
Nonequilibrium interacting electrons in a ferromagnet

P. F. Farinas
Instituto de Física, Universidade Federal do Rio de Janeiro, 21645-970 Rio de Janeiro, RJ, Brazil

�Received 10 December 2007; published 28 January 2008�

The dynamics of the magnetization in ferromagnets is examined in the presence of transport electrons,
allowing the latter to interact. It is found that the existence of inhomogeneities such as domain wall �DW�
structures leads to changes that affect the dynamical structure of the equations of motion for the magnetization.
Only in the limit of uniform magnetizations or sufficiently wide DWs do the equations of motion maintain the
form they have in the noninteracting case. In this limit, results like spin torques, the Gilbert parameter, and DW
velocities become renormalized. However, the length scale that defines such a limit depends on the strength of
the interaction. It is shown that if large ferromagnetic fluctuations exist in the metallic band, then the range for
which conformity with the noninteracting case holds extends to the limit of arbitrarily narrow DWs.
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Increasing possibilities for spin-selective transport of
electrons in different materials and their promising physical
and technological consequences have yielded a broad variety
of research on electronic motion in the presence of a ferro-
magnetic background. Interest ranges from semiconductors
to transition metal ferromagnets.1–7

A question under current attention is how electrons flow-
ing in a ferromagnetic medium should modify the dynamics
of its order parameter M�r , t�. In recent years, a typical route
to handle this problem has consisted of treating conduction
and valence electrons distinctively, the former assumed to
belong to an s band, while the latter being in a filled d band
responsible for the local moments that give rise to M.

One often uses some equation of motion �such as, e.g., the
Landau-Lifschitz-Gilbert8 �LLG� equation� to treat M as a
classical field, while a kinetic transport equation is used for
the dynamics of the conduction s electrons, usually in the
limit of long length scales where semiclassical equations are
valid for the electronic spin.9 Coupling of these equations is
achieved by including an s-d channel through a Kasuya in-
teraction operator10,11 whose form is familiar, e.g., in the
Kondo physics of dilute magnetic alloys.12 In transition
metal ferromagnets this approach has been used in attempts
to draw an adequate picture to understand experiments.13–16

Recently discussed issues include the role of the so-called
nonadiabatic spin torque that the electronic current produces
on a domain wall �DW�, affecting its motion and stability,
and the contribution of the conduction electrons for the
damping of M.17,18

Underlying the theories used to treat these phenomena we
may identify two assumptions �among many others�: first,
that the ferromagnetic state is a broken symmetry of the in-
teracting electrons within the d band, and second, that the
s-band interelectronic interaction �s-s� leads only to trivial
renormalizations or else that the s-s interaction is sufficiently
weak not to produce any measurable effects on M. Thus
while the interaction is considered to be sufficiently impor-
tant in the d band to drive its electrons into a ferromagnetic
state, the s band is taken as an essentially noninteracting-
electron metallic band.

In this article we relax the second of these assumptions
and investigate some preliminary general consequences that

are expected to be seen on the dynamics of the magnetiza-
tion. As we will see, the interactions may affect the dynami-
cal structure of the equations of motion. In the limit of uni-
form magnetizations or sufficiently wide DWs, treating the s
electrons as noninteracting is justified with the proper renor-
malizations. We show that in the particular limit for which
large ferromagnetic fluctuations exist in the s band, decou-
pling of the equations of motion in a local frame is possible
for narrow DWs. Consequently, not only the length for
which the “wide-DW” approximations become valid is low-
ered, but the equations of motion acquire the form they have
for noninteracting s electrons.

For these purposes, we take the usual algorithm described
in the third paragraph and modify it to include the s-s inter-
actions. This is done by using Fermi liquid theory9,19,20 and
the results should hold provided the conduction electrons are
normal �no assumption is required to whether the interac-
tions are weak or not�.

