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We investigate a superconducting quantum interference device based on carbon nanotubes in a fork geom-
etry �J.-P. Cleuziou et al., Nat. Nanotechnol. 1, 53 �2006��, involving tunneling of evanescent quasiparticles
through a superconductor over a distance comparable to the superconducting coherence length, with therefore
“nonlocal” processes generalizing nonlocal Andreev reflection and elastic cotunneling. Nonlocal processes
induce a reduction of the critical current and modify the current-phase relation. We discuss arbitrary interface
transparencies. Such devices in fork geometries are candidates for probing the phase coherence of crossed
Andreev reflection.
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I. INTRODUCTION

Implementing experimentally1–3 and understanding
theoretically4–25 the possibility of emitting spatially sepa-
rated electron pairs from a superconductor in different elec-
trodes have aroused considerable interest recently, in connec-
tion with the realization of a source of entangled pairs of
electrons.21,22 The Josephson junction through a carbon
nanotube quantum dot26 and the superconducting quantum
interference device27 �SQUID� realized recently can be
viewed as steps toward future implementations of transport
of spatially separated pairs of electrons in quantum informa-

tion devices based on carbon nanotubes.23 As another appli-
cation, the carbon nanotube SQUID realized recently by
Cleuziou et al.27 in the fork geometry in Fig. 1 proves the
feasibility of future measurements of magnetization reversal
of individual molecular magnets.

Even more miniaturized devices may be realized in the
near future, with geometrical dimensions comparable to an
intrinsic length scale of the superconductor: the characteristic
length28 �0 associated with the superconducting gap ��0�.
Such devices26,27,29 may be sensitive4–6 to the fact that An-
dreev reflection30 takes place in a coherence volume of linear
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FIG. 1. �Color online� �a� Schematic representation of the carbon nanotube SQUID. �b� The hopping description in the off-resonant state.
The transport properties of the SQUID depend only on the enclosed flux and on the superconducting phase differences, �c� shows a double
bridge between two superconductors. �d� is a double insulating bridge between two superconductors, which is made of two multichannel
insulators in parallel. Only nonlocal processes through one of the superconductors �the superconductor S� are allowed in all these situations.
The Oxyz axis is shown in �b�.
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dimension �0, therefore allowing for the possibility of split-
ting Cooper pairs in two parts of the circuit.

Andreev reflection30 is the process by which a spin-up
electron incoming from the normal side on a NS interface
between a normal metal �N� and a superconductor �S� is
reflected as a hole in the spin-down band, while a pair of
electrons is transmitted in the superconductor. In an NaSNb
structure with the electrical circuit in Fig. 2, an electron in
electrode Na can be scattered as a hole in Nb if the contacts
are separated by a distance comparable to the superconduct-
ing coherence length �0 �see Fig. 2�a� for nonlocal Andreev
reflection�. Alternatively, an electron from Na can be trans-
mitted as an electron in Nb across the superconductor6 �see
Fig. 2�b� for elastic cotunneling�.

The goal of our paper is to address possible realizations of
nonlocal Andreev reflection in future carbon nanotube
SQUIDs. These devices24,25 would provide further26 experi-
mental signatures of the phase coherence of Cooper pair
splitting. Compared to Refs. 24 and 25, we investigate here
higher order processes in the tunnel amplitudes giving rise to
“nonlocal Andreev bound states.” By contrast, if the distance
between the Josephson junctions is much larger than the su-
perconducting coherence length, the bound states are “local,”
and localized over two separated regions of extent �0 on each

Josephson junction, not coupled by nonlocal processes
through the superconductor S �see Fig. 1�.

The paper is organized as follows. Preliminaries are pre-
sented in Sec. II. Our results are presented in Sec. III A for
the dc-Josephson effect in single channel systems. Multi-
channel effects are discussed in Sec. III B. Concluding re-
marks are presented in Sec. IV. Some details are left for
Appendices.

