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We have performed first principles calculations of the phonon spectra of the 4d transition metals with the
so-called supercell method and found good agreement with observations. Furthermore, the electron and phonon
contributions to the free energy for the 4d metals have been calculated from a first principles method. From the
free energy, the thermal expansion of the metals is calculated. The calculated thermal expansion coefficients for
the cubic elements are in overall good agreement with the experiment when the local density approximation is
employed, while the generalized gradient approximation calculations yield a discrepancy as big as �30%. For
the hexagonal elements, reasonable agreement is found between calculations and experiment for the volume
thermal expansion at temperatures 200 K�T�300 K.
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I. INTRODUCTION

For the past two decades, ab initio methods have been
used to calculate mechanical and thermodynamical proper-
ties of elements and compounds. However, in the beginning
of the era of density functional theory, most of the calcula-
tions were done at T=0 K, or if done at finite temperature,
the majority of the calculations were within the Debye-
Grüneisen theory. One of the more extensive works on ther-
modynamical properties of nonmagnetic metals has been
done by Moruzzi et al.1 In this theoretical work, thermody-
namical and mechanical properties of 14 nonmagnetic cubic
metals were calculated within the context of the Debye-
Grüneisen theory, where the average sound velocity used for
calculating the Debye spectra was connected to the bulk
modulus through an empirical value of Poisson’s ratio. A
similar approach was used for the actinides by Söderlind et
al.2

In the present paper, we have continued the work by
Moruzzi et al. by including the hexagonal nonmagnetic 4d
elements. More importantly, we have taken a step beyond the
Debye-Grüneisen theory by calculating the full phonon spec-
tra in a quasiharmonic theory. The big advantage of this ap-
proach is that the calculations are entirely free of empirical
parameters. In addition to this, we also provide here a set of
first principles calculations of the phonon spectra of the 4d
series and make a detailed comparison to experimental data.

II. CALCULATION OF THE FREE ENERGY

The Helmholtz free energy at a given strain �̄ can be
written as

F��̄,T� = U��̄� + Fphon��̄,T� + Fel��̄,T� , �1�

where U��̄� is the static lattice energy, Fphon the phonon free
energy, and Fel the electron excitation free energy. The static
lattice energy can be expressed as

U��̄� = U0 + V�
ij

Cij�i� j + Uanh��̄� , �2�

where U0 is the static lattice energy at zero strain, Cij are the
elastic constants, V is the equilibrium volume at T=0 K, and

Uanh is the anharmonic contribution to the static lattice en-
ergy. For the cubic 4d metals, the static lattice energies have
been calculated with the full potential linear muffin tin or-
bital �FP-LMTO� method3 both within the local density ap-
proximation �LDA� and the generalized gradient approxima-
tion �GGA�. In the FP-LMTO calculations, the number of k
points in the irreducible part of the Brillouin zone was 752.
To each eigenvalue, a Gaussian smearing of 20 mRy was
applied to speed up the convergence of the calculation.4

For the hexagonal 4d metals, the anharmonic part of the
static lattice energy was completely neglected, i.e., Uanh��̄�
=0, and only the elastic constants were used in the param-
etrization of the static lattice energy. To calculate the elastic
constants of the hexagonal metals, the VASP code5 was used,
with a 30�30�20 Monkhorst-Pack k-point mesh. Gaussian
smearing of 0.2 eV of the electronic states and GGA projec-
tor augmented wave �PAW� potentials were used in all elastic
calculations.

To evaluate the free energy contribution Fphon, which can
be expressed as6,7

Fphon��̄,T� = �
0

�

d�g��, �̄����

2
+ kBT ln�1 − e−��/kBT�� ,

�3�

the phonon density of states g�� , �̄� has to be calculated.
This was done within the quasiharmonic approximation by
making small displacements of the atoms in a supercell.8

For the phonon calculations, the VASP code was used, with
a Monkhorst-Pack k-point mesh of 6�6�6 for the fcc and
bcc metals and 9�9�6 for the hcp elements. Both LDA and
GGA PAW potentials were used in the phonon calculations
for the cubic metals, whereas for the hcp structures, only
GGA PAW potentials were used. Gaussian smearing of
0.2 eV was used in all the phonon calculations. The phonon
density of states was then calculated with the code in Ref. 9
where an 80�80�80 k-point mesh was used with a
0.05 THz smearing.

