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We revisit the problem of disorder-enhanced tunneling transmission of a quantum mechanical particle
through a disordered tunneling barrier in one dimension. Using the invariant imbedding theory of wave
propagation generalized to randomly stratified media, we calculate the disorder-averaged logarithmic transmit-
tance in the thick barrier limit and the disorder-averaged transmittance in a numerically exact manner. We
confirm that the tunneling decay length obtained from the mean logarithmic transmittance behaves nonmono-
tonically as a function of the disorder strength and takes its maximum value at some finite value of the disorder
parameter. We find that this nonmonotonic dependence persists in the presence of weak inelastic scattering
inside the tunneling barrier. When the system size is larger than some critical value, which is somewhat smaller
than the wavelength of the incident matter wave, we observe that the disorder-averaged transmittance also
shows a similar nonmonotonic dependence on the disorder strength. In other words, weak disorder enhances
the transmission, while strong disorder suppresses it. When the system size is smaller than the critical value,
the disorder-averaged transmittance decreases monotonically as the disorder strength increases.
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I. INTRODUCTION

Tunneling is one of the most basic and important quantum
mechanical processes. It occurs in a wide variety of natural
phenomena including thermonuclear reactions in stars and
radioactive nuclear decays. Various kinds of tunnel junctions
and devices based on electron or atom tunneling, which in-
clude Esaki tunnel diodes, Josephson junctions, and scanning
tunneling microscopes among many others, have played
revolutionary roles in the development of science and tech-
nology. They continue to be very important areas of research
both in fundamental sciences and in applications.1–6

Tunneling of quantum mechanical particles occurs due to
their wavelike nature. Therefore, similar phenomena can oc-
cur in all kinds of classical waves including electromagnetic
waves,7,8 plasma waves,9 and water waves.10 A well-known
example from optics is the tunneling of electromagnetic
waves in frustrated total internal reflection situations.8 The
so-called transparent metal structure consisting of alternating
metal and dielectric layers exploits the tunneling of electro-
magnetic waves through the metal layers, too.11 Tunneling is
also a very important process in the radio frequency heating
of inhomogeneous space and laboratory plasmas by external
electromagnetic waves.9,12,13

In realistic situations, tunneling barriers contain various
kinds of imperfections. For example, the electrode-barrier
interfaces of a tunnel junction may not be smooth and have a
substantial degree of surface roughness. Furthermore, the
barrier itself may contain impurities, defects, and other kinds
of structural disorder. In these cases, the barrier parameters
become spatially fluctuating quantities. The influence of spa-
tial disorder on the properties of tunnel junctions has been a
subject of active experimental and theoretical research.1,14–18

A peculiar disorder-induced phenomenon occurring when
a wave or a quantum mechanical particle passes through a

disordered one-dimensional tunneling barrier was reported
for the first time by Freilikher et al. in 1996.19 Using a dia-
grammatic perturbation theory, they found a surprising result
that the disorder-averaged tunneling transmittance behaved
nonmonotonically as a function of the disorder strength.
Contrary to the naive expectation, sufficiently weak disorder
was shown to enhance the tunneling transmittance, whereas
strong disorder suppressed it.

More recently, Luck reconsidered this problem and
pointed out that previous results on the theory of one-
dimensional localization could be used to derive an exact
analytical formula for the tunneling decay length in the case
of a Gaussian white-noise potential.20 He also obtained the
behavior of various moments of the transmittance in the
weak and strong disorder limits, when the system size is
sufficiently large.

Due to the mathematical difficulty of calculating the exact
disorder-averaged transmittance in disordered systems, pre-
vious works on the tunneling transmittance either used ap-
proximate methods or considered only some limiting cases.
Based on the invariant imbedding theory of wave
propagation,21–25 one of the authors has developed an effi-
cient numerical method of calculating the disorder-averaged
transmittance and reflectance of waves propagating in ran-
domly stratified media exactly.26 This method was used suc-
cessfully in calculating the probability distributions of the
reflectance and the phase of the reflection coefficient of
waves propagating in random media.

In this paper, we apply the method developed in Ref. 26
to the disordered tunneling barrier problem and calculate the
tunneling decay length and the disorder-averaged transmit-
tance exactly. Our result on the tunneling decay length agrees
perfectly with the analytical formula given in Ref. 20 and it
demonstrates that our method is, indeed, exact. Furthermore,
we calculate the decay length in a more general case where
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the particle experiences weak inelastic scattering inside the
tunneling barrier. We find that the nonmonotonic dependence
of the decay length on the strength of disorder survives in the
presence of weak inelastic scattering.

