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The general approach for the consideration of the magnetoelectric effects in ferroic nanorods is proposed in
the framework of the phenomenological theory. The intrinsic surface stress, magneto- and electrostriction, as
well as piezoelectric and piezomagnetic effects are included in the free energy. The intrinsic surface stress
under the curved nanoparticle surface is shown to play an important role in the shift of ferroelectric and
ferromagnetic transition temperatures and appearance of built-in magnetic and electric fields, which are in-
versely proportional to the nanorod radius. We consider the case of quadratic and linear magnetoelectric
coupling coefficients. The linear coupling coefficient is radius independent, whereas the quadratic ones include
terms inversely proportional to the nanorod radius and thus strongly increase with radius decrease. We pre-
dicted that quadratic magnetoelectric coupling induces dielectric tunability increase by 2–50 times in the
vicinity of ferromagnetic and ferroelectric phase transition points. The quadratic magnetoelectric coupling
dramatically changes the phase diagrams of ferroic nanorods under their radius decrease. In particular, the
second order phase transition may become the first one. Special attention is paid to the case when polarization,
magnetization, and magnetoelectric couplings are induced by intrinsic surface stress in nanorods.
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I. INTRODUCTION

The magnetoelectric �ME� effect, i.e., when the applica-
tion of either a magnetic field or an electric field induces an
electric polarization as well as magnetization, attracted much
attention in the last few years.1 Although it was predicted by
Curie2 in 1894 on the basis of symmetry consideration and
first observed in 1961 in an antiferromagnetic Cr2O3 crystal,3

the observed ME effect was small �about a few percent� that
retarded its broad investigation and especially technical ap-
plications. The latter is related to the fact that ME materials
must exhibit high ME coefficients for such important appli-
cations as magnetoelectric sensors in radio electronics, opto-
electronics, microwave electronics, transducers, and mag-
netically tuned capacitors, etc. Recently, the revival of the
ME effect has been observed due to the discovery of high
�several hundred percent� ME effects both in single-phase
and composite materials �see Refs. 4–7 and review Ref. 8,
and references therein�. Most of the composites exhibit
a high extrinsic ME effect resulting from the interaction
between magnetic and electric components via, e.g., their
magnetostriction and piezoelectric properties, as well as
piezomagnetic-piezoelectric interaction.9–12 Physical reasons
of the high ME effect are still unclear in single-phase mate-
rials, where the ME effect is intrinsic �see, e.g., Ref. 13�. The
description of this effect in microscopic theory based on a
Hamiltonian with spin-orbit interaction frequently uses the
idea that spin current symmetry belongs to the same class as
the electric polarization and so it is natural to expect cou-
pling between them.14,15 However, here, one could hardly
expect a high ME coefficient.

The phenomenological theory approach for the descrip-
tion of ME effect obligatory uses the interaction of magneti-
zation and electric polarization with mechanical tension both
in composites9,16 and single-phase materials.17,18 However,
no indication on the possibility to obtain high ME coupling

was revealed for the conventional type of mechanical condi-
tions in the single phase bulk materials.

The probability to obtain high ME coupling would appear
when mechanical conditions become completely different
under the confinement of nanomaterials. Some evidence in
favor of this assumption follows from the observation of
dramatically higher ME coefficients in epitaxially �001� ori-
ented BiFeO3 films on a SrTiO3 substrate than in the bulk
crystals. This effect was suggested to be related to the influ-
ence of boundary conditions in the consideration performed
in Ref. 19. The authors of Ref. 19 came to the conclusion
that ME effect and other properties might be understood in
terms of the appearance of a homogeneously magnetized
state in the film. Such a striking phenomenon as the obser-
vation of ferromagnetism in spherical nanoparticles �size
7–30 nm� of nonmagnetic oxides such as CeO2, Al2O3,
ZnO, etc., has been recently reported in Ref. 20. Extremely
strong superparamagnetic behavior down to 4 K has been
found in gold and palladium nanoparticles with mean diam-
eter of 2.5 nm and narrow size distribution with no magne-
tization in bulk.21 The appearance of ferroelectricity takes
place in nanorods and films of the incipient ferroelectrics,
which remain para-electric up to 0 K in bulk.22,23 It was
shown in the papers that the possible physical origin of elec-
trical polarization and magnetization could be mechanical
conditions in the restricted geometry of nanomaterials and, in
particular, the influence of intrinsic surface stress. Therefore,
it is not excluded that new secondary ferroics with M and P
might appear among oxide nanomaterials. This type of sec-
ondary ferroic is known to be a possibility for obtaining high
ME effects.8 However, up to now, no calculations were per-
formed to find out if the restricted geometry and related me-
chanical boundary conditions could influence the value of
ME effect coefficients. In this paper, we performed such cal-
culations. We applied a phenomenological theory approach
for oxide materials in the form of nanorods. Below, we
present the details of our model.
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The paper is organized as follows. Section II includes the
most general form of free energy including striction, piezo-
coefficients, and ME linear and nonlinear interaction. Order
parameters M and P are obtained after minimization of free
energy with respect to stress components �Sec. II B�. Sec-
tions III and IV consider built-in electric and magnetic fields
and ME coupling coefficient size effect calculations. The
consideration of size effects on the phase diagrams, electric
and magnetoelectric susceptibilities, as well as dielectric tun-
ability in the external magnetic field can be found in Sec. IV.
In the last section, we consider the most widely spread case
of nonzero quadratic ME effect only, to show that even in
this case, size effects become very strong.

