 2
=E /Q to be approxi-
mately 0, 0.8, 0.9, 2.6, and 7.5 meV at the temperatures 10,
150, 300, 525, and 775 K, respectively. This broadening
seems consistent with the experimental values reported by
Larsson et al.22 Linewidths due to phonon-phonon interac-
tions for aluminum at 300 K were calculated by Zoli et al.
using an empirical force constant model.33 They find a maxi-
mum 2
 of about 1.5 meV for the longitudinal modes in the
�111� direction, which is also in reasonable agreement with
our data. In all cases, the linewidths appear to increase with
increasing phonon energy.

Examples of phonon DOS from BvK models, damped
BvK models, and reduction of experimental data are shown
in Fig. 8. Especially at high temperatures, these DOSs yield
slightly different phonon entropies. To leading order in an-
harmonic perturbation theory, the phonon entropy is given by
the quasiharmonic formula �Eq. �19� below� with the shifted
energies.41,42 This would correspond to using our undamped
BvK models. Calculating the entropy using the undamped
BvK models gives a total entropy that is larger than that
obtained from reduced experimental data. As the phonon
linewidths increase, a particular phonon can be created or
annihilated over a wider spectrum of energies. The damping
function of Eq. �12� causes an increase in the mean phonon
energy and, thus, a decrease in phonon entropy. To minimize
data manipulations, we report the entropy from reduced ex-
perimental data. We did not correct for the effects of instru-
ment resolution broadening, which causes us to overestimate
the phonon entropy by as much as 0.03kB/atom. This is not
included in our estimates of the error.

V. DISCUSSION

In the quasiharmonic approximation, the phonon entropy
is given by

FIG. 7. �Color online� Electronic DOS of fcc aluminum at 10
and 775 K, showing the effects of the expansion of the lattice with
increasing temperature. EF is the Fermi energy.

FIG. 8. �Color online� Phonon DOS for aluminum at 775 K.
Markers show the experimental data. Lines show BvK models with-
out damping, with damping, and with both damping and instrument
resolution broadening, for the bottom, middle, and top curves,
respectively.
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Sph�T,Tp� = 3kB�
0

�

gT��nTp
+ 1�ln�nTp

+ 1� + nTp
ln�nTp

��dE ,

�19�

where gT is the DOS at temperature T and nTp
is the mean

occupation number for bosons at temperature Tp

nTp
=

1

exp��E� − 1
, �20�

where �= �kBT�−1. To calculate the phonon entropy at all
temperatures, we find the phonon DOS at temperature Tp by
linearly interpolating between the two neighboring measure-
ments, and then set gT→gTp

in Eq. �19�. To find the har-
monic phonon entropy Sph,H, we use Eq. �19� with gT→g10
�again, the subscript 10 refers to 10 K�. The difference be-
tween these two quantities is the nonharmonic phonon en-
tropy Sph,NH. We have

Sph = Sph�T� = Sph�T,T� , �21�

Sph,H = Sph,H�T� = Sph�T0,T� , �22�

Sph,NH = Sph,NH�T� = Sph�T� − Sph,H�T� , �23�

where we use T0=10 K. Classically, we may find Sph,D using
the following equation:

Sph,D = Sph,D�T� = �
T0

T CP − CV

T�
dT� = �

T0

T 9KT�2

�N
dT�,

�24�

where KT is the isothermal bulk modulus, � is the linear
coefficient of thermal expansion, and �N is the atomic num-
ber density, all of which are temperature dependent. Here, we
used the temperature dependent isothermal bulk modulus
found by He et al.,60 and the temperature dependent lattice
parameter and linear coefficient of thermal expansion for a
“real crystal” found by Wang and Reeber1

Using the electronic DOS of Fig. 7, the electronic contri-
bution to the entropy was calculated as

Sel�T,Tp� = − kB�
0

�

DT�fTp
ln�fTp

� + �1 − fTp
�ln�1 − fTp

��dE ,

�25�

where DT is the electronic DOS at temperature T, and fTp
is

the mean occupation number for fermions at temperature Tp:

fTp
=

1

exp���E − ��� + 1
. �26�

At all temperatures, we approximated the chemical potential
as the Fermi energy, �=EF, which should be accurate on the
order of 0.01%.61 To get the total electronic entropy, then, we
take DT→DTp

. The ground state contribution, Sel,G, in anal-
ogy with the harmonic contribution of the phonons, is given
by taking DT→DT0

