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We use the diagrammatic Monte Carlo approach to solve the problem of a single spin-down fermion
resonantly interacting with a Fermi gas of spin-up particles. Our solution is important for understanding the
phase diagram and properties of the crossover from the BCS regime to the Bose-Einstein condensate in the
strongly imbalanced regime. On the technical side, we develop a generic sign-problem-tolerant method for
exact numerical solution of polaron-type models. This is a characteristic example of how Monte Carlo methods
can be used to simulate divergent sign-alternating diagrammatic series.
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The polaron problem is canonical across all fields in phys-
ics and for more than 70 years1 the same generic questions
are asked whenever one has to study properties of particles
coupled to the environment.2 The diversity and novelty lie in
the nature of the particle, the environment, and the coupling
between them: there are electron-phonon polarons �optical
and/or acoustic�, spin polarons, exciton polarons, polarons
coupled to Bose-Einstein condensates �BECs�, etc. The po-
laron parameters, such as its energy, effective mass, and cou-
pling to other excitations in the system, to a large extent
determine the basic properties of all condensed matter sys-
tems at low temperature. Strictly speaking, studies of the
effect of coupling to fluctuations of the respective physical
vacuum on properties of elementary particles fall in the same
category of problems.

Recently, investigations of the BCS-BEC crossover in the
strongly imbalanced regime focused on properties of minor-
ity �spin-down� fermions resonantly coupled to the majority
�spin-up� fermions.3,4 To be more specific, one is interested
in knowing the effective quasiparticle parameters for the
Hamiltonian

H = HF − �R/2m +� dr V�r − R�n�r� , �1�

where HF is the Hamiltonian of the ideal spin-up Fermi gas
with the density n and Fermi momentum kF, R is the particle
coordinate, and V�r−R� is the interaction potential of finite
range r0 between the particle and the Fermi gas. Here, the
particle and the Fermi gas have the same bare mass m. In
what follows we refer to �1� as the Fermi-polaron problem,
and use units such that m=1 /2 and kF=1.

For the BCS-BEC crossover physics in the limit of van-
ishing density kF→0 and divergent s-scattering length a, so
that kFa remains fixed but kFr0→0, the nature of the inter-
action potential is irrelevant, e.g., the same results will be
obtained for neutron matter and cesium atoms. The polaron
parameters hold the key to the phase diagram of the strongly
polarized gas. If the state with a dilute gas of spin-down
fermions is stable at all values of kFa, then the solution of the
single-particle problem defines the phase diagram in the vi-
cinity of the multicritical point discussed by Sachdev and
Yang.5 At this point the spin-down fermion forms a bound

state with a spin-up fermion, thus becoming a spin-zero com-
posite boson, i.e., the quasiparticles radically change their
statistics. The multicritical point, however, may be thermo-
dynamically unstable if the effective scattering length be-
tween the composite bosons and spin-up electrons is large
enough, and the analysis of Ref. 6 based on fixed-node
Monte Carlo �MC� simulations finds evidence in favor of this
scenario. It is worth noting that the model �1� �in general, the
particle mass is different from that of the Fermi gas� is also
known as the Anderson orthogonality problem with recoil.7,8

Despite broad interest in the polaron problem, there is no
reliable numerical technique to address it in full complexity,
i.e., in all dimensions, for an arbitrary environment, bare
particle dispersion relation, and interaction potential. Here
we develop a technique based on the MC simulation of
Feynman diagrams for the proper polaron self-energy which
overcomes all previously existing limitations and allows an
unbiased solution of the generic formulation of the problem.
The diagrammatic Monte Carlo �diag-MC� technique was
proved to be an efficient method for solving electron-phonon
polaron problems9,10 which are characterized by convergent,
sign-positive series. �The essence of the diag-MC method is
in interpreting the sum of all Feynman diagrams as an en-
semble averaging procedure over the corresponding configu-
ration space.� Although the series for the Fermi polaron are
more involved, there is no fundamental difficulty in simulat-
ing the corresponding distribution. The crucial difference is
that in the Fermi system we have to deal with a sign-
alternating, divergent �at least for strong coupling� series.
Under these conditions a direct summation of all relevant
Feynman diagrams for the Green’s functions is not possible,
and one has to develop additional tools for �i� reducing the
number of diagrams by calculating self-energies rather than
Green’s functions, and �ii� extrapolating diag-MC results to
the infinite diagram order for divergent series. We find that
the series for the Fermi polarons are Riesz summable and a
numerically exact solution within the diag-MC approach
does exist. We believe that our findings are important in a
much broader context since the diag-MC approach to the
many-body problem has essentially the same structure.