The free electronic energy was calculated by the approxi-
mate expression given by Sommerfeld and Frank,10
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Fel��̄,T� = −
��kB�2

6
D��F, �̄�T2, �4�

where D��F , �̄� is the electronic density of states at the Fermi
level. Finally, it should be stressed that even though the pho-
non dispersions presented in this work have been calculated
at the experimental lattice constants, only theoretically cal-
culated lattice constants have been used in all the thermody-
namic calculations.

III. THERMAL EXPANSION AND THE PHONON
SPECTRA OF THE CUBIC METALS

For the cubic metals, the free energy �Eq. �1�	 depends
only on the temperature and the volume strain �v
d�ln�V�	,
i.e., F��̄ ,T�=F��v ,T�. Here, the phonon density of states was
calculated for seven different volume strains in steps of
0.0025 Å. Due to the symmetry of the cubic metals, only one
displacement was needed to obtain the full force constant
matrix. The displaced atom was in the �0, 0, 0� position of
the supercell and the directions of the displacements were

�11̄0	 and �001	 for the fcc and bcc elements, respectively,
with amplitudes equal to �0.3% of the lattice constant. The
supercells used for calculating the phonon contribution to the
free energy were 3�3�3 cells �27 atoms� for Pd and Ag
and 4�4�4 �64 atoms� cells for Rh, Nb, and Mo. In order
to check the convergence of the phonon calculations of the
4d bcc metals, additional 6�6�6 �216 atoms� supercell cal-
culations were performed within the GGA. For convergence
tests on the fcc 4d metals, we refer to the work by
Grabowski et al.11

In Figs. 1 and 2, we show the calculated phonon disper-
sions for the 4d cubic metals together with experimental
data. Here, excellent agreement is found between the calcu-
lated and experimental phonon frequencies for almost all cu-
bic 4d elements. The only exception is Mo, where the calcu-
lated frequencies around the H and N symmetry points are
somewhat smaller than the experimental frequencies. Keep-
ing the effective number of k points constant in the Mo cal-
culations, no significant improvement can be seen as the cell
size is increased from 64 atoms �black dotted curve in the
lower panel of Fig. 2� to 216 atoms �solid red curve in the
lower panel of Fig. 2�. However, when the k-point mesh is
increased from 4�4�4 to 5�5�5 in the 216-atom GGA
calculation, the calculated Mo phonons are in overall accept-
able agreement with observed data �solid blue curve in the
lower panel of Fig. 2�.

In the 64 atom calculations of Nb, imaginary frequencies
were obtained in the long wavelength limit. This unphysical
mechanical instability corresponds to negative values of the
C44 elastic constant. Observe that in the results of the Nb
64-atom calculations �black dotted curve and solid black
curve in the upper panel of Fig. 2�, the imaginary frequencies
corresponding to negative values of C44 have been replaced
by phonon frequencies calculated from separately calculated
elastic constants. We will describe the details of this calcu-
lation below.

In an attempt to remedy the error observed for the long
wavelength phonons of Nb, the cell size in the Nb calcula-

tions was increased to 216 atoms �solid red and blue curve in
the upper panel of Fig. 2�. Here, the imaginary frequencies
are observed to have completely disappeared, even though
the discrepancy between theory and experiment is still no-
ticeable, with a softening of the transverse mode along the 	
to H symmetry direction and one between the H and P sym-
metry points. Increasing the k-point mesh from 4�4�4
�solid red curve in the upper panel of Fig. 2� to 5�5�5
�solid blue curve in the upper panel of Fig. 2� does not sig-
nificantly change the outcome of the calculation, suggesting
that the calculation is converged with respect to the number
of k points and that the discrepancy found between the pres-
ently calculated Nb phonons and experimental data stems
from finite size effects.