The transport equation for the s-electron distribution can
be written in a compact form9

�tN + �N,H� +
i

�
�H,N� = I�N� , �1�

where all quantities are 2�2 matrices in spin space, Np�r , t�
is the full distribution function for the s electrons, Hp�r , t� is
the effective Hamiltonian, and I�N� is a collision integral.
Curly Poisson and straight commutator brackets are also im-
plied in the notation. The commutator is kept with respect to
the spin matrices as a consequence of using a local quanti-
zation axis. These functions must be understood as averages
in the state of the system, which satisfy quantum mechanical
equations of motion that reduce to the above semiclassical
equation in the long-wavelength limit.21

Inclusion of the s-d coupling to the order parameter of the
ferromagnetic band is achieved by using an exchange
interaction besides the Fermi liquid Hamilitonain HFL,
H=HFL+Hsd, where Hsd=SJex� ·M�r , t� /Ms, S is the pro-
jection of the local spin for the d electrons, Ms is the satura-
tion magnetization, and � are the usual Pauli matrices.17

Note that the structure of the transport equation in spin space
carries a commutator even in the absence of the s-d ex-
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change coupling, which has long been known;9 however, the
intrinsic s-electron commutator vanishes if these electrons
are noninteracting.

To write equations of motion from the transport equation,
we trace Eq. �1� to obtain equations for the local spin density
of the s electrons, m=tr��N�, and the spin current tensor,
Ji� tr����H /�pi�N�.

Before writing these equations we separate, as in Ref. 17,
the local spin density in terms of an adiabatic component in
the direction of M and a transverse �nonadiabatic� compo-
nent �m,

m =
n0�

Ms
M + �m , �2�

where n0�=n0 / �1+F0
a�, n0 is the local equilibrium spin den-

sity, and F�
a is the usual notation for the standard Landau

antisymmetric dimensionless parameters.
The spin current tensor can similarly be split into two

contributions,

Ji = −
�BP�

eMs
jei

M + j�i
, �3�

where je is the electric current density, e is the electron’s
charge, �B is the Bohr magneton, and P�= P / �1+F0

a� with
the current’s spin polarization given by P.

We note that the adiabatic responses to M are renormal-
ized by the interaction in exactly the same way as the Pauli
susceptibility in a paramagnet. This comes from the s-d cou-
pling that effectively adds a local contribution

hp
0 =

SJex

2Ms
M �4�

to the molecular field, hp=hp
0 +hpFL, acting on the Fermi

liquid quasiparticles.20 Formally, the local field S=−SM /
Ms plays the role of a “magnetic field” in the equations of
motion of a uncharged Fermi liquid.

The equation of motion for the local spin density becomes

�tm + �i Ji = −
1

�exMs
M � �m −

�m

�sf
, �5�

where summation is implied over repeated indices. Equation
�5� is the continuity equation for the s spins modified by
keeping the part of the collision integral that does not con-
serve spin �here we use a relaxation time approximation with
�sf for scattering processes other than the ones mediated by
the s-s interaction�. The term with �ex=� /SJex comes from
the s-d Hamiltonian that affects the molecular field through
hp

0 given by Eq. �4�.
For the spin current, we obtain

�t j�i
+ cs

2�i�m = � �M

�exMs
+

2m

�N�0�
	F0

a −
F1

a

3

� � j�i

−
j�i

�sf�
,

�6�

with cs
2= �vF

2 /3��1+F0
a��1+F1

a /3�, N�0� the density of states
at the s-band unpolarized Fermi surface, and �sf�

−1

= �1+F1
a /3��FL

−1+�sf
−1. The fact that �sf� ��sf results from

the internal spin diffusion in the Fermi liquid, for which spin
current is not a conserved quantity. Such a difference exists
even in the absence of interaction �as is easily seen by put-
ting F�=0� although this has not been always considered.