II. PRELIMINARIES

A. Carbon nanotube superconducting interference device

A SQUID made of two superconductors and a carbon
nanotube is considered �see Fig. 1�a��, according to the re-
cent experiment by Cleuziou et al.27 As a natural hypothesis,
the proximity effect between the superconductor and the car-
bon nanotube �i.e., the penetration of pairs from the super-
conductor to the nanotube� is supposed to induce a minigap
��0� in the portions of the nanotube in contact with the su-
perconductors.

The nanotube is divided in five sections connected to each
other, from top to bottom: superconducting top section with a
minigap ��0� in contact with the superconductor S�; quantum
dot number 1; superconducting middle section of the nano-
tube with a minigap ��0� in contact with S; quantum dot
number 2; and superconducting bottom section with a mini-
gap ��0� in contact with the superconductor S� �see Fig.
1�a��.

Depending on the value of the gate voltage in experi-
ments, the quantum dots 1 and 2 can be tuned from off-
resonant to resonant �changing the gate voltages has the ef-
fect of shifting the dot energy levels�. Our paper discusses
mostly the off-resonant state �in short, off-state� such that
dots 1 and 2 have a vanishingly small density of states within
the minigap �see Fig. 3�a��. It was well established experi-
mentally by Cleuziou et al.27 that their SQUID can be tuned
from the off-state with a very small critical current to the
on-state with a large critical current by changing the gate
voltages coupled to the two quantum dots formed by portions
of the nanotube in between � and ��, and in between � and
�� �see Fig. 1�a��.
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FIG. 2. �Color online� Schematic representation of the electrical
circuit for probing the nonlocal conductance in normal metal–
superconductor–normal metal �NaSNb� structures �Ref. 26�. �a�
shows a schematic representation of the nonlocal Andreev reflection
process, changing a spin-up electron in electrode Nb into a spin-
down hole in electrode Na and leaving a Cooper pair in the super-
conductor. �b� is a schematic representation of elastic cotunneling,
transferring an electron from one normal electrode to the other via a
trip through the superconductor.
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FIG. 3. �Color online� Schematic representation of quantum dot
density of states, with a dot level spacing � and a level broadening
�. �a� corresponds to the off-resonant state considered in our paper,
with no resonant level in the gap window. �b� corresponds to the
resonant situation with a large density of states within the gap.
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Our modeling is intended to capture “nonlocal bound
states” involving multiple electron-hole processes back and
forth between dots 1 and 2. We make the following simpli-
fying assumptions. First, proximity effect between the nano-
tube and the superconductor is not described explicitly on a
microscopic basis: for highly transparent interfaces between
the carbon nanotube and the superconductor S, we treat
proximity-induced superconductivity in the nanotube as bulk
superconductivity, and therefore, we use the denomination
“gap” instead of “minigap.” Nonlocal processes then take
place at the discontinuities of the superconducting order pa-
rameter at � and ��. For lower interface transparencies be-
tween the superconductor S and the carbon nanotube, elec-
trons and holes may propagate in the portion of the nanotube
in contact with S before undergoing nonlocal Andreev reflec-
tion or elastic cotunneling, which amounts to averaging over
many channels for nonlocal processes.

Second, we consider the off-state with a vanishingly small
density of states if the absolute value of energy is smaller
than the gap �see Fig. 3�a��, and we use a standard descrip-
tion as tunnel amplitudes31–33 connecting the superconduct-
ors S and S�.

As a third assumption, it is well known that a single wall
carbon nanotube contains two conduction channels. The ide-
alized case of a single hopping amplitude is discussed in Sec.
III A. Multichannel contacts are left for Sec. III B.

As a final assumption, Coulomb interactions in the quan-
tum dots are not accounted for, so that � in Fig. 3 is supposed
to be a finite size effect not due to Coulomb interactions.