Due to the computational cost involved in performing re-
peated phonon calculations with the larger 216-atom cell, the
64-atom cells had to be used in the thermal expansion calcu-
lations of Nb and Mo. Thus, a more difficult approach had to
be used in the phonon calculations of Nb, where the negative
C44’s were replaced by separately calculated C44 constants.
The imaginary long wave phonons were then replaced with
phonon frequencies obtained from the calculated set of elas-
tic constants. The C44 were calculated with the PAW poten-
tials within the GGA. At the experimental room temperature
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FIG. 1. The phonon dispersion of the fcc 4d metals at ambient
pressure. The solid curves are the present T=0 K LDA calculation
at the experimental volumes. The dashed curves are the present T
=0 K GGA calculation at the experimental volumes. The filled
circles are the experimental room temperature data of Refs. 19–21.
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volume, the calculations gave C44=21 GPa, which can be
compared with the experimental room temperature value of
31 GPa or to the value calculated by Söderlind et al.12 of
27 GPa.

By fitting the calculated free energy to the Vinet EOS13 at
different temperatures and minimizing the free energy with
respect to volume at each temperature, the thermal expansion
of the cubic metals was obtained. In Figs. 3 and 4, we show
the calculated thermal expansions for the 4d cubic metals
together with experimental data. Here, good agreement is
found between theory and experiment for all the fcc and bcc
elements of the 4d series when the LDA is used. However,
when the GGA was used, the thermal expansion coefficients
are overestimated, sometimes by as much as �30%.

The discrepancy between the LDA and GGA calculations
can, in the case of the 4d cubic metals, be attributed to the
overestimation of the product between the zero temperature
isothermal bulk modulus and zero temperature equilibrium
volume BV0, calculated within the LDA, which is most eas-
ily seen from the fact that the thermal expansion to a good
approximation can be expressed as


�T� = −
1

3BV0

�2Fphon��v,T�
�T��v

. �5�

In Table I, the calculated bulk moduli and pressure deriva-
tives of the bulk moduli for the cubic 4d metals are shown
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FIG. 4. Linear thermal expansion for the bcc 4d metals at am-
bient pressure. The solid lines are the theoretical thermal expan-
sions calculated within the LDA. The dashed lines are theoretical
thermal expansions calculated within the GGA. The filled circles
are the experimental data of Ref. 24.
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FIG. 2. �Color online� The phonon dispersion of the bcc 4d
metals at ambient pressure. The solid black curves are the present
T=0 K LDA calculation done with a 64-atom supercell with a 6
�6�6 k-point mesh, the dotted black curves are the present T
=0 K GGA calculation done with a 64-atom supercell with a 6
�6�6 k-point mesh, and the solid red and blue curves are the
present T=0 K GGA calculation done with a 216-atom supercell
with a 4�4�4 and a 5�5�5 k-point mesh, respectively. All cal-
culations have been done at the experimental room temperature
equilibrium volumes. The filled circles are the experimental room
temperature data of Refs. 22 and 23.
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FIG. 3. Linear thermal expansion for the fcc 4d metals at am-
bient pressure. The solid lines are the theoretical thermal expan-
sions calculated within the LDA. The dashed lines are theoretical
thermal expansions calculated within the GGA. The filled circles
are the experimental data of Ref. 24.
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together with experimental data, and in Tables II and III, the
calculated and experimental lattice constants are displayed
for all the 4d metals.

Despite the overestimation of BV0, the thermal expansion
coefficients calculated within the LDA show good agreement
with experimental data, with the exception of Nb. The reason
for this is that the error from the overestimated product BV0
is canceled by the overestimation of the second derivative
�2Fphon /�T��v which is readily verified by inspection of Eq.
�5�. We also note that in the work of Grabowski et al.,11 the
thermal expansion of several 4d and 5d fcc metals were also
found to be overestimated by the GGA.