Now, with the usual assumption that the s-electron dy-
namics is much faster than that of M, we look for the solu-
tion of Eq. �6� after the transient part has practically van-
ished, which occurs after a few relaxation times. At these
times, the quasisteady solution consists of the precession of
the spin current about M, so that Eq. �6� becomes

gm � j�i
+ j�i

= − Ds�i�m , �7�

where g=2�sf� �F0
a−F1

a /3� /�N�0� measures the strength of the
interaction and Ds=vF

2�sf� �1+F0
a� /3 is the spin diffusion co-

efficient.
In Eq. �7� the differences between interacting and nonin-

teracting s electrons become apparent. By setting the inter-
action to zero �F�=0� one recovers Fick’s relation between
spin current and spin density. The additional term on the left
side originates from the precession of the s-electron spin
current about the local spin density, the same phenomenon
that causes the long-known Leggett-Rice effect in normal
3He at very low temperatures.22,23

Combining Eqs. �7� and �5�, we obtain

Ds��
2�m −

1

�exMs
�m � M −

�m

�sf
+ �

=
n0�

Ms
�tM −

�BP�

eMs
� je · ��M , �8�

where Ds�=Ds / �1+g2n0�� and

−
�

Ds�
=

gn0�

Ms
�i�M � �i�m� + 	gn0�

Ms

2

�i�M�M · �i�m�� .

�9�

Equation �8� is the central result of this article. Its form sug-
gests that since the interaction between s electrons is in
general not weak, the use of an independent-electron
approach in the s band, as has been common in the literature
for s-d-coupling models, is not correct in principle. Regard-
less of the equation of motion satisfied by M, one sees by a
careful examination of Eqs. �8� and �9� that the dynamics
obtained for M in the absence of an s-s interaction will be in
general rather different from that in its presence.

To illustrate how the s-s interaction may affect the dy-
namics of M, we shortly indicate how the result given by Eq.
�8� changes the widely used LLG equation,8 without ques-
tioning its limits of validity,24 since this specific choice does
not change the general conclusions we want to draw in what
follows.

The interaction of the spin density �m with M
brings an additional torque to the LLG equation, T
= �1 /�exMs��m�M. From this torque �m can be taken as a
function M and used in Eq. �8� to give an equation for the
dynamics of the order parameter M. A more detailed calcu-
lation of how the dynamics of M changes with the s-s inter-
action will be shown elsewhere, but it is clear, by simple
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inspection of Eqs. �8� and �9�, that the result obtained will be
two quite different equations for interacting and noninteract-
ing s electrons.

In the limit of vanishing s-s interaction these expressions
give known results for the equations of motion.17 The addi-
tional dynamical structure in the interacting case comes from
the term � given in Eq. �9�. Besides this additional contri-
bution, there are also renormalizations of the coefficients in
the other terms. We emphasize that our result is exact, apart
from the usual assumptions of Fermi liquid theory and the
general hypotheses that are used to validate the s-d model.

We see that in the limit of strong interactions � may
introduce changes that lead to different dynamics. As a mat-
ter of fact, the strongly interacting limit is somewhat difficult
to evaluate, since while n0�=n0 / �1+F0

a� becomes negligible
in the limit of large F�

a’s, the exact behavior of the product
gn0� that governs � is difficult to predict without explicit
knowledge of the Landau parameters and also the effective
mass that enters N�0�. One can, nonetheless, keep the values
of the Landau parameters finite and �0 to study the overall
differences that � is expected to produce.

It is immediately noted, however, that � is only different
from zero if the gradients of M are not zero—i.e., in the
presence of inhomogeneities. For uniform or nearly uniform
magnetizations, one sees that the sole effect of the interaction
is to renormalize the equations of motion through the coef-
ficients P� and n0�.

In what follows, we will avoid the more complicated task
of solving the full equation for a finite � �Eq. �8�� and rather
concentrate on presenting a precise meaning for the limit of
nearly uniform magnetization when s-s interactions are not
zero.

First we assume that in this limit, the DW width �or,
equivalently, the characteristic average width of the inhomo-
geneity� is very large compared to any diffusion length of the
problem, so that M varies slowly in space. Under this as-
sumption, decoupling of Eq. �8� is possible in a local frame
in a similar way that it is accomplished in the noninteracting
case. Taking the z axis of such a frame parallel to M yields
the equation

�2�m− −
1

�2�m− = f−�r� , �10�

where �m−=�mx− i�my, f−= fx− ify,

f�r� =
1

1 + ign0�
� n0�

Ms
�tM −

�BP�

eMs
� je · ��M� , �11�

and �2=Ds��1+ ign0�� / ��sf
−1+ i�ex

−1�. Equation �10� admits a
standard Green’s function solution

�m− =
1

4	
� dr

e−r−r/�

r − r�
f−�r�� . �12�

Let the typical scale over which f�r� varies be w. It is clear
from Eq. �11� that w is given by the average distance over
which M varies in space. For DW structures, w is given by
the average DW width. If w
 �, then we can take f−�r� out

of the integral in Eq. �12�, to obtain −�m− /�2= f−�r� and,
from Eq. �10�, �2�m=0 and �=0.