The distance R�,� between � and � �see � and � in Fig.
1�b�� is supposed to be comparable to the coherence length
�0. The shortest path connecting �� and �� �see �� and �� in
Fig. 1�b�� is much larger than �0 �R��,����0�, with therefore
no “nonlocal” quasiparticle tunneling between �� and ��.
Compared to the fork in the experimental geometry realized
in Ref. 27, these assumptions on geometry can be imple-
mented in future experiments by reducing the distance be-
tween � and � �see � and � in Fig. 1�b�� down to values
comparable to the superconducting coherence length �0. In
the experiment by Cleuziou et al.,27 the distance R�,� be-
tween � and � is comparable to the distance R�,�� between �
and ��, and to the distance R�,�� between � and �� �of order
400 nm�. We consider, on the contrary, future fork geom-
etries with R�,�	�0 and with R�,�
R�,�� ,R�,��.

Choosing the gauge Ax=−By /2, Ay =Bx /2, and Az=0
�with the Oxyz axis in Fig. 1�b��, with B the applied mag-
netic field and A the vector potential, leads to a finite value

for ��
�Adr, and to ��

��Adr=−��
��Adr if we suppose R�,��

=R�,��. Given R�,�
R�,��, we neglect the line integral of the
vector potential between � and �: ��

�Adr�0. The line inte-
gral of the vector potential along a path from �� to �� in S�
is finite, but quasiparticle propagation from �� to �� has a
vanishingly small amplitude �because R��,����0�. Nonlocal
processes between �� and �� are, thus, negligible.

B. Microscopic Green’s functions

The SQUID corresponds to two Josephson junctions, one
for each interface. If the junctions are far apart �at a distance

much larger than the superconducting coherence length�, and
for single channel weak links, one negative and one positive
energy Andreev bound state are located on each junction,
therefore leading to a total of four Andreev bound states for
the SQUID �two bound states at positive energy with respect
to the Fermi level, and two bound states at negative energy�.
As we show below, nonlocal processes induce a coupling
between these bound states in the form of level repulsion.

The supercurrent is obtained from differentiating the free
energy with respect to the superconducting phase difference
��. Beenakker36 found three terms contributing to the super-
current, some of which date back to the early stages of Jo-
sephson junction theory.37 First, at zero temperature, the fol-
lowing term corresponds to a summation over the discrete
bound states within the gap:

IS���,�� =
2e��0�


�
n=1

NABS ��n���,��
�����

��− �n���,��� , �1�

where � is the flux enclosed in the loop of the SQUID, and
where NABS is the number of Andreev bound states �ABS�.
The step function in energy ��−�n��� ,��� selects Andreev
bound states below the Fermi level. The second term in Ref.
36 corresponds to the contribution of the continuum to the
supercurrent. The contribution of the continuum is not in-
cluded in the discussion in Secs. III A and III B. We will
justify in Sec. III A 2 that it is, indeed, negligibly small in
the situations that we consider. The third and last term in the
expression of the supercurrent obtained by Beenakker36 van-
ishes if the superconducting gap is independent of the phase
difference, which we assume in the following.

The bound states are obtained in a standard description as
the poles of the fully dressed Green’s functions. The latter is
determined by the Dyson equations, which allow us to de-
scribe weak links ranging from tunnel contacts to highly
transparent interfaces.

The Green’s functions of the superconductor are obtained
by Fourier transform in a well known procedure.38 For su-
perconductors isolated from each other, the local Green’s
function takes the form

ĝ�,���� = ĝ�,����

=
��N

	��0�2 − ���2
 − � ��0�exp�i�L�
��0�exp�− i�L� − �

� ,

�2�

ĝ��,����� = ĝ��,�����

=
��N

	��0�2 − ���2
 − � ��0�exp�i�R�
��0�exp�− i�R� − �

� ,

�3�

where the superconducting phase variables �L and �R=�L
+�� are shown in Fig. 1�b�, ��0� is the superconducting gap,
and �N is the normal density of states.