We also present the invariant imbedding equations which
are used in the exact calculation of the disorder-averaged
transmittance and its moments, and the results of our numeri-
cal calculation. Our results are obtained for systems of finite
size and do not assume weak or strong disorder limits. We
find that when the system size is larger than a certain critical
value, which is somewhat smaller than the wavelength of the
incident wave, the average transmittance behaves nonmono-
tonically and takes a maximum value at some finite value of
the disorder parameter. When the system size is smaller than
the critical value, the average transmittance decreases mono-
tonically as the disorder parameter increases.

In Sec. II, we describe our invariant imbedding method
and present the invariant imbedding equations, which are
used in the numerical calculation. In Sec. III, we show our
results on the tunneling decay length. In Sec. IV, we present
the results on the disorder-averaged transmittance. Finally, in
Sec. V, we discuss the experimental ramifications of our
theory and conclude the paper.

II. INVARIANT IMBEDDING METHOD

We are interested in the tunneling transmission of a quan-
tum mechanical particle through a disordered tunneling bar-
rier in one dimension, which is described by the Schrödinger
equation

d2�

dx2 + k2�1 −
V�x�

E
�� = 0, �1�

where E �=�2k2 /2m0� is the energy of the incoming particle
of mass m0 and V�x� is the potential. We assume that the
potential is equal to 0 for x�0 and x�L, and V�x�=V0�x�
+�V�x�− i� for 0�x�L, where V0�x� is a positive real func-
tion and � is a positive real constant. We suppose �V�x� to be
a Gaussian random function with zero mean and a white-
noise spectrum:

��V�x��V�x��� = 2D�x���x − x��, ��V�x�� = 0, �2�

where �¯� denotes averaging over disorder and the positive
function D�x� is a measure of the strength of nonuniform
randomness. Tunneling occurs when the particle energy
E ��0� is smaller than V0�x�. The constant � represents the
decrease of the number of particles with energy E due to
inelastic scattering inside the barrier.

As mentioned in the Introduction, tunneling can occur in
all kinds of classical waves. For instance, s-polarized plane
electromagnetic waves of vacuum wave number k0, which
are propagating in the xy plane and incident from a uniform
region with high refractive index n1 �=�	1� onto a stratified
dielectric slab at an incident angle 
, satisfy the wave equa-
tion

d2E
dx2 + �n1k0 cos 
�2�1 + 	̃�x�	E = 0,

	̃�x� =
	�x� − 	1

	1 cos2 

, �3�

where E is the electric field amplitude and 	�x� is the dielec-
tric permittivity of the slab. This equation has precisely the
same form as Eq. �1� if we identify n1k0 cos 
 and 	̃�x� with
k and −V�x� /E, respectively. Let us suppose that 	�x� is
given by 	�x�=	R+ i	I+�	�x�, where �	�x� is a Gaussian ran-
dom function satisfying

��	�x��	�x��� = 2��x���x − x��, ��	�x�� = 0. �4�

Tunneling of electromagnetic waves occurs if 0�	R�	1 and
�	R−	1� / �	1 cos2 
��−1, which are equivalent to the condi-
tion for total internal reflection, sin 
��	R /	1. The imagi-
nary part of the dielectric permittivity, 	I, describes the ab-
sorption of wave energy inside the slab and is related to the
inelastic scattering parameter � in the quantum case by
	I /	1 cos2 
↔� /E. The quantity representing the strength of
randomness, ��x�, is related to D�x� by
��x� /	1

2 cos4 
↔D�x� /E2.
Another example where tunneling of a classical wave is

described by Eq. �1� is the propagation of circularly polar-
ized electromagnetic waves in a direction parallel to the ex-
ternal magnetic field, B=B0x̂, in a magnetized electron
plasma slab.27 The electric field amplitude E+ �E−� for right
�left� circularly polarized waves propagating in the negative
x direction satisfies

d2E�

dx2 + k0
2�1 −

p
2

� � c + i���E� = 0, �5�

where p �=�4�e2ne�x� /me	1/2� is the electron plasma fre-
quency and c �=eB0 /mec� is the electron cyclotron fre-
quency. ne�x� is the electron number density and � is the
collision frequency. From Eq. �5�, it is easy to see that in the
frequency range, c��−, where −= ��c

2+4p
2�1/2

−c	 /2, both right and left circularly polarized waves cannot
propagate inside the plasma and are transmitted only by tun-
neling. We note that the electron density plays the role of the
potential in the present case. Therefore, if the density con-
tains a component which is random in x, Eq. �5� will be
completely equivalent to Eq. �1�.