Equation �8� then acquires the same form as the one used
for noninteracting s electrons, and the torque and other quan-
tities can be determined by simply replacing the renormal-
ized parameters in the results earlier obtained in the absence
of an s-s interaction.17,18

The condition w
 � that validates this “wide-DW” ap-
proximation can be explicitly written as

w 
�vF
2�sf� ��1 + F0

a�

3�1 + �gn0��
2

= � , �13�

where �−2=�sf
−2+�ex

−2.
We see that the characteristic length for this limit to be set

depends on the strength of the interaction. Again, the simple
limit of very large interactions is difficult to evaluate since
one does not in general know how the Landau parameters
and the effective mass are exactly related.

However, other strongly correlated limits are approached
when the s electrons are driven toward some instability.
The general Pomeranchuk instability20 is set when
F�

a / �2�+1�→−1+. There are other correlation-driven insta-
bilities whose onsets could be studied, like the metal-insu-
lator transition or the spin-density-wave �SDW� instability.25

We will focus here on the Stoner instability that is ap-
proached when F0

a→−1+. The onset of such an instability is
characterized by the presence of large ferromagnetic fluctua-
tions in the system of s electrons. If one thinks of a “weakly
interacting” s band, it may appear unphysical to assume the s
electrons are in such a regime. However, we just showed that
no physical “weakly interacting” scenario exists in a non-
trivial solution �F�’s not all equal to zero�. The electrons are
rigorously undistinguishable; s-d models separate them into
two groups with hopes that this will be an effective descripi-
tion. It is quite compelling, then, that the strong fluctuations
that are present in the d-electron part of the wave function
will be also shown in the s-electron part. Such a regime is
analogous to the so-called “nearly ferromanetic Fermi liq-
uid,” a regime that, e.g., normal 3He undergoes as its tem-
perature is lowered at room pressure.20

In the presence of large ferromagnetic fluctuations, Eq.
�13� becomes

w 
�vF
2�sf� �

3gn0
�1 + F0

a� → 0, �14�

and the effective length defining the “wide-DW” limit is ar-
bitrarily lowered. It is clear, however, that a lower limit ex-
ists for the usual approximations to be valid �for example,
the semiclassical equation of motion is valid for long wave-
lengths�; however, these scales are usually much less than
the typical diffusion paths that relate to � in the limit of
vanishing s-s interaction.

As examples, the renormalizations of the gyromagnetic
ratio and Gilbert parameter in the LLG equation in the re-
gime of strong ferromagnetic fluctuations are given by
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�� = r� and �� = r� +
�ex

�sf
, �15�

where r=Ms�1+F0
a��1+�ex

2 /�sf
2 � /n0.

In closing, we considered the effect of the interelectronic
�s-s� interaction in an s band coupled to a ferromagnetic d
band and found that structural changes in the dynamics of
the order parameter M may occur.

The theory correctly reproduces the nointeracting limit
that has been used as the standard approach for electrons
flowing in ferromagnetic metals, which include transition
metals and their alloys. We saw that, in the general case, the
only safe assumption to boldly ignore the s-s interaction
would be that its effective amplitude is too small, which does
not appear to be a plausible demand for these systems.

In the particular regime of large ferromagnetic fluctua-
tions in the s band, the inclusion of the s-s interaction is
shown to produce two main effects: �i� rescaling the equa-
tions of motion and �ii� extending the “wide-inhomogeneity”
limit to arbitrarily narrow domain walls.