IV. THERMAL EXPANSION AND THE PHONON
SPECTRA OF THE hcp METALS

To parametrize the phonon part of the free energy, the
phonon density of states was calculated for seven different
volume strains

��v,�c� = �0,0�,��0.006,0�,��0.012,0�,��0.018,0�

and six different strains along the c axis

��v,�c� = �0, � 0.002�,�0, � 0.004�,�0, � 0.006�

relative to the calculated T=0 K equilibrium lattice constants
and c /a ratios. Here, the volume and tetragonal strains are
defined by �v
d�ln�V�	 and �c
d�ln�c /a�	.

To obtain the full force constant matrix for the hcp lattice,
the atom in the �0, 0, 0� position of the supercell was dis-
placed in two directions. The directions of the displacements
were �110	 and �001	 with amplitudes that were equal to

�0.4% of the lattice constant. The supercell used was a 3
�3�2 cell.

In Fig. 5, we show the calculated phonon dispersions for
the 4d hcp metals together with experimental data. Here, it is
seen that the calculated phonon frequencies show good
agreement with experimental data, in general, and the agree-
ment is best for the acoustic phonons in the long wavelength
limit. The biggest discrepancy between theory and experi-
ment can be found along the 	 to A symmetry line for the
3�3�2 supercell calculation of Tc �dashed curve in the
second panel from the bottom in Fig. 5�. Here, an entire
optical mode is missing due to a twofold degeneracy intro-
duced by the limited size of the supercell. This is corrected in
the 4�4�3 supercell calculation of Tc �solid curve in the
second panel from the bottom in Fig. 5� in which the missing
branch is present. Also in the case of Ru, using the larger
4�4�3 cell �solid curve in the bottom panel of Fig. 5�
greatly improves the agreement between theory and experi-
ment. Calculations were also done with the larger 4�4�3
cell for both Y and Zr �results not shown�, but no improve-
ment of the agreement between theory and experiment was
obtained. However, due to the computational cost involved
in performing repeated phonon calculations with the bigger
4�4�3 supercell, the thermal expansion calculations of the
hexagonal 4d metals were done with the smaller 3�3�2
supercell.

By differentiating the free energy �Eq. �1�	 with respect to
�v and �c at equilibrium strain, it is possible to obtain an
expression for the change in volume and structural property
as a function of temperature. These changes are expressed in
terms of equilibrium strains, �v

0 and �c
0, and can be written in

terms of elastic constants and strain derivatives of the free
energy,

TABLE III. The calculated zero temperature lattice constants a
and c �Å� of the 4d hcp metals, here presented together with ex-
perimental data. The experimental data are taken from Ref. 17.

a�GGA� c�GGA� a�expt� c�expt�

Y 3.65 5.65 3.65 5.73

Zr 3.24 5.17 3.23 5.15

Tc 2.76 4.42 2.74 4.39

Ru 2.74 4.32 2.71 4.28

TABLE I. The calculated bulk moduli B �GPa� and pressure derivatives of the bulk moduli B�=�B /�P of
the 4d cubic metals, here presented together with experimental data. The experimental data for the bulk
moduli have been measured at T=4.2 K and are taken from Refs. 14 and 15. The experimental data for B� are
taken from Refs. 16 and 18. The theoretical values of B and B� have all been calculated at the theoretical
T=0 K equilibrium volumes.

