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The “dynamic” Hubbard Hamiltonian describes interacting fermions on a lattice whose on-site repulsion is
modulated by a coupling to a fluctuating bosonic field. We investigate one such model, introduced by Hirsch,
using the determinant quantum Monte Carlo method. Our key result is that the extended s-wave pairing vertex,
repulsive in the usual static Hubbard model, becomes attractive as the coupling to the fluctuating Bose field
increases. The sign problem prevents us from exploring a low enough temperature to see if a superconducting

transition occurs. We also observe a stabilization of antiferromagnetic correlations and the Mott gap near
half-filling, and a near linear behavior of the energy as a function of particle density which indicates a tendency

toward phase separation.
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I. INTRODUCTION

The fermion Hubbard Hamiltonian,' originally proposed
to describe the physics of transition metal monoxides FeO,
MnO, and CoO, has been widely used as a model of cuprate
superconductors, whose undoped parent compounds, such as
La,CuQ,, are also antiferromagnetic and insulating. Indeed,
early quantum Monte Carlo (QMC) simulations of the Hub-
bard Hamiltonian suggested that d-wave pairing was the
dominant superconducting instability,>? a symmetry which
was subsequently observed in the cuprates.* However, the
sign problem precluded any definitive statement about a
phase transition to a d-wave superconducting phase.>> Over
the last several years, QMC studies within dynamical mean
field theory and its cluster generalization®’ are presenting a
more compelling case for this transition. The existence of
charge inhomogeneities in Hartree-Fock® and density matrix
renormalization group treatments,” along with the experi-
mental observation of such patterns,lo offer further indica-
tions that significant aspects of the qualitative physics of the
cuprates might be contained in the Hubbard Hamiltonian.

Nevertheless, there are a number of features of high tem-
perature superconductors which do not completely fit within
the framework of the single band Hubbard Hamiltonian. For
example, the cuprate gap is set by the charge transfer energy
separating the copper d and oxygen p orbitals'!"!? as opposed
to a Mott gap between copper d states split by the on-site
repulsion. Considerable evidence for the possible important
role of phonon modes in aspects of the physics is available.'?

Hirsch has emphasized the asymmetry in transition tem-
peratures, and other properties, between the electron and hole
doped cuprates as a reason to consider more general models,
since the particle-hole symmetry of the single band Hubbard
Hamiltonian requires that its behavior be rigorously identical
for fillings p=1-x and p=1+x. In addition, Hirsch noted
that the repulsion an electron experiences as it arrives at a
copper atom is not constant but fluctuates due to the follow-
ing mechanism (see Fig. 1): If one starts with one electron in
an orbital [Fig. 1(a)] and adds a second electron [Fig. 1(b)],
the initial repulsion U between electrons will be quite strong
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because the electronic cloud is originally squeezed around
the nucleus. However, after a short time, the repulsive inter-
action dynamically expands this electronic cloud [Fig. 1(c)],
thus reducing U to a smaller value. A simple way to take this
into account is to let U fluctuate by introducing a new dy-
namic variable. Several possibilities have been proposed, the
simplest choice being to introduce a fictitious quantum spin-
1/2, &, dynamic variable. The model is then described by the
dynamic Hubbard Hamiltonian,'4-!8

H=-12, (C;gcia‘*‘ Cz—o'cjo') - (nyg +my))
(o i

1

+E[w00f+gwoof]+2(U—Zgwoa‘f)nﬁn,l (1)

The first term, involving the fermion creation (destruction)
operators cha cjo) at site j with spin o, is the tight binding
kinetic energy describing the hopping of electrons between
near neighbor sites. When this purely fermionic part of the
Hamiltonian acts, the dynamical field configuration remains
unchanged, i.e., there is an implicit identity operator in that
sector. We consider here a two-dimensional square lattice
and choose =1 to set our scale of energy. The third term
describes the coupling of the fictitious spin to a longitudinal
field gw, which gives a nonzero mean value to o° and to a
transverse field w, which gives the quantum fluctuations.
Here o} and of are Pauli matrices.! This term, which has
only dynamic field operators, is diagonal in the fermion de-
grees of freedom. The on-site interaction energy (second