II. THEORETICAL APPROACH

A. Model of calculations

We will consider the secondary ferroics with two order
parameters, magnetization M and electric polarization P.
These order parameters can be either inherent in the bulk
material or induced by confinements of nanorods. Keeping in
mind that ferromagnetism has been observed at room
temperature in nanoparticles of 7–30 nm size20 and the
sizes about 50 nm are suitable for the appearance of
ferroelectricity,22 we consider nanorods with the sizes of
5–50 nm. For such small sizes, the influence of surface and
related boundary conditions including surface tension are
known to be high. Thus, the properties are expected to be
more close to those near the surface than those in the bulk.
While for larger sizes, e.g., more than 100 nm, the properties
are known to change gradually from those on the surface to
those in the bulk �see, e.g., Refs. 24 and 25� for the consid-
ered sizes less than 50 nm, the properties can be regarded as
homogeneous and under the strong influence of surface ten-
sion. The main mechanism of the mechanical tension relax-
ation is known to be misfit dislocations, but the considered
nanorod sizes are usually smaller than the critical size �hd of
dislocation appearance;26 thus, the properties can be consid-
ered homogeneous. As a matter of fact, such approach is in
agreement with the so-called shell and core model of
nanoparticles,27 where the core is the inner part of a particle
that does not “feel” the influence of surface contrary to the
shell �outer part�. The core properties are practically the
same as those in the bulk. Investigation of ferroelectric nano-
particles by electron-spin-resonance method had shown28

that the shell sizes are in the region from several to tens of
nanometers. The characteristic feature of the shell is the ab-
sence of spatial inversion symmetry and so the existence of
piezoelectric effect even for cubic symmetry in the bulk. In
the general case, one can also suggest the existence of piezo-
magnetic effect. In what follows, we will consider long cy-
lindrical nanorods with electrical polarization along the z
axis and magnetization along one of three equivalent axes
with external electric and magnetic fields along the z and x
directions correspondingly �see Fig. 1�. The nanorods are
clamped and long enough �h�R�, so for the considered ge-
ometry, depolarization field is absent. Also, it is possible to
make the demagnetization field negligible.29 Under such con-
ditions, single domain state will be the most preferable.

Electro- and magnetostriction effects as well as mechanical
stress tensor with boundary conditions at the curved nano-
particle surface must be taken into account. We assume that
nanorods are well separated from one another and do not
interact electrically or magnetically.

B. Gibbs energy renormalization caused by intrinsic
surface stresses

Let us consider a rather long cylindrical ferroic nanorod
with free sidewalls ��=R� clamped between the wafer
�z=−h /2� and top electrode �z= +h /2� �see Fig. 1�.

In what follows, we will use one set of parameters for the
nanoparticle. Such a situation is possible for a nanorod of
small radius. However, it is not excluded that numerical val-
ues and the symmetry of material tensorial constants differ
from the ones tabulated for the bulk material, e.g., there are
“shell” constants intergrown through the nanoparticle “core.”
For this important case, several electro- and/or magnetome-
chanical coupling phenomena absent in the bulk may appear
from the symmetry breaking in the vicinity of surface �see
below�.

Let us assume that polarization is directed along the polar
axis z and magnetization along the weak magnetic anisotropy
axis x, i.e., P= �0,0 , P3� and M= �M1 ,0 ,0�. So, the Gibbs
energy expansion of the homogeneous polarization P3�T�,
magnetization M1�T�, and stress �ij has the form

GR = 2�h�
0

R

�d��a1P3
2 + a11P3

4 + a111P3
6 − �Q11�33

+ Q12��11 + �22��P3
2 −

1

2
�A11�11

2 + A11�22
2 + A33�33

2 �P3
2

+ ¯ − g3jk
e � jkP3 + b1M1

2 + b11M1
4 + a111M1

6 − �Z11�33

+ Z12��11 + �22��M1
2 −

1

2
�B11�11

2 + B11�22
2 + B33�33

2 �M1
2

+ ¯ − g1jk
m � jkM1 −

1

2
s11��11

2 + �22
2 + �33

2 �

− s12��11�22 + �11�33 + �33�22� −
1

2
s44��23

2 + �13
2 + �12

2 �

+ f ijkl�ij
2 �kl

2 − M1H0 − P3E0� . �1�

Subscripts 1, 2, and 3 denote Cartesian coordinates x, y, and
z, respectively; we use Voigt notation or matrix notation
when necessary �xx=1, yy=2, zz=3, zy=4, zx=5, xy=6�.
Coefficients a1�T� and b1�T� explicitly depend on tempera-
ture T in the framework of the Landau-Ginzburg approach.
All higher order expansion coefficients are regarded tem-
perature independent. Since we assume that the order param-
eters and elastic stress spatial distribution are homogeneous
inside the nanorod, we should neglect the gradient energy.
Note that for the film on the substrate, this assumption is
valid when the film thickness is less than the critical thick-
ness of misfit dislocation appearance that is known to be
dozens of nanometers.26
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In Eq. �1�, Qij and Zij are, respectively, the electro- and
magnetostriction tensor coefficients; sij are components of
the elastic compliance tensor.30 Hereinafter, we assume the
symmetry of piezoelectric �g3jk

e � and piezomagnetic �g3jk
m � ef-

fects due to the fact that the surface influence is different
from the cubic phase as follows: g3jk

e � jkP3=g31
e ��11

+�22�P3+g33
e �33P3+¯ and g1jk

m � jkM1=g11
m ��11+�22�M1

+g13
m �33M1+¯.
The distribution of stress �ij should satisfy the conditions

of mechanical equilibrium as well as appropriate boundary
conditions at the curved nanoparticle surface,

��ij

�xi
= 0,

������=R = −
�

R
, ������=R = 0, ���z��=R = 0,

u3�z = ± h/2� = 0. �2�

Here, �ij =��ij is the intrinsic surface stress tensor coeffi-
cient 31,32 which has nontrivial components only on the na-
norod surface. The surface stress � is strongly dependent on
the ambient material.