B�LDA� B��LDA� B�GGA� B��GGA� B�expt� B��expt�

Nb 192 3.77 173 2.58 173 4.1

Mo 291 4.21 262 3.96 265 4.70

Rh 318 5.03 250 4.98 267 4.50

Pd 227 5.41 169 5.18 195 5.42

Ag 138 5.65 91 5.22 109 5.87

TABLE II. The calculated zero temperature lattice constants a
�Å� of the 4d cubic metals, here presented together with experimen-
tal data. The experimental data are taken from Ref. 17.

a�LDA� a�GGA� a�expt�

Nb 3.26 3.31 3.30

Mo 3.12 3.17 3.15

Rh 3.76 3.85 3.80

Pd 3.85 3.96 3.89

Ag 4.00 4.16 4.09
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�v
0�T� =

1

V�B11B22 − B12
2 �
�− B22

�F*

��v
+ B12

�F*

��c
� , �6�

�c
0�T� =

1

V�B11B22 − B12
2 �
�B12

�F*

��v
− B11

�F*

��c
� , �7�

where

B11 =
2

9
�C11 + C12 +

1

2
C33 + 2C13� , �8�

B22 =
2

9
�C11 + C12 + 2C33 − 4C13� , �9�

B12 =
1

9
�C33 + C13 − C11 − C12� , �10�

F* = Fph + Fel. �11�

Furthermore, by differentiating Eqs. �6� and �7� with respect
to the temperature, the following relations are obtained for
the thermal expansion coefficients:31


� =
1

3V�B11B22 − B12
2 �
�− �B22 + B12�

�2F*

�T��v

+ �B12 + B11�
�2F*

�T��c
� , �12�



 =
1

3V�B11B22 − B12
2 �
�− �B22 − 2B12�

�2F*

�T��v

+ �B12 − 2B11�
�2F*

�T��c
� , �13�

� =
1

V�B11B22 − B12
2 �
�− B22

�2F*

�T��v
+ B12

�2F*

�T��c
� , �14�

where 
�= 1
a

da
dT , 

 =

1
c

dc
dT , and �= 1

V
dV
dT .

By fitting the free energies F��v ,�c	=F��v ,0	 and
F��v ,�c	=F�0,�c	 at a given temperature to polynomials of
first degree in �v and in �c, the equilibrium strains can be
obtained from Eqs. �6� and �7�, and the thermal expansion
coefficients can be calculated from Eqs. �12�–�14�, using
calculated values of the elastic constants. In Table IV, the
calculated elastic constants of the hexagonal 4d metals �ex-
cluding C55� are shown together with their respective experi-
mental values. We note in passing that experimental and the-
oretical values of the elastic constants are in good agreement
and that the present calculation yields values similar values
to that by Fast et al.25

In Fig. 6, we show the calculated thermal expansion co-
efficients of the hcp 4d metals. Here, the best agreement
between theory and experiment is found for the volume ther-
mal expansion coefficients � in the temperature interval
200 K�T�300 K. Also, the theoretical thermal expansion
coefficients 
� for Zr and Ru are in fairly good agreement
with the experimental data for temperatures 
100 K. The
biggest discrepancy between theory and experiment appears
for the thermal expansion coefficient 

 in Zr. Not only is
the theoretical prediction of 

 considerably smaller than the
corresponding experimental data but also negative for T
�75 K. However, the experimental data for Zr display some
peculiar features, especially the thermal expansion coeffi-
cients 
� and �, which show only the slightest variation
across the entire temperature interval. Furthermore, if one
would extrapolate the experimental 
� and � along their
respective tangents at T�50 K down to 0 K, they would be
positive and considerably different from zero. A general
property of all materials is that the thermal expansion coef-
ficients should approach zero at T=0 K. This is the situation
for hcp Ti which is isoelectronic to Zr. It is a matter of fact
that hcp Ti has a general behavior of 
� and 
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FIG. 5. The phonon dispersion of the hcp 4d metals at ambient
pressure. The solid curves are the present T=0 K calculation at the
experimental volumes. In the case of Tc and Ru, the solid curve is
the present calculation done with a 4�4�3 supercell and the
dashed curve is the present calculation done with a 3�3�2 super-
cell. The filled circles are the experimental room temperature data
of Refs. 27–30.
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ing to the curves for Zr in Fig. 6.35 The lack of such behavior
in the experimental data of Zr �and indeed the data for Ru
also seem to suggest such a behavior, although data were
only taken down to �75 K� suggests that the experimental
thermal expansion data of Zr are indeed somewhat question-
able. However, due to the long range nature of the Zr force
constants,36 which is considerable compared to the isoelec-
tronic elements Ti and Hf, and due to the observed substan-
tial temperature dependence of the phonons in hcp Zr,37,38