The nonlocal Green’s functions take the form
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g�,���� = g�,���� = C�����N� 1
	��0�2 − ���2

�
 − � ��0�exp�i�L�
��0�exp�− i�L� − �

�
�cos�kFR�,�� + 
− 1 0

0 1
�sin�kFR�,�� , �4�

where we use the notation C��� for

C��� = exp�− 2
R�,�

����� . �5�

We parametrize below the strength of nonlocal processes by
C0=C��=0�=exp�−2R�,� /�0�, with �0=���=0�. The
strength of nonlocal processes is parametrized by C0, ranging
from an absence of nonlocal processes �C0�0 for R�,���0�
to nonlocal processes taking their maximal value �C0�1 for
R�,�
�0�. One has then the following:

C��� = �C0�����/�0. �6�

Intermediate values of C0 are expected for a carbon nanotube
with R�,� of order �0. Note that in the case of three dimen-
sions �not considered here�, the cos�kFR�,�� and sin�kFR�,��
factors are interchanged, and C���=exp�−2R�,� /����� /R�,�.

The condition R��,����0 �see Fig. 1�b�� leads to

g��,����� = g��,����� = 
0 0

0 0
� . �7�

The fully dressed Green’s functions at energy � are ob-
tained via the Dyson equations taking the following form in
a compact notation:

Ĝ��� = ĝ��� + ĝ��� � �̂t � Ĝ��� , �8�

where ĝ��� corresponds to the Green’s functions of the su-
perconducting electrodes isolated from each other in the ab-

sence of tunnel amplitudes, �̂t is the Nambu hopping self-

energy, and Ĝ��� is the fully dressed Green’s function. The
notation � denotes a convolution over the network labels �,
�, ��, and �� �see the notations in Fig. 1�b��. For instance,
one has the following:

Ĝ�,���� = ĝ�,���� + ĝ�,����t̂�,��Ĝ��,����

+ ĝ�,����t̂�,��Ĝ��,���� . �9�

The set of fully dressed Green’s functions are then obtained
from matrix inversion, and the Andreev bound states corre-
spond to the poles within the gap. They are determined either
from the corresponding analytical expressions of the Green’s
functions or from a numerical solution.

III. RESULTS

A. dc-Josephson effect for a single transmission channel

1. Amplitude and minima of the critical current

We find a reduction of the supercurrent upon increasing
the strength C0 of nonlocal processes �see Fig. 4�. On this

figure, the critical current is averaged over all realizations of
the Fermi phase factor kFR�,�, corresponding to averaging
over many samples with different Fermi phase factors. The
interfaces of a superconducting electrode are not controlled
in atomic scale and it is, thus, a natural assumption6,34 to use
a uniform distribution of the Fermi phase factors kFR�,�. As
expected, the reduction of the supercurrent by nonlocal pro-
cesses in a collection of single channel systems is in agree-
ment with a collection of multichannel systems �see Sec.
III B�.

Anticipating Sec. III A 2, we note that nonlocal Andreev
reflection changes an electron with positive energy on one
junction into a hole with negative energy on the other junc-
tion. As a consequence, bound states with positive energy are
coupled to bound states with negative energies. The resulting
level repulsion among bound states with opposite energies
reduces in absolute value the slope of the phase dependence
of the Andreev levels and, therefore, reduces the critical cur-
rent. We evaluate in Appendix B the critical current for tun-
nel interfaces, and we confirm by this analytical treatment
the reduction of the critical current by nonlocal processes.

2. Level repulsion among Andreev bound states
and current-phase relation

Assuming a distance between the Josephson junctions
much larger than the coherence length, and assuming also
single channel contacts, we find one Andreev bound state
with negative energy localized on each junction, as it should.
The bound states extend in the superconductor over a region
of size comparable to the coherence length. If the distance
between the Josephson junctions becomes comparable to the
coherence length, the bound state energy levels depend on
the coupling corresponding to “nonlocal” propagation in the
superconductors �see Fig. 1�.
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FIG. 4. �Color online� Critical current as a function of the mag-
netic flux � in the loop of the SQUID, �a� with �T� ,T��
= �0.8,0.8� and �b� with �T� ,T��= �0.8,1�. The critical current is
averaged over all values of kFR�,�. Different curves correspond to
different values of C0, the strength of nonlocal processes.
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The variations of the bound state levels ���1 , ��2� with
the flux � enclosed in the loop are shown in Fig. 5�a� for
C0=0 �absence of nonlocal processes� and in Fig. 5�b� for
C0=1 �maximal value of nonlocal processes�.