FIG. 1. Expansion of the electronic cloud when several elec-
trons are present in an orbital.
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FIG. 2. (Color online) Binding energy U, on a four-site cluster
as a function of the coupling g to the dynamically fluctuating field
o°. The binding energy U, can go negative at large g, suggesting
the possibility of pairing.

term in H) includes o° thus modeling the dynamic effect
described above. When we have zero or one particle on a
site, the interaction term vanishes and, because of the
third term, the fictitious spin takes a negative mean value
(0%y=-1. Consequently, the repulsion takes the enhanced
value U,,,=U+2gw,. On the other hand, when a site is
doubly occupied, (o%)=+1 and the repulsion is reduced to
Umin= U- Zgwo

Hirsch and collaborators have studied the physics of Eq.
(1) with a variety of methods, including a Lang-Firsov trans-
formation (LFT),'* exact diagonalization (ED) of small
clusters,'®!” and world-line quantum Monte Carlo
(WLQMC)? in one dimension."> Within the LFT it is seen
that the hopping of electrons is renormalized by the overlap
of the states of the dynamic variable on neighboring lattice
sites. Superconductivity then arises because isolated holes
are essentially localized by a small overlap, whereas holes
that are on the same or neighboring sites can move around
the lattice. Furthermore this effect is operative for holes in a
nearly filled system, but not electrons in a nearly empty lat-
tice. Thus pairing is linked to the presence of holes, and the
physics is manifestly not particle-hole symmetric. ED pro-
vided quantitative values for the overlaps and confirmed the
picture based on the LFT, on small clusters.

ED also allows for the evaluation of the “binding energy,”
Ueffz 2E0(N+ l) —Eo(N+ 2) —Eo(N) Here Eo(N) is the
ground state energy of a cluster with N electrons. A negative
U, indicates that it is energetically favorable to put two
particles together on a single cluster rather than separate
them on two different clusters. On a sufficiently large lattice,
two particles would tend to be close spatially rather than
widely separated. In Fig. 2 we show an evaluation of U, on
a 2 X2 lattice. These numbers were obtained independently
from, but are identical to, those of Ref. 15. As the coupling g
to the dynamic field increases, U is driven negative, indi-
cating the possibility of binding of particles and hence super-
conductivity. WLQMC simulations in one dimension con-
firmed this real space pairing by explicitly showing the
preference of the world lines of holes to propagate next to
each other and a large gain in kinetic energy when the hole-
hole separation becomes small. Significantly, these simula-

PHYSICAL REVIEW B 77, 014516 (2008)

tions also showed that the kinetic energy disfavors proximity
of holes in the Holstein model, which also features the ten-
dency of holes to clump together by distorting a local pho-
non degree of freedom. Thus pairing in the dynamic Hubbard
model is driven by the kinetic energy as opposed to a poten-
tial energy.

In this paper we examine the properties of the dynamic
Hubbard Hamiltonian with determinant quantum Monte
Carlo (DQMC).?! This approach allows us to work in two
dimensions, as opposed to previous (d=1) WLQMC studies,
and also to examine lattices of an order of magnitude greater
number of sites than ED. On the other hand, the ability of
DQMC to reach low temperatures is limited by the sign
problem.’ We find that the extended s-wave pairing vertex,
which is repulsive in the static Hubbard model, is attractive
in the dynamic model, that is, extended s-wave supercon-
ducting correlations are enhanced by the dynamic fluctua-
tions. However, the pairing susceptibilities are still only
rather weakly increasing down to the lowest temperatures
accessible to us (temperature T greater than 1/40 the elec-
tronic bandwidth).

We also find, near half-filling, that the antiferromagnetic
correlations can be enhanced relative to the static Hubbard
Hamiltonian, particularly for densities above p=1. The Mott
gap can also be stabilized. Interestingly, the total energy ap-
pears to be close to linear in the particle density, as opposed
to a clear concave up curvature in the static Hubbard model
(with either repulsive or attractive interactions).