finite size effects and temperature effects, such as the smear-
ing of the Fermi surface �FS� and the anharmonicity beyond
the effect of thermal expansion, should also be taken into
consideration when one tries to understand the origin of the
discrepancy between the theoretical and experimental ther-
mal expansions of hcp Zr and might be important for an
accurate evaluation of the free energy as a function of tem-
perature for hcp Zr. We have, however, not pursued this ap-
proach since we wanted to treat all 4d elements on equal
footing.

Despite the shortcomings in the thermal expansion calcu-
lations of the 4d bcc and hcp elements, the present theoreti-
cal study reproduces the room temperature polycrystalline
thermal expansion trend all across the 4d transition metal
series. This is obvious from Fig. 7 where we show the vol-
ume thermal expansion for the entire 4d series at room tem-
perature �T=300 K� and ambient pressure together with ex-
perimental data.

V. CONCLUSION

From ab initio calculations, the phonon spectra and the
thermal expansion coefficients for the 4d elements have been
calculated. For the cubic structures, the present LDA calcu-
lations show good agreement with experimental data, both
concerning phonon spectra and thermal expansions. For the
GGA calculations, the agreement between theory and experi-
ment is only good in the case of the phonon spectra, while
for the thermal expansions, the discrepancy is sometimes as
high as �30%. In both the LDA and the GGA calculations
of the 4d cubic metals, the second derivative �2Fphon /�T��v
of the phonon contribution to the free energy was found

TABLE IV. The theoretical and experimental elastic constants of the 4d hexagonal metals.

C11 C12 C13 C33 C55

Y �GPa	 83.0 21.0 21.0 83.1

Ya �GPa	 83.4 29.1 19.0 80.1 26.9

Zr �GPa	 150.5 53.4 71.0 169.0

Zra �GPa	 155.4 67.2 64.6 172.5 36.3

Tc �GPa	 584.3 207.5 186.5 541.2

Tcb �GPa	 433.0 199.0 199.0 470.0 177.0

Ru �GPa	 562.4 178.8 158.2 605.1

Rua �GPa	 576.3 187.2 167.3 640.5 189.1

aExperimental data measured at 4.2 K taken from Ref. 14.
bExperimental data from Ref. 26. Here, the elastic constant C55 has not been calculated since it is not used in
the parametrization of the static lattice energy of the 4d hcp metals. The theoretical values of elastic constants
have all been calculated at the theoretical T=0 K equilibrium volumes.
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to be overestimated. However, this overestimation was al-
most completely canceled by the overestimation of BV0
in the LDA calculations, whereas no such cancellation was

found in the GGA calculations. In the case of the hcp
4d elements, the calculated phonon spectra and thermal
volume expansion agree with experiment. Concerning the
linear thermal expansion along the c and a axes, the agree-
ment is less good, especially for Y and Zr. However, not
only the increase of supercell size might suffice to improve
on the calculated results for the hcp 4d elements. The
inclusion of the anharmonic contribution to the static lattice
energy and a more elaborate parametrization of the phonon
contribution to the free energy could also improve the agree-
ment between theory and experiment, especially at high tem-
peratures.
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FIG. 7. Linear thermal expansion for the 4d metals at room
temperature and ambient pressure. The empty circles are the present
calculation. Here, the theoretical data for the cubic elements are
taken from the LDA calculations. The filled circles are the experi-
mental data of Ref. 34. For the hexagonal elements, the polycrys-
talline expansion coefficients 

� /3 are displayed.
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