. The electronic entropy of dilatation Sel,D

is given by the difference

Sel = Sel�T� = Sel�T,T� , �27�

Sel,G = Sel,G�T� = Sel�T0,T� , �28�

Sel,D = Sel,D�T� = Sel − Sel,G, �29�

with T0=0 K.
The electron-phonon entropy was determined from the

adiabatic and nonadiabatic electron-phonon free energies cal-
culated by Bock et al.43,44 using the thermodynamic relation-
ship

S = −
�F

�T
. �30�

Forsblom et al.39 have found the entropy and enthalpy of
formation of a vacancy in aluminum to be �Svac,f =2.35kB
and �Hvac,f =0.75 eV, respectively. The configurational en-
tropy Svac,c and the formation entropy Svac,f of sets of vacan-
cies are given by

c = c�T� = exp�− ���Hvac,f − T�Svac,f�� , �31�

Svac,f = Svac,f�T� = c�Svac,f , �32�

Svac,c = Svac,c�T� = − kB�c ln�c� + �1 − c�ln�1 − c�� , �33�

where c is the concentration of vacancies.
All contributions to the entropy are shown in Fig. 9. The

total entropy of aluminum was obtained with Eq. �7�. Values

TABLE III. Longitudinal force constants LX for the XNN shell in units of N/m as determined by BvK
models and ab initio calculations. Data from Wallis et al. �Ref. 26� and Gilat and Nicklow �Ref. 28� are also
tabulated.

Force
constant

Wallis
Pseudopotential

�0 K�
Empirical

�80 K�
Gilat

�80 K�

Present study
BvK

�10 K�
Plane wave

�0 K�

L1 21.70 24.60 21.55 21.26 20.69

L2 2.60 2.68 2.45 2.45 2.07

L3 −0.86 −0.68 −0.92 −0.82 −0.75
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for the total entropy were taken from the NIST-JANAF ther-
mochemical tables,62 and agreement is excellent, with a root-
mean-square deviation of 0.046 kB/atom.63 We also see ex-
cellent agreement between our �time-of-flight based� values
for the phonon entropy and those derived using triple-axis
data at 80 and 300 K. �The data were taken from Stedman
and Nilsson23 and used by Gilat and Nicklow28 to generate
phonon DOS, which we then used to find the phonon
entropy.�

The harmonic phonon entropy accounts for most of the
entropy of aluminum. The next largest contribution is from
the phonon entropy of dilatation, but this is already an order
of magnitude smaller. The quasiharmonic model is a useful
one for aluminum; nevertheless, the anharmonic phonon en-
tropy is non-negligible and comparable in magnitude to the
electronic entropy. The adiabatic electron-phonon interaction
is another order of magnitude smaller, followed by the dila-
tational correction to the electronic entropy. The vacancy
contribution to the entropy is primarily configurational and is
very small.

Over the temperatures measured, the anharmonic phonon
entropy Sph,A ranges from −0.10 to +0.08 kB/atom �where we
have incorporated errors of approximately ±0.03 kB/atom�.
At our highest temperature of 775 K, we have −0.10
�Sph,A�−0.04 kB/atom. The anharmonic entropy is positive

up to around 625 K, after which it becomes negative and
decreasing.

The anharmonic contribution to the entropy of aluminum
is dominated by phonon-phonon interactions over the much
smaller contribution from electron-phonon interactions.31 It
is interesting that the shape of the anharmonic entropy curve
is similar to that reported recently for the fcc nickel,18 and
the superlinear temperature dependence of 1 /Q is also simi-
lar. Aluminum is a simple metal, and nickel is a magnetic
d-band metal with a complex electronic structure, so it would
be surprising if their similar anharmonic behaviors originated
from electron-phonon interactions. Phonon-phonon interac-
tions are the probable source of the large increase in phonon
linewidth with temperature in both metals. It is interesting
that this increase in linewidth is approximately quadratic
with temperature, as opposed to the linear effect predicted
by the quasiharmonic approximation and perturbation
theory.41,64,65 The quasiharmonic approximation is expected
to be most appropriate when the phonon frequency shifts are
small and the phonon lifetimes are long. The latter condition
may not apply well to aluminum or nickel.