Minimization of the free energy �Eq. �1�� with respect to
the stress components �ij leads to the equations of state
�GR /��ij =−uij, where uij are strain tensor components. Ne-
glecting the terms 	f ijkl�ij

2 �kl
2 , one obtains that the homoge-

neous solution for the stress and strain tensor components �ij
in Cartesian coordinates has the form

�11 = �22 = −
�

R
, �12 = �13 = �23 = 0, �3�

�33 =
s12�2�/R� − Q11P3

2 − Z11M1
2 − g33

e P3 − g13
m M1

s11 + A33P3
2 + B33M1

2 . �4�

Rigorously speaking, solutions �3� and �4� are valid for na-
norods of radius R less than the critical thickness �hd of
surface stress relaxation �e.g., dislocation appearance26�. For

the case R��hd, a rather complex inhomogeneous elastic
problem with elastic stress and polarization gradients should
be considered, which is far beyond the scope of the paper. An
approximate solution could be obtained within the frame-
work of the conventional core and shell model.25 Elastic
stress �ij given by Eqs. �3� and �4� is mainly concentrated in
the shell region, whereas the core is almost unstressed �i.e.,
�ij 
0�.

Typically, �hd	5–50 nm. In what follows, we thus
mainly consider the case R	�hd �i.e., all the particles are in
the shell region� since it is the most interesting one for sur-
face and size effect manifestation. Effects related with the
shell influence on the dielectric and magnetoelectric proper-
ties of thick nanorods will be qualitatively considered in the
discussion.

Note that the considered mechanical boundary conditions
represent one of the possible experimental situations. Per-
formed calculations have shown that magnetoelectric cou-
pling is absent in mechanically free rods, while in the case of
partial clamping, the results are qualitatively similar to the
ones considered below.

Hereinafter, we assume that the terms Aii�ii
2P3

2 and
Bii�ii

2M1
2 are small, so we neglect their higher powers. Sub-

stituting Eqs. �3� and �4� into Eq. �1�, we obtain the Gibbs
energy with renormalized coefficients,

GR = 2�h�
0

R

�d��
1�T,R�P3
2 + 
11P3

4 − P3�E0 + Ep�R��

+ �1�T,R�M1
2 + �11M1

4 + M1�H0 + Hp�R��

+ gME�P3,M1�� . �5�

The renormalized coefficients before P3
2 and M1

2 in the free
energy �Eq. �5�� have the form


1�T,R� = a1�T� +
�g33

e �2

2s11
+

2�

R
Q12 − Q11

s12

s11
�

−
2�2

R2 A11 + A33
s12

2

s11
2 � , �6a�

�1�T,R� = b1�T� +
�g13

m �2

2s11
+

2�

R
Z12 − Z11

s12

s11
�

−
2�2

R2 B11 + B33
s12

2

s11
2 � . �6b�

The internal “built-in” fields induced by the piezoelectric and
piezomagnetic effects are introduced as

Ep�R� =  s12

s11
g33

e − g31
e �4�

R
, Hp�R� =  s12

s11
g13

m − g11
m �4�

R
.

�7�

The nanorod magnetoelectric energy density is

gME = ��11M1P3 + �12M1P3
2 + �21M1

2P3 + �22M1
2P3

2� . �8�

Linear and quadratic magnetoelectric coupling coefficients in
the magnetoelectric energy �Eq. �8�� are

y

x

z

R

-h/2

+h/2

M1 �~�/R

E0

P3 H0

FIG. 1. �Color online� Geometry of cylindrical particle. x is one
of the three equivalent weak magnetic anisotropy axes; z is the
polar ferroelectric axis. The external electric field E0 is directed
along the polar axes; magnetic field H0 is directed along the x axis.
The geometry H0�E0 is typical for the majority of experiments.
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�11 =
g33

e g13
m

s11
, �9a�

�12 = g13
m Q11

s11
+

2�

R

s12A33

s11
2 �, �21 = g33

e Z11

s11
+

2�

R

s12B33

s11
2 � ,

�9b�

�22 = �Q11Z11

s11
−

A33�g13
m �2 + B33�g33

e �2

2s11
2

+
2�

R

s12

s11
2 �Q11B33 + Z11A33� +

4�2

R2

s12
2

s11
3 B33A33� .

�9c�

Both piezoelectric and piezomagnetic coefficient nonzero
values g33

e �0 and g13
m �0 are necessary to obtain the non-

zero linear coupling coefficient �11�0 that may be possible
in some special cases. For instance, g33

m =1.210−8 Wb /N
and g13

m =−5.810−9 Wb /N in bulk Terfenol-D.11 If piezo-
electric coupling is absent in the bulk, it may appear inside
the nanorod of radius R��hd �or the corresponding shell
region for R��hd�, allowing for the symmetry breaking on
the surface. The coefficient �22�0 is nonzero for all magne-
toelectric materials. Note that the last term in Eq. �9c� pro-
portional to the product B33A33 would be neglected hereinaf-
ter.

For the case R��hd, the core �i.e., bulk� magnetoelectric
coupling coefficients are radius independent and the magne-
toelectric energy coincides with the one of the laterally
clamped bulk material,

gME 

g33

e g13
m

s11
M1P3 + g13

m Q11

s11
M1P3

2 + g33
e Z11

s11
M1

2P3

+
Q11Z11

s11
M1

2P3
2. �10�

III. BUILT-IN FIELD THICKNESS DEPENDENCE

The built-in electric and magnetic field �Eq. �7�� depen-
dencies on nanorod radius are shown in Fig. 2 for typical
material parameters. It is clear from the log-log dependencies
that built-in fields increase with radius decrease and could
overcome bulk coercive field values EC and HC �see solid
and dashed lines�.