We assume that the particle, which is described by a plane
wave of unit magnitude ��x�=eik�L−x�, is incident onto the
barrier from the region where x�L and transmitted to the
region where x�0. The quantities of main interest are the
complex reflection and transmission coefficients, r=r�L� and
t= t�L�, defined by the wave functions outside the medium:

��x� = 
eik�L−x� + r�L�eik�x−L�, x � L

t�L�e−ikx, x � 0.
� �6�

Using the invariant imbedding method, we derive exact dif-
ferential equations satisfied by r and t:

dr�l�
dl

= 2ikr�l� +
ik

2
�− �0�l� + i� + ���l�	�1 + r�l�	2,
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dt�l�
dl

= ikt�l� +
ik

2
�− �0�l� + i� + ���l�	�1 + r�l�	t�l� , �7�

where we have defined

�0�l� =
V0�l�

E
, � =

�

E
, ���l� = −

�V�l�
E

. �8�

The random function �v�l� satisfies

����l����l��� =
2D�l�

E2 ��l − l��, ����l�� = 0. �9�

The invariant imbedding equations �Eq. �7�	 are integrated
from l=0 to l=L using the initial conditions for r and t:

r�0� = 0, t�0� = 1. �10�

We will use Eqs. �7�, �9�, and �10� in calculating the exact
disorder averages of various physical quantities consisted of
r ���Rei
� and t ���Tei��, where the reflectance R= r2 and

the transmittance T= t2 as well as the phases 
 and � are
functions of L. In particular, we are interested in calculating
the tunneling decay length � of the matter wave defined by

lim
L→�

�ln T� = − L/� �11�

and the moments �TmRn� as a function of L for various values
of m and n.

An infinite number of coupled nonrandom differential
equations satisfied by the moments �TmRn� are obtained us-
ing Eqs. �7� and �9� and Novikov’s formula.28 It turns out
that in order to compute �TmRn�= �Tmrnr*n� for a non-
negative integer n, one needs to compute the moments
Zmnñ��Tmrnr*ñ� for all non-negative integers n and ñ. In
other words, the moments Zmnñ with n= ñ are coupled to Zmnñ

with n� ñ. The nonrandom differential equation satisfied by
Zmnñ has the form

1

k

d

dl
Zmnñ = �i�2 − �0�l�	�n − ñ� − ��m + n + ñ� + g�l��− m�n + ñ + 1� + 4nñ − 3n2 − 3ñ2	�Zmnñ

− �m + n�
g�l��2�n − ñ� + 1	 + i
�0�l�

2
+

�

2
�Zm,n+1,ñ + �m + ñ�
g�l��2�n − ñ� − 1	 + i

�0�l�
2

−
�

2
�Zmn,ñ+1

− n
g�l��2�n − ñ� − 1	 + i
�0�l�

2
+

�

2
�Zm,n−1,ñ + ñ
g�l��2�n − ñ� + 1	 + i

�0�l�
2

−
�

2
�Zmn,ñ−1

+ g�l��m + n��m + ñ�Zm,n+1,ñ+1 + g�l�nñZm,n−1,ñ−1 + g�l��m + n�ñZm,n+1,ñ−1 + g�l�n�m + ñ�Zm,n−1,ñ+1

−
g�l�

2
�m + n��m + n + 1�Zm,n+2,ñ −

g�l�
2

�m + ñ��m + ñ + 1�Zmn,ñ+2 −
g�l�
2

n�n − 1�Zm,n−2,ñ −
g�l�

2
ñ�ñ − 1�Zmn,ñ−2,

�12�

where g�l��D�l�k /2E2. For positive integers n and ñ and for
an arbitrary real number m, Zmnñ satisfies the conditions