The organization of this paper is as follows: In the next
section we present our computational method, DQMC, as it
applies to the dynamic Hubbard model. We describe several
minor adjustments to the DQMC algorithm for the static
Hubbard model that are needed in order to study the dynamic
model. Our observables are also defined. In Sec. III, we
present the results from our Monte Carlo simulations. The
topics of antiferromagnetism and the Mott transition, pair
susceptibilities and superconductivity, and the energy char-
acteristics of the dynamic Hubbard model are discussed. The
paper closes with conclusions in Sec. IV.

II. COMPUTATIONAL METHODS

Although he did not undertake such studies, Hirsch
pointed out" that the dynamic Hubbard model could be
simulated with a relatively minor modification of the DQMC
method.?! In DQMC, an auxiliary space and imaginary time
dependent “Hubbard-Stratonovich” (HS) field S;(7) is intro-
duced to decouple the on-site Hubbard repulsion. The trace
over the resulting quadratic form of fermion operators is per-
formed analytically, leaving an expression for the partition
function which is a sum over the HS variables whose weight
is given by the product of two determinants, one for spin up
and one for spin down, that are produced by evaluating the
trace.

In DQMC for the usual Hubbard Hamiltonian, the HS
field couples to the difference between the up and down spin
electron densities, with a coupling constant which is inde-
pendent of spatial site and imaginary time. In a simulation of
the dynamic Hubbard model, the coupling of the HS field
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FIG. 3. (Color online) Double occupancy (left) and expectation
value of dynamic field (right) as functions of the coupling g. The
solid line is the result of exact diagonalization and the symbols of
the determinant QMC simulations. The cluster size is 2 X2 (the
same as for the binding energy calculation of Fig. 2 and Ref. 15).
Parameters are r=1, U=4, =13, u=2, and wy=1.5.

depends on the dynamic field o7(7). The imaginary time de-
pendence arises from the transverse term o7 in the Hamil-
tonian since when the path integral for the partition function
is constructed o7 induces flips between the two values
o;=*1. The standard expressions’! for the ratio of
determinants before and after the Monte Carlo move of
a HS variable and for the reevaluation of the Green’s
function are unchanged, except that the space and
imaginary time independent coupling constant N\ defined
by cosh A=exp[UA7/4] now becomes an array cosh \;(7)
=exp{[U-2gw,0i(7)]A7/4}. Here 7=1,2,..., L is the dis-
crete imaginary time step and A7=/L is the discretization
mesh.

When a dynamical field variable o7(7) ——07(7) is up-
dated, the potential energy is altered by the shift in the
coupling constant A;(7)—N;(7)’, where now cosh \;(7)’
=exp{[U+2gwy07(7)JA7/4}. The expression for the change
in the diagonal entry of the exponential of the potential en-
ergy is, exp[\j(7)oj(7)]—exp[Ai(7)' o7(7)], rather than the
simpler form exp[AS;(7)]— exp[-\S;(7)] in the usual Hub-
bard case when one flips the Hubbard-Stratonovich field
Si(7) —=S8;(7). Tt is to be emphasized, however, that these
changes merely amount to modifications of the scalar
prefactor which is an overall size of the vectors in the update
of the Green’s function G. Thus none of the linear algebra in
the QMC code changes.

A final difference is that there is a contribution to the
weight coming from the ¢* and ¢° terms in the Hamiltonian.
The former try to align the dynamic variables in the imagi-
nary time direction, while the latter favor positive values of
the dynamic field. Such pieces of the action, which enter the
weight of the configuration along with the fermion determi-
nants, are similar to those arising in simulations of the Hol-
stein Hamiltonian.??

We verified our DQMC code by comparing to exact di-
agonalization results on a 2 X 2 spatial lattice (Figs. 2 and 3)
and also by checking analytically soluble limits such as
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t=0. The results of our DQMC/diagonalization calculations
on 2X?2 lattices are completely consistent with those of
Hirsch. For example, we have quantitatively reproduced the
binding energy plot, Fig. 1 (top) of Ref. 15 and our Fig. 2. As
a further check, we compared DQMC results for the double
occupancy, {n;n,), and the expectation value of the dynamic
field, (o%), to results from ED. See Fig. 3.