Built-in electric field leads to the horizontal shift of all
hysteresis loops and electretlike state appearance in ferro-
electric films with thickness less than the critical one. It fa-
cilitates the thin film self-polarization as predicted in Refs.
33 and 34. Besides trivial hysteresis loop horizontal shifts
�see Figs. 2�c� and 2�d��, we predict ordering effects caused
by built-in magnetic fields and the radius dependent Hp�R�
effect may induce ferromagnetism or irreversible magnetiza-
tion in small nanorods absent in the bulk material. This is
similar to the ferroelectricity in incipient ferroelectric
nanorods22 and electret state in ultrathin films.34 Under the
absence of external magnetic field, the built-in magnetic field

smears magnetic, dielectric and magnetoelectric susceptibil-
ity temperature maxima, increases their values in the para-
magnetic phase, and essentially increases the magnetoelec-
tric tunability. Therefore, both electric and magnetic built-in
fields originated from piezoeffects and surface stress in na-
norods essentially influence the nanoparticle properties.

IV. SIZE EFFECT ON MAGNETOELECTRIC
COUPLING COEFFICIENTS

Let us rewrite Eqs. �9a�–�9c� as

�12�R� = �12
b 1 +

R12

R
�, �21�R� = �21

b 1 +
R21

R
� ,

�22�R� 
 �22
b 1 +

R22

R
� , �11�

where �12
b =g13

m �Q11 /s11�, R12=2��s12A33 /s11Q11�, �21
b

=g33
e �Z11 /s11�, R21=2��s12B33 /s11Z11�, �22

b = �Q11Z11 /s11�
− �A33�g13

m �2+B33�g33
e �2 /2s11

2 �, and R22=R12+R21

=2��s12�Q11B33+Z11A33� /s11Q11Z11�. Usually bulk material
magnetoelectric coupling constants �ij

b are small or identi-
cally zero depending on the material symmetry.

The linear coupling coefficient is radius independent,
whereas the quadratic ones include terms inversely propor-
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FIG. 2. �Color online� Built-in �a� electric and �b� magnetic field
dependencies on nanorod radius for parameters g13

m �10−9 Wb /N,
g11

m =0, g33
e �10−3V m /N, g31

e =0, �=5, 10, and 50 N /m �figures
near the curves�, and s12 /s11=−0.3. The region between the dashed
lines corresponds to the typical range of bulk coercive fields EC and
HC �see, e.g., Ref. 35�. ��c� and �d�� Schematic hysteresis loops via
the normalized magnetic field H /HC. All values are normalized on
their bulk values at zero fields without electromagnetic coupling.
The electric field is assumed to be zero.
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tional to the nanorod radius. They thus strongly increase with
radius decrease. Linear magnetoelectric coupling �11 breaks
the symmetries P→−P and M→−M as well as smears the
transition point even at zero magnetic and electric fields. So,
Eq. �11� allows the strong renormalization and even sign
change of �ij�11 caused by intrinsic surface stress since char-
acteristic parameters Rij could be positive or negative. In
accordance with estimations made in Ref. 36, usually,
1 nm� �R12��50 nm and 5 nm� �R21��50 nm, and so their
sum �R22��100 nm. Size dependence of the normalized cou-
pling coefficients is shown in Fig. 3. It is clear from Fig. 3
that at small radii R / �Rij��1, coefficients �ij�11 are much
greater than their bulk values �ij�11

b .
In what follows, we demonstrate the effects related to

magnetoelectric coupling coefficients �ij�11 and their influ-
ence on ferromagnetic and ferroelectric transition tempera-
tures and properties.

V. SIZE EFFECT OF PHASE DIAGRAMS, ORDER
PARAMETER AND GENERALIZED SUSCEPTIBILITIES

A. Renormalized instability temperatures, order
parameters, and susceptibilities calculations

Using renormalized coefficients �Eqs. �6�–�9��, one can
rewrite the free energy �Eqs. �5� and �8�� density g̃�R ,T� as
follows:

g̃�R,T� = �
1P3
2 + �1M1

2 + 
11P3
4 + �11M1

4 − �Ep + E0�P3

− �Hp + H0�M1 + �11M1P3 + �12M1P3
2

+ �21M1
2P3 + �22M1

2P3
2� . �12�

The coefficients 
1 and �1 are temperature and radius depen-
dent in accordance with Eqs. �6a� and �6b�. They can be
rewritten as 
1=
T�T−Tce�R�� and �1=�T�T−Tcm�R��. The
temperatures Tce�R� and Tcm�R� which do not take into ac-
count ME effect are:

Tce�R� = Tce
* −

1


T
RQ

R
−

�A

R2�, Tce
* = Tce

b +
�g33

e �2

2s11
T
,

RQ = 2�Q12 − Q11
s12

s11
�, �A = 2�2A11 + A33

s12
2

s11
2 � ,

�13a�

Tcm�R� = Tcm
* −

1

�T
RZ

R
−

�B

R2�, Tcm
* = Tcm

b +
�g13

m �2

2s11�T
,

RZ = 2�Z12 − Z11
s12

s11
�, �B = 2�2B11 + B33

s12
2

s11
2 � .

�13b�

The temperatures Tce�R� and Tcm�R� determine the corre-
sponding paraphrase instability for the first order phase tran-
sitions or the ferroelectric and ferromagnetic phase transition
points for the second order phase transitions.

Note that both signs of characteristic constants RQ,Z and
�A,B are possible. Estimations22 proved that the contribution

of terms 	1 /R becomes essential at radii less than 5–50 nm
at the reasonable values of surface stress tensor ���
=5–50 N /m.37 At positive characteristic constants, size-
induced phase transition exists, while the temperature en-
hancement is possible at their negative values. The inequal-
ity Tcm

* /Tce
* 	1 is typical for the majority of bulk multi-

ferroic materials such as BiFeO3, Pb�Fe,Nb�O3, and
Eu�Ba,Ti�O3.17 However, it is not excluded that
Tcm�R� /Tce�R�	1 for nanorods of definite radius R, allowing
for the considered size effects. The case Tcm

b =0, Tce
b =0 cor-

responds to the bulk material without ferroic properties.
It is important for further consideration that characteristic

parameters RQ,Z �as well as parameters �A,B� �which deter-
mine the size-induced transition temperature shift in accor-
dance with Eqs. �13a� and �13b�� and parameters Rij �which
determine the magnetoelectric coupling coefficient size ef-
fects in accordance with Eq. �11�� depend on the different
material constants �e.g., piezoconstants�, have different nu-
merical values, and thus should be tuned independently.