Level repulsion among Andreev bound states upon in-
creasing C0 �see Fig. 5�b�� has the effect of reducing the
slope of the bound state energy levels versus phase relation,
which reduces the supercurrent. The bound states take the
simple form given in Appendix C �see Eqs. �C1� and �C2��
for a symmetric contact with ta= tb. We do not present in the
paper the too heavy expression of the bound state levels in
the general case.

Now we consider single channel transmission modes be-
tween the superconductors S and S�, and with nonlocal pro-
cesses at the interfaces where a step function variation of the
superconducting gap is assumed. As seen from Fig. 6, the
SQUID current-phase relation fluctuates from sample to
sample.

We conclude this section by discussing the contribution of
the continuum36 for the hopping model of SQUID in the
off-state. The supercurrent is obtained as the integral over
energy of the spectral supercurrent. We show in Fig. 7 a
typical variation of the spectral supercurrent as a function of
energy. We find practically no contribution of energies larger
than ��0� in absolute value, as opposed to other cases such as

Ref. 39. We conclude that the contribution of the continuum
is negligible for the hopping model of SQUID in the off-
state, in which the hopping elements are energy independent.
The supercurrent is, therefore, well approximated by Eq. �1�
as in Secs. III A and III B. As a physical interpretation, An-
dreev bound states are localized in the superconductor in a
region of size set by the coherence length. A single channel
weak link coupling two superconductors32 is a very localized
perturbation which does not couple most of the extended
states in the superconducting electrodes, which explains why
the states of the continuum are almost insensitive to the
phase difference between the superconductors in the consid-
ered geometry with localized interfaces.
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figure, we use ��=0, kFR�,�=1+2�n �with n an integer�, T�=0.8,
and T�=1. A similar repulsion between Andreev bound states is
obtained in the dependence of the bound state energy levels on the
phase difference ��.
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FIG. 7. �Color online� Variations of the spectral supercurrent for
a given realization of the microscopic Fermi phase factors in the
vicinity of �=h� /2��−��0�. We find practically no contribution
of the continuum for the hopping model of SQUID in the off-state.
We use the phase difference ��=2 on the figure, but similar varia-
tions of the spectral current are obtained for other values of ��. We
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B. Superconducting quantum interference devices involving
multichannel contacts

A metallic carbon nanotube consists of two conduction
channels, and it is, thus, natural to extend the discussion in
Sec. III A to the case of multichannel33 junctions �see Figs.
1�c� and 1�d��. We evaluate the density of Andreev bound
states35 for multichannel systems with Nch=2 and Nch=15
channels, and with C0=0 and C0=1 �see Fig. 8�. Increasing
the strength of nonlocal processes by increasing C0 reduces
the density of Andreev bound states, therefore reducing the
value of the supercurrent, in agreement with Sec. III A 1.

IV. CONCLUSIONS

To conclude, we have discussed signatures of nonlocal
Andreev reflection on the current-phase relation of a dc
SQUID in a fork geometry similar to Cleuziou et al.,27 but
with the dimension of the middle superconductor comparable
to the superconducting coherence length, so that quasiparti-
cles may tunnel through the superconductor, with or without
electron-hole conversion. Compared to a geometry consist-
ing of two parallel normal bridges connecting two
superconductors,24,25 we investigated here processes of
higher order that are not washed out by disorder. For ideal-
ized single channel systems with sharp step-function varia-
tions of the superconducting gap in the nanotube, we found
that nonlocal processes induce sample to sample fluctuations
of the current-phase relation due to the dependence of non-
local processes on the Fermi phase factors. Multichannel sys-
tems capture moderate interface transparencies between the
nanotube and the superconductor because in this case elec-

trons incoming in the superconductor can propagate in the
nanotube before undergoing crossed Andreev reflection. In-
creasing the strength of nonlocal processes reduces the su-
percurrent, such as for single channel systems.