In what follows, we will be using the term “polaron” in a
narrower sense, i.e., only for the unbound fermionic spin-
down excitation. For the composite boson we will be using
the term “molecule.” If the polaron is a well-defined elemen-
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tary excitation, its energy E�p� can be extracted from the
pole in the particle Green’s function in the frequency-
momentum representation, by solving the equation

�G↓
�0�
„� = E�p�,p…�−1 = �↓„� = E�p�,p… , �2�

where G↓
�0� is the vacuum Green’s function for the particle

and �↓ is its self-energy. In the diag-MC technique we use
the imaginary-time–momentum representation to circumvent
the problem of dealing with the singular structure of free
propagators and alleviate the sign problem. Remarkably, in
order to find the polaron energy, we do not have to perform
a numeric analytic continuation from imaginary to real fre-
quencies, because in the imaginary-time–momentum repre-
sentation Eq. �2� translates into

�G↓
�0�
„� = E�p�,p…�−1 = �

0

�

�↓��,p�eE�p��d� . �3�

The equivalence of Eqs. �2� and �3� readily follows from the
fact that for the particle there is a freedom of choosing the
chemical potential �↓ �for a single particle this is just a uni-
form external potential which does not affect its physical
properties�. This freedom can be utilized for fine-tuning �↓
=E�p�, in which case the solution of Eq. �2� corresponds to
zero frequency, no matter whether it is real or imaginary.
Then, by utilizing the trivial dependence of self-energy on
�↓, namely, �↓�� ,p ,�↓�=�↓�� ,p�e�↓�, one proves Eq. �3�.

We obtain �↓�� ,p� by the diag-MC method, which simu-
lates the standard diagrammatic expansion by interpreting it
as a statistical ensemble. In our case, the diagrams are con-
structed from the following lines: �i� the vacuum particle
propagators G↓

�0��� , p�=e��↓−p2/2m��, represented by thin hori-
zontal straight lines, �ii� the spin-up propagators G↑�� , p

�kF�=e��F−p2/2m�� and G↑�� , p	kF�=e−��F−p2/2m�� ��F is the
Fermi energy of spin-up particles�, depicted with thin-line
arcs, and �iii� the T-matrix propagator 
�� , p�. A requirement
of the resonant problem is that the T matrix has to be con-
sidered as a separate diagrammatic element which sums lad-
der diagrams for the short-range potential V�r�. This summa-
tion takes the ultraviolet physics into account exactly and
allows 
�� , p� to be expressed in terms of the s-scattering
length a. The ladder structure of diagrams absorbed in the
T-matrix explains why we treat it as a “pair propagator” and
depict it with a �dashed heavy� line. The exact expression for

 in the frequency-momentum representation reads �see, e.g.,
Ref. 11�


−1��,p� =
m

4�a
−

m

8�
�p2 − 4m� − 
�p,�� , �4�


�p,�� = �
q�kF

dq/�2��3

q2/2m + �p − q�2/2m − �
, �5�

where �=�+�F. As an illustration, in Fig. 1 we present the
first-order diagram for �↓.

The energy of the molecule, has to be extracted from the
pole in the two-particle �spin-up + spin-down� or “pair”
channel. The rest of the theory is in exact analogy with the

Dyson-equation theory of the polaron pole. Diagrammati-
cally, it arises from the summation of geometric series of
products 
K
K
K. . . where K is the 
-irreducible diagram
in the two-particle channel—a direct analog of the single-
particle self-energy �see Fig. 2 for an illustration�. Corre-
spondingly, the molecular energy is found by solving the
equation


−1
„� = Em�p�,p… = �

0

�

K��,p�eEm�p��d� . �6�

We found neither an analytical expression for 
�� , p�, nor
a fast way of tabulating it with high accuracy using the in-
verse Laplace transform of the frequency-momentum repre-
sentation Eq. �4�. Instead, we applied the recently developed
bold diag-MC technique12 to obtain 
�� , p� numerically, by
relating it to the vacuum T matrix, the analytic expression for
which in the �� , p� representation is readily available. This
was the first practical application of the bold MC technique;
see Ref. 12 for details.

The updates used to sample diagrams do not differ dra-
matically from the ones described in the literature; we leave
the corresponding discussion to a full-sized paper. Instead,
we concentrate on the convergence issues. In contrast to pre-
vious examples of diag-MC applications, the series for the
resonant Fermi polaron turns out to be divergent. However,
the Cesàro-Riesz summation method solves the problem. For
the quantity of interest—polaron or molecule self-
energy—we construct partial sums ��N*�=�N=1

N* DNFN
�N*�, de-

fined as the sums of all diagrams up to order N* �the diagram
order N is defined by the number of spin-up propagators�,
with the Nth-order terms being multiplied by the factor

FN
�N*� = ��N* − N + 1�/N*�� �Cesàro-Riesz� . �7�

Here ��0 is a fixed parameter ��=1 corresponds to the
Cesàro method�. If the series is Riesz summable for some

FIG. 1. First-order diagram for �↓, consisting of the T-matrix
propagator 
 �heavy dashed line� and the spin-up propagator �solid
arc�.