The conditions of the free energy minimum, �g̃ /�P3=0
and �g̃ /�M1=0, lead to the coupled equations of state for the
order parameter determination,

2
1P3 + �11M1 + 2�12M1P3 + �21M1
2 + 2�22P3M1

2 + 4
11P3
3

= Ep + E0,

2�1M1 + �11P3 + �12P3
2 + 2�21M1P3 + 2�22P3

2M1 + 4�11M1
3

= Hp + H0. �14�

After elementary transformations of Eq. �14� listed in Appen-
dix B of Ref. 36, electric and magnetoelectric susceptibilities
can be found as
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2��1 + �21P3 + �22P3
2 + 6�11M1

2�
��M1,P3�

, �15a�
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FIG. 3. �Color online� Size dependence of the normalized cou-
pling coefficients �̃ij =�ij / ��ij

b � via the nanorod radius R / �R22�: �̃22

�solid curves, “22”�, �̃12 �“12,” long-dashed curves for R12 / �R22�
= ±0.75 and dotted curves for R12 / �R22�= ±7.5�, �̃12 �“21,” short-
dashed curves for R12 / �R22�= ±0.25 and dash-dotted curves for
R12 / �R22�= ±6.5�, and constant �̃11=1 �“11,” circles�. To generate
the plots, we used the identity R21 / �R22�=1−R12 / �R22�.
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�ME =
�P3

�H0
=

�M1

�E0
= −

�11 + 2�12P3 + 2�21M1 + 4�22M1P3

��M1,P3�
,

�15b�

�M =
�M1

�H0
=

2�
1 + �12M1 + �22M1
2 + 6
11P3

2�
��M1,P3�

, �15c�

where

��M1,P3� = �4�
1 + �12M1 + �22M1
2 + 6
11P3

2�

��1 + �21P3 + �22P3
2 + 6�11M1

2�

− ��11 + 2�12P3 + 2�21M1 + 4�22M1P3�2� .

�16�

Built-in fields �Eq. �7�� lead to the order parameter and
susceptibility hysteresis loop horizontal shift, i.e., the loop
horizontal scale is determined by the sum Hp�R�+H0, as
shown in Figs. 2�c� and 2�d�.

Below, we mainly consider the most widely spread case
of existence of the quadratic ME effect only �i.e., piezoeffect
is absent and so �11=0, �12=0, �21=0, �22�0, Hp=Ep=0,
Tcm

* =Tcm
b , and Tce

* =Tce
b �. Detailed consideration of the size-

induced transition temperature shift will be presented in the
next section, where we demonstrate that under the condition
�22�R�� ��22

b �, the influence of the quadratic ME coupling
term �22M1

2P3
2 on phase diagrams, susceptibilities, and order

parameters becomes very strong.

B. Phase diagrams with magnetoelectric coupling,
without external fields

For the case when magnetic and electric fields are absent
�H0=0, E0=0�, analysis of the free energy �Eq. �12�� is es-
sentially simplified. In the Table I, we summarized general
conditions for the stability and existence of the four different
phases, namely, paraphase �P=0, M =0�, ferroelectric �P
�0, M =0�, ferromagnetic �P=0, M �0�, and mixed
ferroelectric-ferromagnetic phase �secondary ferroic phase
P�0, M �0� denoted as PP, FE, FM, and FEM, respec-
tively.

Let us analyze essentially simplified Eqs. �14� and �15�,
which defined the polarization, magnetization, and suscepti-
bilities. Keeping in mind that all these properties for FE and
FM phases have a conventional form, we will concentrate
our attention on the consideration of the FEM phase. In the

considered case of nonzero quadratic ME effect only, Eq.
�14� simplified to the form

2
1P3 + 4
11P3
3 + 2�22M1

2P3 = 0,

2�1M1 + 4�11M1
3 + 2�22M1P3

2 = 0. �17�

It is easy to see from Eq. �17� that

PFEM
2 =

− 2
1�11 + �1�22

4
11�11 − �22
2 ,

MFEM
2 =

− 2
11�1 + 
1�22

4
11�11 − �22
2 . �18�

This phase is stable at −2
1�11+�1�22�0, −2
11�1+
1�22
�0, and 4
11�11−�22

2 �0 �see Table I�. So, both numerator
and denominator in Eq. �18� are positive for the FME phase.

Using the expressions �Eq. �18�� for PFEM
2 and MFEM

2 ,
one can obtain that ��MFEM , PFEM�=16�4
11�11

−�22
2 �PFEM

2 MFEM
2 and then rewrite Eqs. �15a�–�15c� as fol-

lows:

�E =
�11

2�− 2
1�11 + �1�22�
, �19�

�M =

11

2�− 2
11�1 + 
1�22�
, �20�

�ME = −
�22

4�4
11�11 − �22
2 �MFEMPFEM

=
�22

2��11
11

��E�M .

�21�

It is seen that in the points where PFEM
2 or MFEM

2 tends to
zero, �ME diverges. It worth noting, that the last formula for
�ME is in agreement with that written in Ref. 8 allowing for
�22 /2��11
11	1, as follows from the FEM phase stability
�see Table I�.