From the point of view of future experiments, nonlocal
processes play a role in SQUIDs with fork geometries and
with junctions made of carbon nanotubes, normal metals, or
semiconducting quantum wires. It would be interesting to
measure the reduction of the current-phase relation of the
SQUID upon increasing the strength of crossed processes in
multichannel systems, via a comparison of samples with dif-
ferent dimensions or via the temperature dependence of the
coherence length. A more difficult experiment consists of
probing sample to sample fluctuations of the SQUID super-
current. A good characterization of the sample parameters
�such as number of channels and interface transparencies� is
required in order to distinguish between the intrinsic fluctua-
tions of crossed processes and unwanted variations of the
junction parameters when changing from one sample to an-
other. As pointed out to us by Giazotto, the strength of non-
local processes can be monitored by the temperature depen-
dence of the superconducting coherence length �0
=vF / ��0� �in the ballistic limit� or �0=	D / ��0� �with D the
diffusion coefficient in the diffusive limit� because the super-
conducting gap decreases with increasing temperature. In-
creasing temperature has, thus, the effect of reducing ��0�
and enhancing the coherence length. It is expected that the
total amplitude of supercurrent decreases with increasing
temperature, but the relative contribution of nonlocal pro-
cesses increases upon increasing temperature.
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APPENDIX A: FLUCTUATIONS OF NONLOCAL
TRANSPORT THROUGH A DIFFUSIVE

SUPERCONDUCTOR

The charge transmission coefficient of a diffusive super-
conductor vanishes after averaging over disorder in the dif-
fusive limit.11,15 To show that the charge transmission coef-
ficient of a disordered superconductor fluctuates at the scale
of the Fermi wavelength �F, we show that the opposite hy-
pothesis does not hold. Simply, we obtain fluctuations of the
charge transmission coefficient by adding a very small extra
ballistic region much larger than the Fermi wavelength but
much smaller than the elastic mean free path.

APPENDIX B: CRITICAL CURRENT IN THE TUNNEL
LIMIT

In this Appendix, the supercurrent is expanded in the tun-
nel amplitude ta,b connecting the two interfaces between the
superconductors. We do not detail the corresponding calcu-
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FIG. 8. �Color online� Distribution of the Andreev bound state
density of states at phase difference ��=�, �a� for Nch=2 channels
and �b� for Nch=15 channels, without nonlocal processes �C0=0, ��
and with nonlocal processes to their maximal value �C0=1, ��.
Each histogram is normalized to the number of Andreev bound
states averaged over the realizations of the Fermi phase factors.
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lation based on diagrammatic perturbation theory. We start
with the first terms of an expansion of the supercurrent in the
tunnel amplitudes �see the following Eqs. �B1�–�B10��. The
dimensionless parameters �a,b= ���Nta,b�2, related in the tun-
nel limit to the dimensionless interface transparencies
through Ta,b�4�a,b, are supposed to be small. The Dyson
equations are expanded systematically in the tunnel ampli-
tudes and the lowest order diagrams are collected, leading to
the following expansion for the supercurrent:

IS���,�� = Aa sin��� + �� + Ab sin��� − �� + B sin�2���

+ Da sin�2��� + ��� + Db sin�2��� − ��� , �B1�

with

Aa =
e

h
�a��0� , �B2�

Ab =
e

h
�b��0� , �B3�

B = −
e

2h
�a�bC*

2 ��0�sin2�kFR�,�� , �B4�

Da = −
e

2h
�a

2��0� , �B5�

Db = −
e

2h
�b

2��0� , �B6�

where C* is the value of the parameter C��� where � takes
the value of the bound state energy level. In this case, the
bound states are very close to the gap, so that C*�1. The
contribution of nonlocal Andreev reflection to the supercur-
rent �term B in Eq. �B4�� is, in the tunnel limit, much smaller
than the contribution of local tunneling of Cooper pairs from
one superconductor to the other �terms Aa and Ab in Eqs.
�B2� and �B3��.