Zmnñ�l = 0� = Zmn0�l = 0� = Zm0ñ�l = 0� = 0,

Zm00�l = 0� = 1,

Z000�l� = 1. �13�

We will solve Eq. �12� numerically using the truncation
method developed in Ref. 26. In disordered systems, we find
that the magnitude of the moment Zmnñ decays rapidly as
either n or ñ increases. We assume Zmnñ=0 for either n or ñ
greater than some large positive integer N and solve the finite
number �=�N+1�2	 of coupled ordinary differential equations
numerically for given values of m, �, and kL and for given
functions v0�l� and g�l�. We increase the cutoff N, repeat a
similar calculation, and then compare the newly obtained
Zmnñ with the value of the previous step. If there is no change

in the values of Zmnñ within an allowed numerical error, we
conclude that we have obtained the exact solution of Zmnñ.

In order to compute the tunneling decay length as defined
by Eq. �11�, we need to compute the mean logarithmic trans-
mittance �ln T� in the l→� limit. The nonrandom differential
equation satisfied by �ln T� is obtained using Eq. �7� and
Novikov’s formula in a straightforward manner:

1

k

d

dl
�ln T� = − � − g�l� − Re��i�0�l� + � + 2g�l�	Z010�l�

+ g�l�Z020�l�� . �14�

III. TUNNELING DECAY LENGTH

In the present paper, we restrict our attention to the cases
where v0�l� and g�l� are constants independent of l. Then the
tunneling decay length � is given by
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1

k�
= � + g + Re��i�0 + � + 2g�Z010�l → �� + gZ020�l → ��	 .

�15�

The values of Z010�l→�� and Z020�l→�� are obtained by
solving Eq. �12� numerically for m=0.

In Fig. 1, we plot the quantity G�Y� ��1 /2sk�� as a func-
tion of Y ��2g /s3�, where s=�v0−1, for � /V0=0, 0.05, and
0.1 and v0=2. G�Y� is inversely proportional to �, and Y is
proportional to the disorder strength. In the case where the
parameter �=0, the function G�Y� is universal in the sense
that it does not depend on the value of v0 or s, and agrees
perfectly with the analytical result obtained in Ref. 20:

G�Y,� = 0� = Y1/3FR�Y−2/3� ,

FR�X� =
Ai�X�Ai��X� + Bi�X�Bi��X�

Ai�X�2 + Bi�X�2 , �16�

where Ai�X� and Bi�X� are the Airy functions. This univer-
sality, however, does not hold in the ��0 case.

In Fig. 1, we notice that the tunneling decay length takes
its maximum value at some nonzero value of the disorder

parameter Y, in both the �=0 and ��0 cases. In other
words, the nonmonotonic behavior of the decay length per-
sists in the presence of weak inelastic scattering. The Y value
at which � takes the maximum increases slowly as � in-
creases. For � /V0=0, 0.05, and 0.1, the maxima occur when
Y =1.695, 1.732, and 1.769, respectively. As expected, for a
fixed Y, � decreases as the strength of inelastic scattering
increases.

IV. DISORDER-AVERAGED TRANSMITTANCE

We have calculated the disorder-averaged transmittance
�T� as a function of the disorder parameter g for fixed values
of kL, v0, and �, using Eq. �12� for m=1. In Fig. 2, we show
our results for several values of kL when v0=2 and �=0. We
find that for small values of kL, �T� is a monotonically de-
creasing function of disorder, whereas for large values of kL,
it takes the maximum value at a nonzero value of g, which
we call gm. In other words, the disorder-averaged transmit-
tance is enhanced as disorder increases in the weak disorder
regime, while it is suppressed as disorder increases in the
strong disorder regime.

In the nonmonotonic regime, the value of gm, at which �T�
takes the maximum, varies continuously as kL increases, as
shown in Figs. 3–5, which correspond to the cases with
v0=2, 1.5, and 3, respectively. The parameter � is set to zero.
We find that there is a critical value of kL below which the

FIG. 1. G�Y� �=1 /2sk�� plotted vs Y �=2g /s3�, where s
=�v0−1, for � /V0=0, 0.05, 0.1 and v0=2. The minima of G�Y�
�equivalently, the maxima of �� for � /V0=0, 0.05, and 0.1 occur at
Y =1.695, 1,732, and 1.769, respectively.

FIG. 2. Disorder-averaged transmittance �T� plotted vs the dis-
order parameter g for v0=2, �=0, and kL=0.3, 0.6, 1, 1.5, and 3.
When kL=0.3, �T� decreases monotonically as g increases. When
kL is larger than about 0.58, �T� behaves nonmonotonically and
takes its maximum value at gm.