The coefficients 
1 and �1 are temperature and radius
dependent. They can be rewritten as 
1=
T�T−Tce�R�� and
�1=�T�T−Tcm�R��. Substituting them into Eqs. �19�–�21�,
we obtained

�E =
CE

�TCE
* − T�

, �22�

�M =
CM

�TCM
* − T�

, �23�

�ME =
�22

2�
11�11

� CECM

�TCT
* − T��TCM

* − T�
. �24�

Here, we introduced temperatures and Curie-Weiss constants
renormalized by the magnetoelectric interaction,

TCE
* =

2�11
TTcl�R� − �T�22Tcm�R�
2�11
T − �T�22

, �25a�

TABLE I. The conditions of phase existence and stability in the
absence of external fields.

Phase Conditions

PP 
1�0, �1�0

FE 
1	0, 
1�22−2�1
11	0

FM �1	0, �1�22−2
1�11	0

FEM 
1�22−2�1
11�0, �1�22−2
1�11�0,
4
11�11−�22

2 �0
�secondary ferroic phase�
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TCM
* =

2
11�TTcm�R� − 
T�22Tcl�R�
2
11�T − 
T�22

, �25b�

CE =
�11

2�2
T�11 − �T�22�
, CM =


11

2�2
11�T − 
T�22�
.

�26�

It is easy to see that Eq. �18� can be rewritten as

PFEM
2 = AE�TCE

* − T� , �27a�

MFEM
2 = AM�TCM

* − T� , �27b�

AE =
2
T�11 − �T�22

4
11�11 − �22
2 , AM =

2
11�T − 
T�22

4
11�11 − �22
2 . �28�

Therefore, we obtained the conventional formula for order
parameters and susceptibilities renormalized by size effect
and magnetoelectric coupling transition temperatures and all
the coefficients. Note that the case of the FE or FM phase
can be obtained from Eqs. �22�–�28� at the limit �22→0.

In what follows, we will consider the property behavior in
a broad temperature region with different phases. Therefore,
it is necessary to consider first phase diagrams, allowing for
their dependence on ME coupling value and radius of nano-
rods.

Since the free energy �Eq. �12�� renormalized coefficients
�Eqs. �6�, �7�, and �9�� depend on the rod radius, Table I
allows one to construct phase diagrams in different coordi-
nates. As one can see from the table, there are no ranges of
coexistence between PP and �FE, FM� phases or FEM and
�FE, FM, PP� phases. At the same time, there is some possi-
bility for FE and FM phases to coexist. In this case, the
phase transition between FE and FM would be of the first
order. The phase transition between other phases �PP with FE
or FM, or FEM with FE or FM or PP� is of the second order.
The conditions of the phase transitions are summarized in the
Table II.

The last two rows of Table II proved that the quadratic
magnetoelectric coupling term �22M1

2P3
2 acts as a secondary

ferroic phase suppressing or enhancing factor depending on
�22 sign. Positive �22 values decrease the phase transition
temperature, while the negative ones increase it.

We predict that high enough ME coupling ��22�R�
	0, ��22�R����22

b � may lead to the condition �1�T�+�22P3
2

�0 in some temperature range even at �1�T=0��0 and thus
may induce a ferromagnetic phase in small nanorods even if
this phase is absent in bulk materials �similar to the appear-
ance of ferroelectricity in incipient ferroelectric nanorods22�.
In order to demonstrate such a situation, below, we consider
the case of Tcm

b =0, Tce
b =0 �i.e., when the bulk material has no

ferroic properties, so it can be a PP phase only at large ra-
dius�. For the case, one should introduce the ferroelectric to
ferromagnetic energy ratio W=�
11 /�11 and dimensionless
quadratic magnetoelectric coupling coefficient �22�R�
=�22�R� /�4
11�11. Phase diagrams for the case of Tcm

b =0,
Tce

b =0 and different values of RZ, �22
b , and �T /
T are shown

in Fig. 4 for the typical case �T /
T=102 because for the
majority of ferroic materials, �T /
T�1 �the cases �T /
T
=1 and �T /
T=10−2 are considered in Ref. 36�. In the case
Tcm

b =0, Tce
b =0, ferroic phase appears at small radii and the

transition temperatures increase with radius decrease. As
seen from Fig. 4, the region of the FEM phase existence is
wider for the case �22	0 than for �22�0 �compare plots �a�
and �c� with �b� and �d�� as anticipated. The ratio RZ /RQ
increase stimulates the FEM and FM phase appearance
�compare plots �a� and �b� with �c� and �d��.

Phase diagrams of the considered system for different
nonzero ratios Tcm

b /Tce
b are presented in Fig. 5.

Comparing Fig. 5�a� with Fig. 5�b�, one can see that the
increase of Tcm

b /Tce
b ratio drastically changes the phase se-

quence and existence, namely, FE phase disappears and FM
and FEM phase regions essentially increase for Tcm

b /Tce
b =1 in

comparison with the case Tcm
b /Tce

b =0.1. The region of several
phase coexistence is denoted by a circle in Fig. 5�a�.

TABLE II. The boundaries between different phases �if any� in
the absence of external fields.

Transition Order Condition

PP-FE II 
1=0 �i.e., T=Tce�R��
PP-FM II �1=0 �i.e., T=Tcm�R��
FE-FM I 
1

2 /
11=�1
2 /�11

FE-FEM II 
1�22=2�1
11

�i.e., T=Tcm�R�− ��22�R� /�T�P3
2�T ,R��

FM-FEM II �1�22=2
1�11

�i.e., T=Tce�R�− ��22�R� /
T�M1
2�T ,R��
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FIG. 4. �Color online� Phase diagrams for the following param-
eters: �T /
T=102, Tcm

b =0, Tce
b =0, �
11 /�11=1.5, RQ�0, R22 /RQ

=30, �A,B=0, H0=0, and E0=0. �a� �22
b =−10−3, RZ /RQ=0.1; �b�

�22
b =10−3, RZ /RQ=0.1; �c� �22

b =−10−3, RZ /RQ=10; �d� �22
b =10−3,

RZ /RQ=10.
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Figures 6�a� and 6�b� demonstrate the temperature depen-
dencies of polarization and magnetization at zero fields and
different nanorod radii. It is seen that the onset of magneti-
zation leads to the appearance of the polarization curve frac-
ture, though it is very weak for bulk systems due to the weak
ME coupling. Additional fracture and/or break can be seen
on the temperature dependence of linear dielectric suscepti-
bility �Fig. 6�c��.