The reduction of the supercurrent upon including nonlocal
processes is described in the tunnel limit by an expansion of
Eq. �B1� around �=� /2: �=� /2+��. We consider an en-
semble of single channel systems with a collection of kFR�,�
and, thus, we average to 1 /2 the factor sin2�kFR�,�� in Eq.
�B4�. We define ���0� as the value of �� such that

�IS��� = ���0�,��
�����

= 0, �B7�

and we obtain

cos����0�� =
�1 − ���� � 	��1 − �����2 + 2�2�2 − C*

2 /2�2

2��2 − C*
2 /2�2 ,

�B8�

where we supposed a symmetric contact with �a,b=�. For
����, the critical current is given by

Ic��/2 + ��� = 4����0��� , �B9�

and for ��
�, it is given by

Ic
�

2
+ ��� = ��2��0�
2 −

C*
2

2
� . �B10�

For �=0, the expansion of the critical current is given by

Ic�0� =
2�e�

h
+ O��3� , �B11�

where nonlocal effects do not enter Eq. �B11� at the leading
order. We conclude in the tunnel limit to a reduction of the
contrast of the critical current oscillations upon increasing
the strength C* of nonlocal processes. The main body of the
paper corresponds to interfaces with moderate on large trans-
parencies, described by Andreev bound states obtained from
the Green’s function dressed by tunnel processes to infinite
order, as opposed to the limit of tunnel contacts considered in
this Appendix.

APPENDIX C: ANDREEV BOUND STATES

In a symmetric SQUID with ta= tb and no magnetic field
��=0�, the bound states take the form

�1
����� = � ��0�	A+����/	B+���� , �C1�

�2
����� = � ��0�	A−����/	B−���� , �C2�

with

A����� = 2 cos������1 � C* sin�kFR�,��� + 1

+ �2�1 � C* sin�kFR�,���2 + �2C*
2 cos�kFR�,��2

�C3�

and

B����� = �1 + ��1 � C* sin�kFR�,����2 + �2C*
2 cos�kFR�,��2,

�C4�

where �=�2�N
2 t2= t2 /W2, related to the normal transmission

by the relation32

TNN
a,b = �4ta,b

2 /W2�/�1 + ta,b
2 /W2�2, �C5�

where W=1 /��N is the bandwidth, with �N the normal den-
sity of states. The bound state levels are determined self-
consistently in such a way that C* is the value of C��� �see
Eq. �5��, where � is replaced by the bound state energy in a
self-consistent manner.

Let us consider the case kFR�,�=2�n �with n an integer�.
The bound state levels deduced from Eqs. �C3� and �C4� are
then degenerate:

�1
−���� = �2

−���� = − ��0�	1 − � sin���/2�2, �C6�

with

� =
4�

��1 + ��2 + �2C*
2 �

=
4t2/W2

�1 + t2/W2�2 + C*
2 t4/W4 , �C7�

where we introduced the bandwidth W according to Ref. 32.
The SQUID is then equivalent to two identical S-I-S junc-
tions, as seen from comparing Eq. �C6� to Ref. 32.
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For kFR�,�=� /2+2�n �with n an integer�, the degeneracy
is removed only if C0�0:

�1,2
− ���� = − ��0�	1 − ��1,2� sin���/2�2, �C8�

with

��1,2� =
4��1 � C*�

�1 + ��1 � C*��2 , �C9�

where the “�” and “�” signs correspond to “1” and “2,”
respectively.

In the presence of a magnetic field ���0�, the bound
state energy levels take the form

�1,2
− ���� = − ��̃0�	1 − ��1,2� sin���/2�2 − ��1,2� sin���� ,

�C10�

with

��1,2�

=
4� cos�2���1 � C*�

�1 + ��1 � C��2 − 4� sin���2�1 � C*� � 4�2C* sin�2��2 ,

�C11�

��1,2�

=
2� sin�2���1 � C*�

�1 + ��1 � C��2 − 4� sin���2�1 � C*� � 4�2C* sin�2��2 ,

�C12�

and

��̃0� = ��0�	1 − 4�
sin���2�1 � C� � �C* sin�2��2

�1 + ��1 � C*��2 .
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