FIG. 3. Dependence of gm on kL when v0=2 and �=0. Above
the critical value of kL, which is about 0.58, gm varies continuously
as kL increases.

FIG. 4. Dependence of gm on kL when v0=1.5 and �=0.
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nonmonotonic behavior does not occur and gm=0. When
v0=2, the critical value is about 0.58. This corresponds to the
system size approximately equal to 0.09�, where � is the
wavelength of the incident wave. The critical value of kL
decreases as v0 increases.

In general, the dependence of gm on kL is nonmonotonic.
We find that as kL increases, gm converges slowly to the
value of g where the tunneling decay length takes the maxi-
mum. Since the maximum of � occurs at Y =2g /s3�1.695 in
the nonabsorbing case, we expect gm to converge to 0.848,
0.3, and 2.397, respectively as kL→� in Figs. 3–5.

V. DISCUSSION AND CONCLUSION

Although there have been many studies on the influence
of impurities and structural disorder on the properties of tun-
nel junctions, there exists no direct experimental evidence of
the disorder-enhanced tunneling transmission discussed in
this paper. The present theory assumes that the random po-
tential depends on only one spatial coordinate. Since the ran-
dom potential in real tunnel junctions is usually two- or
three-dimensional, it is not possible to compare our theory
directly with the experiments on tunnel junctions, though we
believe the disorder-enhanced tunneling transmission will
occur in the presence of two- or three-dimensional disorder,
too. Another experimental difficulty is to find a method to
change the strength of weak disorder in a systematic and
continuous manner.

It appears that the effect studied here can be observed
more easily in the case of classical waves. For example, one
can fabricate a binary randomly layered medium composed
of alternating layers of two different dielectrics and of ran-
dom thicknesses29 and study the tunneling of electromag-
netic waves in the total internal reflection situation described
by Eq. �3�. It is also relatively easy to study the tunneling of
electromagnetic waves through a magnetized plasma slab,
which is described by Eq. �5�. Spatial disorder, in this case, is
introduced by thermal fluctuations of the plasma density and

there are many situations where the disorder can be consid-
ered to be one-dimensional.30 It is possible to control the
strength of disorder by simply changing the plasma tempera-
ture.

In our opinion, the easiest case to observe the disorder-
enhanced tunneling transmission is provided by shallow wa-
ter waves. In the linear case, the propagation of shallow wa-
ter waves is governed by the same wave equation as that for
p-polarized electromagnetic waves and the role of the dielec-
tric permittivity is played by the inverse water depth.31,32

Shallow water waves incident obliquely on a region where
the water depth increases suddenly can tunnel through the
region.10 Let us suppose that the bottom topography in this
region has one-dimensional randomness. Then the situation
becomes very similar to that studied so far. Experiments on
shallow water waves can be performed readily using a wave
tank with an artificially designed bottom shape. The strength
of disorder can be controlled very easily by changing the
average water depth.

In summary, we reconsidered the problem of disorder-
enhanced transmission of a quantum mechanical particle
through a disordered tunneling barrier in one dimension. Us-
ing the invariant imbedding theory of wave propagation gen-
eralized to randomly stratified media, we have calculated the
tunneling decay length and the disorder-averaged tunneling
transmittance in a numerically exact manner. We have con-
firmed the previous result that the tunneling decay length
behaves nonmonotonically as a function of the disorder
strength. In addition, we have found that this nonmonotonic
dependence persists in the presence of weak inelastic scatter-
ing inside the tunneling barrier. When the system size is
larger than some critical value, we have found that the
disorder-averaged transmittance also shows a similar non-
monotonic dependence on the disorder strength. When the
system size is smaller than the critical value, the average
transmittance decreases monotonically as the disorder
strength increases.

The method presented in this paper can be applied easily
to the exact calculation of other interesting quantities such as
�T−1�, �T−2�, and �T2�. It can also be used to study more
complicated cases where V0�l� and D�l� are functions of l,
instead of being constants. A straightforward generalization
of our method using Shapiro and Loginov’s formula will
allow one to study the case where the random potential is
short-range correlated with a finite correlation length.33

These generalizations will be considered in future publica-
tions.
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FIG. 5. Dependence of gm on kL when v0=3 and �=0.
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