VI. CONCLUSION

Measurements of the inelastic scattering of neutrons by
phonons in aluminum were made at temperatures of 10, 150,
300, 525, and 775 K. Phonon DOS were obtained from the
reduced experimental data, and were used to determine the
harmonic, nonharmonic, and total phonon entropy of alumi-
num. The sum of the phonon, electronic, and vacancy con-
tributions to the entropy agree exceptionally well with ac-
cepted values for the total entropy over the entire range of
temperatures studied. The anharmonic entropy obtained from
the shifts of phonon frequencies was small, but the broaden-
ing of the phonon DOS was significant and scaled superlin-
early with temperature. The anharmonic behavior was attrib-
uted to phonon-phonon interactions. The experimental
phonon DOSs were fitted to BvK models of the forces in the
solid. A linear decrease with temperature was found for the
1NN, 2NN, and 3NN force constants, with the 1NN force
constants decreasing by approximately 10% over the range
of temperatures measured.
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FIG. 9. �Color online� Contributions to the entropy of aluminum
as a function of temperature. The temperature labels at the bottom
of the plot apply to all panels and the inset. Open triangles are total
entropy data taken from the NIST-JANAF thermochemical tables,
and open squares are phonon entropy derived from triple-axis data.
Closed markers are data from the current experiment; lines are ei-
ther calculations or interpolations.

KRESCH et al. PHYSICAL REVIEW B 77, 024301 �2008�

024301-8



1 K. Wang and R. R. Reeber, Philos. Mag. A 80, 1629 �2000�.
2 D. C. Wallace, Phys. Rev. 187, 991 �1969�.
3 D. C. Wallace, Phys. Rev. B 1, 3963 �1970�.
4 P. K. Lam and M. L. Cohen, Phys. Rev. B 24, 4224 �1981�.
5 P. K. Lam and M. L. Cohen, Phys. Rev. B 25, 6139 �1982�.
6 P. K. Lam and M. L. Cohen, Phys. Rev. B 27, 5986 �1983�.
7 M. Zoli and V. Bortolani, J. Phys.: Condens. Matter 2, 525

�1990�.
8 G. K. Straub, J. B. Aidun, J. M. Wills, C. R. Sanchez-Castro, and

D. C. Wallace, Phys. Rev. B 50, 5055 �1994�.
9 C. Bercegeay and S. Bernard, Phys. Rev. B 72, 214101 �2005�.

10 K. Moriguchi and M. Igarashi, Phys. Rev. B 74, 024111 �2006�.
11 J. Trampenau, W. Petry, and C. Herzig, Phys. Rev. B 47, 3132

�1993�.
12 P. D. Bogdanoff, B. Fultz, J. L. Robertson, and L. Crow, Phys.

Rev. B 65, 014303 �2001�.
13 F. Güthoff, B. Hennion, C. Herzig, W. Petry, H. R. Schober, and

J. Trampenau, J. Phys.: Condens. Matter 6, 6211 �1994�.
14 W. Petry, A. Heiming, J. Trampenau, M. Alba, C. Herzig, H. R.

Schober, and G. Vogl, Phys. Rev. B 43, 10933 �1991�.
15 A. Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig, H. R.

Schober, and G. Vogl, Phys. Rev. B 43, 10948 �1991�.
16 J. Trampenau, A. Heiming, W. Petry, M. Alba, C. Herzig, W.

Miekeley, and H. R. Schober, Phys. Rev. B 43, 10963 �1991�.
17 O. Eriksson, J. M. Wills, and D. C. Wallace, Phys. Rev. B 46,

5221 �1992�.
18 M. Kresch, O. Delaire, R. Stevens, J. Y. Y. Lin, and B. Fultz,

Phys. Rev. B 75, 104301 �2007�.
19 B. N. Brockhouse and A. T. Stewart, Phys. Rev. 100, 756 �1955�.
20 R. S. Carter, H. Palevsky, and D. J. Hughes, Phys. Rev. 106,

1168 �1957�.
21 B. N. Brockhouse and A. T. Stewart, Rev. Mod. Phys. 30, 236

�1958�.
22 K. E. Larsson, U. Dahlborg, and S. Holmryd, Ark. Fys. 17, 369

�1960�.
23 R. Stedman and G. Nilsson, Phys. Rev. 145, 492 �1966�.
24 C. B. Walker, Phys. Rev. 103, 547 �1956�.
25 G. C. Peterson and T. Smith, J. Phys. F: Met. Phys. 2, 7 �1972�.
26 R. F. Wallis, A. A. Maradudin, V. Bortolani, A. G. Eguiluz, A. A.

Quong, A. Franchini, and G. Santoro, Phys. Rev. B 48, 6043
�1993�.

27 R. Stedman, L. Almqvist, and G. Nilsson, Phys. Rev. 162, 549
�1967�.

28 G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 �1966�.
29 M. Zoli, J. Phys.: Condens. Matter 3, 6249 �1991�.
30 M. I. Katsnel’son, A. V. Trefilov, and K. Yu. Khromov, JETP Lett.