The corresponding temperatures of phase transitions can
be determined from crossings of the vertical lines with phase
boundaries on the diagram �Fig. 5�a��, namely, the diver-
gence of �E �Fig. 6�c�� takes place in the points denoted by
crosses in Fig. 5�a�. It is clear that for the large radius, the

temperature dependencies are almost the same as in the bulk
material with transition temperatures Tce

b and Tcm
b �see dash-

dotted curves�. With radius decrease, the ME coupling coef-
ficient �22�R� increases in accordance with Eq. �11�. The
transition between FE and FEM phases via ME effect causes
the small fracture on the ferroelectric order parameter curve
at the temperature T	Tcm

b of magnetization M1 appearance
�see Figs. 6�a� and 6�b�� that is close to Tcm

b �see dashed
curves and dashed line in Figs. 6�a� and 5�a��. With further
radius decrease, ME coupling also increases �i.e., the term
�22M1

2 increases� and so the fracture on the order parameter
curves becomes much more pronounced and slightly shifts to
the lower temperatures; it also appears on the susceptibility
curve �see dotted curves in Fig. 6�c� and dotted line in Fig.
5�a� indicating FE to FM transition�. The shift from the bulk
transition temperature Tcm

e is related to 
1 renormalization
given by Eq. �13a�. The shift increases with radius decrease.
Finally, at small enough nanorod radius and positive �22�R�
value, ME coupling suppresses the polarization and thus in-
duces the transition from FEM to FM phase at temperatures
T	Tcm

b �see solid curve in Fig. 6�a� and solid line in Fig.
5�a��. Appearance of phase transition leads to the additional
low temperature divergence of the dielectric susceptibility
�see solid curve in Fig. 6�c��. The ME coupling-induced
ferroelectric-paraelectric phase transition appeared under the
condition 
1+�22M1

2�0.
The magnetoelectric susceptibility �ME �Fig. 6�d�� is dif-

ferent from zero only in the ranges where both the polariza-
tion and magnetization are present. It diverges near the
points where one of the order parameters tends to zero �see
Eq. �24��. In particular, dotted, dashed, and dash-dotted curve
divergences originated from magnetization appearance. Ad-
ditional divergence on solid curve in Fig. 6�d� is related to
ME coupling-induced polarization disappearance �see solid
curve in Fig. 6�a��. It is seen from Fig. 6�d� that the decrease
of radius leads to the increase of the magnetoelectric suscep-
tibility.

C. Phase diagrams, polarization, dielectric susceptibility,
and magnetoelectric susceptibility under external fields

The application of magnetic field to a multiferroic nano-
material with high ME coupling opens the way to govern not
only its magnetic properties but also the electric ones, which
are extremely important for the majority of the material ap-
plications.

The application of electric or magnetic field induces the
corresponding order parameter �polarization or magnetiza-
tion�, so that formally paraphase could not be introduced. At
the same time, mixed phase FEM could exist. Typically, two
limiting cases E0=0, H0�0 and E0�0, H0=0 have been
considered.

�a� In the absence of electric field �E0=0�, the system
under magnetic field could be either in FM or in FEM
phases. For the case 4
11�11−�22

2 �0, �1�22−2
1�11�0,

1	0, FEM is stable only for the magnetic fields H0	HI,
where HI is the first critical magnetic field. For the fields
above the critical value H0�HI, FEM phase transforms into
the FM one. The critical value of the field can be written as
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HI = 2�−

1

�22
�1 − 2


1

�22
�11� . �29�

For the case 4
11�11−�22
2 	0, FEM phase is stable only at

H0�HII, where the second critical value of the field can be
written as

HII =
2

3
� 
1�22 − 2�1
11

3�4
11�11 − �22
2 �

2�1 −
�22


11

1� . �30�

In the region where the first order phase transition takes
place, both expressions �29� and �30� make sense and there is
hysteresis for the fields HI	H0	HII.

�b� In the absence of magnetic field �H0=0�, the system
under electric field could be in either in the FE or FEM
phases. For the case 4
11�11−�22

2 �0, 
1�22−2�1
11�0,
�1	0, FEM is stable only for the fields E0	EI, and for the
field above critical value EI, FEM phase transforms into the
FE one,

EI = 2�−
�1

�22

1 − 2

�1

�22

11� . �31�

For the case 4
11�11−�22
2 	0, FEM phase is stable only at

E0�EII, where the critical value of the field can be written as

EII =
2

3
� �1�22 − 2
1�11

3�4
11�11 − �22
2 �

2
1 −
�22

�11
�1� . �32�

For the region where the first order phase transition takes
place, both expressions �31� and �32� make sense and there is
hysteresis for the fields EI	E0	EII.

Using expressions �29� and �32�, one can consider how
the typical zero-field phase diagram from Fig. 5 changes un-
der the presence of external fields, as presented in Fig. 7 for
the cases of electric and magnetic fields respectively. There,

we introduce normalized electric and magnetic fields Ẽ

=E0 /EC and H̃=H0 /HC, respectively, where the values EC
=2
TTce

b PS and HC=2�TTcm
b MS are proportional to the ther-

modynamic coercive fields.
Under the field increase, the region of FEM phase exis-

tence is narrowed �compare curve 1 with 4 in Fig. 7�, i.e.,
corresponding transition and/or stability limit temperatures
shift to lower values.