FIG. 2. First diagram for the molecular self-energy K, consisting
of one T-matrix propagator �heavy dashed line�, two spin-up propa-
gators �solid arcs�, and two spin-down propagators �solid straight
lines�.
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values of �, then the answer in the N*→� limit does not
depend on � �moreover, the answer should be the same and
independent of the appropriate summation technique�. The
freedom of choosing the value of the Riesz exponent � is
used to optimize the convergence.

For the N*-truncated and F-reweighted series, we first de-
termine the polaron and molecule energies and then study
their dependence on N* as N*→�. Figure 3 illustrates the
procedure. The odd-even oscillations are very pronounced
for �=1, hinting at the absence of convergence of the origi-
nal series, but are strongly suppressed for larger values of �.
With �=4 we were not able to resolve odd-even oscillations,
but the smoothness of the curve here comes at the expense of
increased curvature, which renders the extrapolation to the
1 /N*→0 limit more vulnerable to systematic errors. Empiri-
cally, we constructed a factor FN

�N*�, which leads to a faster
convergence �see Figs. 3 and 4 �error bars are mentioned in
all plots but are typically smaller than symbol sizes��

FN
�N*� = CN* �

m=N

N*

exp�−
�N* + 1�2

m�N* − m + 1�	 , �8�

where CN*
is the normalization factor.

In the limit of kFa→0 the molecule energy is given by the
asymptotic expression

Em = −
1

ma2 − �F +
2�ã

�2/3�m
n↑ �kFa → 0� , �9�

where the last term comes from the interaction between the
composite molecule with the Fermi gas. Correspondingly, ã

1.18a is the molecule-fermion s-scattering length13 ob-
tained from the nonperturbative solution of the three-body
problem. This result provides a robust test to the entire nu-
merical procedure of sampling and extrapolating divergent
sign-alternating diagrammatic series. Our data are in perfect
agreement with the ã
1.18a result within the statistical un-
certainty of the order of 5% �see the lower panel in Fig. 5�.

In Fig. 5, we show polaron and molecule energies in the
region of kFa�1 where the nature of the quasiparticle state
changes. The crossing point is found to be at �kFa�c

=1.11�2�. The values of both polaron and molecule energies
are in excellent agreement with the fixed-node Monte Carlo

FIG. 3. Molecule energy �at kFa=1� as a function of truncation
parameter N* for different summation techniques: Cesàro �open
squares�, Riesz �=2 �filled circles, fitted with the parabola y
=−2.6164+0.280 13x+0.016 38x2�, Riesz �=4 �open circles, fitted
with the parabola y=−2.6190+0.616 35x−0.3515x2�, Eq. �8� �stars
fitted with the horizontal dashed line�.

FIG. 4. Polaron energy �at the unitarity point a−1=0� as a func-
tion of truncation parameter N* using Eq. �8�. The asymptotic be-
havior at 1 /N*→0 is perfectly fitted by a straight line.

FIG. 5. �Color online� Polaron �black circles� and molecule �red
�gray� triangles� energies �in units of �F� as functions of kFa. The
dashed line on the lower panel corresponds to Eq. �9�.
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simulations.4,6 Interestingly, the polaron self-energy is nearly
exhausted by the first-order diagram considered in Ref. 11;
see also Fig. 4.

The crossing of the polaron and molecule solutions is ex-
act since the hybridization between the two is zero at �kFa�c.
This is guaranteed by the phase-space argument. The conser-
vation of energy, momentum, and spin projection dictates
that the leading decay channel involves four quasiparticles in
the final state �the polaron decays into a molecule, two holes,
and one spin-up particle�; correspondingly, the final-state
phase volume gets negligibly small as compared to the en-
ergy difference �Ep−Em� at and in the vicinity of the crossing
point.

The data for the effective mass are presented in Fig. 6. As
expected, at the crossing point the effective mass curve is
discontinuous. Note that good agreement with Eq. �9� for Em
at all couplings is somewhat misleading since Eq. �9� as-
sumes that molecules are compact and their mass is 2m. The
actual effective mass is significantly enhanced in the vicinity
of �kFa�c.

Summarizing, the problem of the resonant Fermi polaron
is solved here by the diag-MC technique, and the point
where the ground state switches from the single-particle �fer-
mionic� sector to the two-particle �bosonic� sector is found to
be at kFa=1.11�2�. We discovered that, while the diagram-
matic series is divergent, the fermionic sign of the diagrams
renders the series summable by Cesàro-Riesz-type methods
and suitable for numerical analysis. We do not see any limi-
tations for the technique to be successfully used for arbitrary
polaron models, and, possibly, arbitrary interacting many-
body systems. The technique offers an acceptable solution to
the sign problem, i.e., in the space of Feynman diagrams it is

possible to extrapolate simulation results to infinite diagram
order before error bars go out of control due to an exponen-
tially or factorially expanding configuration space. Whether
this sign blessing is a specific feature of the problem solved
here, or a generic feature of fermionic and, possibly, other
diagrammatic expansions, is a major question that we will
address in future.
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