69, 688 �1999�.
31 G. Björkman, I. Lundqvist, and A. Sjölander, Phys. Rev. 159,

551 �1967�.
32 M. Zoli, Philos. Mag. Lett. 62, 203 �1990�.
33 M. Zoli, G. Santoro, V. Bortolani, A. A. Maradudin, and R. F.

Wallis, Phys. Rev. B 41, 7507 �1990�.
34 A. Franchini, G. Santoro, V. Bortolani, A. A. Maradudin, and R.

F. Wallis, Phys. Rev. B 45, 11982 �1992�.
35 D. A. Ditmars, C. A. Plint, and R. C. Shukla, Int. J. Thermophys.

6, 499 �1985�.
36 R. C. Shukla, C. A. Plint, and D. A. Ditmars, Int. J. Thermophys.

6, 517 �1985�.

37 P. J. Meschter, J. W. Wright, C. R. Brooks, and T. G. Kollie, J.
Phys. Chem. Solids 42, 861 �1981�.

38 G. Grimvall, J. Häglund, and A. Fernandéz Guillermet, Phys.
Rev. B 47, 15338 �1993�.

39 M. Forsblom, N. Sandberg, and G. Grimvall, Phys. Rev. B 69,
165106 �2004�.

40 D. C. Wallace, Phys. Rev. E 56, 1981 �1997�.
41 D. C. Wallace, Thermodynamics of Crystals �Dover, New York,

1998�.
42 D. C. Wallace, Statistical Physics of Crystals and Liquids: A

Guide to Highly Accurate Equations of State �World Scientific,
Singapore, 2002�.

43 N. Bock, D. Coffey, and D. C. Wallace, Phys. Rev. B 72, 155120
�2005�.

44 N. Bock, D. C. Wallace, and D. Coffey, Phys. Rev. B 73, 075114
�2006�.

45 P. B. Allen and J. C. K. Hui, Z. Phys. B 37, 33 �1980�.
46 M. Thiessen, Int. J. Thermophys. 7, 1183 �1986�.
47 B. T. Fultz and J. M. Howe, Transmission Electron Microscopy

and Diffractometry of Materials, 2nd ed. �Springer-Verlag, Ber-
lin, 2002�, Chap. 1, p. 51.

48 S. W. Lovesey, Theory of Neutron Scattering from Condensed
Matter �Clarendon, Oxford, 1984�, Vol. 1, p. 301.

49 The transform is the same as a convolution, except that the width
of the broadening function is energy dependent. We assumed
that R�D�D�R, which is reliable for our conditions of use.

50 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
�Clarendon, Oxford, 1988�.

51 A. Maradudin, E. Montroll, G. Weiss, and I. Ipatova, in Solid
State Physics, 2nd ed., edited by H. Ehrenreich, F. Seitz, and D.
Turnbull �Academic, New York, 1971�, Suppl. 3.

52 G. Venkataraman, L. A. Feldkamp, and V. C. Sahni, Dynamics of
Perfect Crystals �MIT, Cambridge, 1975�.

53 A. F. Yue, I. Halevy, A. Papandrew, P. D. Bogdanoff, B. Fultz, W.
Sturhahn, E. E. Alp, and T. S. Toellner, Hyperfine Interact. 141,
249 �2002�.

54 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 �1996�.
55 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 �1999�.
56 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
57 H. J. Monckhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.
58 D. Alfè, http://chianti.geol.ucl.ac.uk/~dario
59 Here, we have used the formula from Ref. 22 with �E300� from

our experiment.
60 D. He, Y. Zhao, L. L. Daemen, J. Qian, K. Lokshin, T. D. Shen,

J. Zhang, and A. C. Lawson, J. Appl. Phys. 95, 4645 �2004�.
61 N. W. Ashcroft and N. D. Mermin, Solid State Physics �Thomas

Learning, Springfield, IL, 1976�, Chap. 2, pp. 46–47.
62 M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, 59 �1998�.
63 The root-mean-square deviations for the entropy as determined

from the BvK models and from the damped BvK models were
0.066 and 0.039 kB/atom, respectively. The differences between
these three models are small; nevertheless, it may be that using
a damped DOS �without resolution broadening� more accurately
represents the phase space covered by the anharmonic oscilla-
tors.

64 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 �1962�.
65 R. A. Cowley, Adv. Phys. 13, 421 �1963�.

PHONONS IN ALUMINUM AT HIGH TEMPERATURES… PHYSICAL REVIEW B 77, 024301 �2008�

024301-9