Ferroelectric order parameter P3 is shown in Fig. 8�a� at
zero electric field E=0 and increasing magnetic field H0 �in
coercive field units� for positive coupling coefficient �22�R�
�0 and two values of nanorod radius �curve 1 for R /RQ
=10 and curve 2 for R /RQ=3�. The temperature dependence
of susceptibilities �E and �ME are presented in Figs. 8�b� and
8�c�, respectively. The temperature dependence of dielectric
tunability ��E= ��E�H�−�E�0�� /�E�0� is shown in Fig. 8�d�.
Corresponding phase changes can be determined from the
dashed �R /RQ=10� and dotted �R /RQ=3� vertical lines on
the phase diagram in Fig. 7�b�.

It is clear from Fig. 8�a� that ferroelectric order parameter
decreases and the phase transition at low temperature �see
fractures on solid curves� smears with the magnetic field in-
crease. The decrease is especially strong for small radius
�compare curves 1 and 2, see comments to Fig. 6�a��. High

enough magnetic field due to ME coupling can induce the
disappearance of ferroelectric polarization, which takes place
under the condition 
1+�22M1

2�0, i.e., when positive cou-
pling term �22M1

2P3
2 suppresses the ferroelectric phase, as

shown for curve 2. Additional calculations show that no such
ferroelectric-ferromagnetic phase transition is observed at
negative �22. At the same time, the shift of ferroelectric-
paraelectric transition temperature is small.

It is seen from Fig. 8�b� that dielectric susceptibility �E
increases with H0 increase, as it should be expected from
polarization decrease. At the same time, susceptibility break
and fracture, seen at zero field �solid curves�, smear at non-
zero magnetic field. Additional divergence at dashed curve 2
corresponds to the polarization disappearance at low tem-
peratures.

It is clear from Fig. 8�c� that magnetoelectric susceptibil-
ity �ME diverges in the point of FEM-FE phase transition at
zero magnetic field �see solid curves�. With magnetic field
increase, the divergence diffuses into a maximum and then
almost disappears �see dashed and dotted curves 1�. Appear-
ance of high temperature divergence is related to the phase
transition between FEM and FM phases �see crosses in the
intersections of dotted and dashed lines with solid curves in
Fig. 7�b��. Appearance of additional low temperature diver-
gence for the case of small radii is related to two transition
points FM-FEM and FEM-FM �see dashed curve 2�. These
transitions are marked by the crosses in the intersections of
dotted line with solid curves in Fig. 7�b�.
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11� / �
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b /
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Therefore, anomalies of �ME behavior in the external field
may obey the same law as that for the case of zero field, i.e.,
�ME	��E�M �see Ref. 21�, allowing for more general con-
ditions of its validity �see Ref. 1�.

It follows from Fig. 8�d� that the dielectric tunability in-
creases under the magnetic field increase. Giant tunability
appearance at small nanorod radius is caused by the ME
coupling-induced FEM-FM phase transition taken place at
positive �22 values �see divergence in Fig. 6�d��. Narrow
divergences of tunability at higher temperatures are related
with the weak dependencies of the susceptibility high tem-
perature peaks on the magnetic field �see Fig. 8�b��. The
dielectric tunability is colossal �up to ten times and higher� in
the vicinity of the phase transitions �compare with 500%
effect shown in Fig. 2 from Ref. 13�. These effects are absent
in the bulk material, allowing for negligibly small bulk ME
coupling coefficients.

VI. CONCLUSION

We predict the effects related with the renormalization of
the magnetoelectric coupling coefficients caused by intrinsic

surface stress in ferroic nanorods. The linear coupling coef-
ficient is radius independent, whereas the quadratic ones in-
clude terms inversely proportional to the nanorod radius and
thus strongly increase with radius decrease. We show the
possibility to induce polarization and magnetization as well
as magnetoelectric coupling by the surface stress in the na-
norods of materials nonferroelectric and nonferromagnetic in
bulk.

The renormalized magnetoelectric effect increases the
relative dielectric tunability 3–50 times. At small magnetic
field, the magnetoelectric tunability increases under the mag-
netic field increase. A jump of the relative dielectric tunabil-
ity is related to the ferromagnetic phase transition shifted by
the ME coupling. The jump height increases with magnetic
field increase. Giant tunability �more than 40 times� appear-
ance at high enough magnetic fields is caused by the ME
coupling-induced ferroelectric-paraelectric phase transition
taken place at positive coupling coefficient.

The quadratic magnetoelectric coupling dramatically
changes the phase diagrams of ferroic nanorods with their
radius decrease. ME coupling-induced ferroelectric-para-
electric phase transition �absent in the bulk� takes place at
high enough magnetic fields. The transition appeared at posi-
tive coupling coefficients, when the magnetoelectric effect
suppresses the ferroelectric phase. Also, the second order
phase transition may become a first one.

The intrinsic surface stress under the curved nanorod sur-
face shifts the ferroelectric and ferromagnetic transition tem-
peratures. The corresponding transition temperature shift
�unrelated with ME effect� may induce ferromagnetism in
small nanorods absent in the bulk material. Similar mecha-
nism could explain the recently observed room temperature
ferromagnetism in small nanoparticles of nonmagnetic ox-
ides.

Under the presence of piezomagnetic and piezoelectric
effects, the intrinsic surface stress induces built-in magnetic
and electric fields correspondingly. Built-in fields are in-
versely proportional to the nanorod radius. The fields smear
magnetic, dielectric, and magnetoelectric susceptibility tem-
perature maxima as well as increase their values in the
paraphase. Built-in fields may overcome the coercive fields
and thus essentially increase dielectric tunability even in the
absence of external fields.
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