This latter effect may be physically understood by notic-
ing that in such a regime of large ferromagnetic fluctuations
the spin density �m� in the s band becomes highly suscep-
tible to changes in the magnetization �M� �analogously to
what happens in a usual paramagnet at the onset of a ferro-
magnetic instability�. The closer the instability is, the stron-
ger the tendency of m to track M, so that the length scales
within which M changes must be narrower in order for the
dynamics of m to be affected by them. This is appreciated
only if the interactions are properly accounted for.

The fact that early approaches that do not consider the s-s
channel work reasonably well in explaining some observed
properties17,18 may be suggestive that the s-band electrons in
the theoretical description of these materials must be consid-
ered as a strongly correlated state with large ferromagnetic
fluctuations.

The author acknowledges FAPERJ, Rio de Janeiro, Bra-
zil, for providing means for this work to be completed.

1 H. Ohno, Science 281, 951 �1998�.
2 M. E. Flatté and G. Vignale, Appl. Phys. Lett. 78, 1273 �2001�;

G. Vignale and M. E. Flatté, Phys. Rev. Lett. 89, 098302 �2002�.
3 Y. Matsumoto, M. Muramaki, T. Shono, T. Hasegawa, T. Fuku-

mura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and
H. Koinuma, Science 291, 854 �2001�.

4 S. A. Wolf, Science 294, 1488 �2001�.
5 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323

�2004�.
6 M. Kohda, T. Kita, Y. Ohno, F. Matsukura, and H. Ohno, Appl.

Phys. Lett. 89, 012103 �2006�.
7 S. G. Reidy, L. Cheng, and W. E. Bailey, Appl. Phys. Lett. 82,

1254 �2003�.
8 T. L. Gilbert, IEEE Trans. Magn. 40, 3443 �2004�; L. D. Landau,

E. M. Lifshitz, and L. P. Pitaevski, Statistical Physics, 3rd ed.
�Pergamon, Oxford, 1980�, Pt. 2.

9 V. P. Silin, Sov. Phys. JETP 6, 945 �1958�.
10 T. Kasuya, Prog. Theor. Phys. 16, 45 �1956�.
11 U. Larsen, J. Phys. C 4, 1835 �1971�.
12 J. Kondo, Prog. Theor. Phys. 32, 37 �1964�.
13 A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T.

Shinjo, Phys. Rev. Lett. 92, 077205 �2004�.

14 T. Y. Chen, Y. Ji, C. L. Chien, and M. D. Stiles, Phys. Rev. Lett.
93, 026601 �2004�.

15 B. Ozyilmaz, A. D. Kent, J. Z. Sun, M. J. Rooks, and R. H. Koch,
Phys. Rev. Lett. 93, 176604 �2004�.

16 M. Kläui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland,
G. Faini, U. Rüdiger, C. A. F. Vaz, L. Vila, and C. Vouille, Phys.
Rev. Lett. 95, 026601 �2005�.

17 S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 �2004�.
18 Z. Li, J. He, and S. Zhang, J. Appl. Phys. 99, 08Q702 �2006�.
19 L. D. Landau, Sov. Phys. JETP 3, 920 �1956�.
20 G. Baym and C. Pethick, Landau Fermi-Liquid Theory �Wiley,

New York, 1991�.
21 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

�Benjamin, New York, 1962�.
22 A. J. Leggett and M. J. Rice, Phys. Rev. Lett. 20, 586 �1968�; A.

J. Leggett, J. Phys. C 3, 448 �1970�.
23 L. R. Corruccini, D. D. Osheroff, D. M. Lee, and R. C. Richard-

son, Phys. Rev. Lett. 27, 650 �1971�; J. Low Temp. Phys. 8, 229
�1972�.

24 R. A. Duine, A. S. Núñez, Jairo Sinova, and A. H. MacDonald,
Phys. Rev. B 75, 214420 �2007�.

25 K. S. Bedell and P. F. Farinas, Phys. Rev. Lett. 74, 4285 �1995�.

P. F. FARINAS PHYSICAL REVIEW B 77, 020410�R� �2008�

RAPID COMMUNICATIONS

020410-4