We did not observe any major difference in the character-
istics of the DQMC algorithm in simulating the dynamic
Hubbard model: Autocorrelation times remain short, as is
typically the case with DQMC, and there was no major
change in the numerical stability.»?>> The key issue in
DQMC is the “sign problem” which we will discuss in the
following sections.

DQMC allows us to measure any observable which can
be expressed as an expectation value of products of creation
and destruction operators. Our measurements include the en-
ergy (H) (not including the chemical potential term), particle
density p=(n), and Green’s function Gij(T)=<Ci(T)C;(O)>, as
well as the average of the dynamic field (7). The depen-
dence of the density on the chemical potential w and the
Green’s function, when analytically continued to the spectral
function, allows us to examine, among other things, the Mott
metal-insulator transition.

In addition to these single particle properties we also ex-
amine magnetic correlations, and specifically, the magnetic
structure factor,

S(k)= > ™ (njag = nja)) (nj = nj))). ()
1
Our focus will be on the antiferromagnetic response
S(k=(m,m)).

We look at superconductivity by computing the correlated
pair field susceptibility P, in different symmetry channels,

B
P,= f dr(A (D AK0)),
0

P | P
Al == faK)efchy
Nk

fik) =1,

f*(k) = cos(k,) + cos(k,),
fd(k) = COS(kX) - COS(ky) . (3)
These quantities can also be expressed in real space,
.1
Al = ]T/E CiTTCiTla
1

+ l 4 .
fo— — NP i i i
A - NE- Cip(Ciagy + Cingy + Cig +Cig))
1

— T AT i f ¥
Ag= NZ Cit(Cig) = Ciag) + Cing — Cing))- (4)
1
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FIG. 4. (Color online) (¢%) and (c*) as a function of p for
wy=0.5, g=3.8. From p=0 to half-filling, the system minimizes its
energy by maximizing the interaction term U-2gwyo* to avoid
double occupation, that is, (6¢)=—1. In this figure, and elsewhere
in this paper, the lattice size is 6 X 6 unless otherwise stated.

The correlated susceptibility P, takes the expectation
value of the product of the four fermion operators entering
Eq. (3). We also define the uncorrelated pair field suscepti-

bility P, which instead computes the expectation values of
pairs of operators prior to taking the product. Thus, for ex-
ample, in the s-wave channel,

1 b b oot
P“:ﬁz}f dT<Cil(T)CiT(T)CJ"T(O)CL(O»,
ij Y0

B
PensS | arte A OO0 )
N5 o

P, includes both the renormalization of the propagation of
the individual fermions as well as the interaction vertex be-

tween them, whereas P, includes only the former effect. In-

deed by evaluating both P and P we are able to extract?® the
interaction vertex I,

I,=—-—. (6)

If T',P,<0, the associated pairing interaction is attractive.

I',P,——1 signals a superconducting instability. In the fig-
ures which follow, when the error bars are not visible, they
are the size of the symbols.

III. RESULTS
A. Mott transition and antiferromagnetism

It is useful to begin our study of the dynamic Hubbard
model by understanding the behavior of the dynamic field at
different fillings (Fig. 4). For fillings below one particle
per site, p<<1, the dynamic field of=—1 because of the cou-
pling to the external field gwy; hence, the interaction
U+2gwy=U,,, and the double occupancy is reduced. How-
ever, once double occupancy is unavoidable (p>1), the in-
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FIG. 5. (Color online) Comparison of the evolution of the den-
sity p with chemical potential u for the static and dynamic Hubbard
models. The dynamic model has a significantly better developed
Mott insulating gap, as well as a pronounced particle-hole asymme-
try. Here the inverse temperature 8=5.

teraction term strongly favors oi=+1. Figure 4 shows that
this evolution from negative to positive values is nearly lin-
ear once p> 1. Meanwhile, the expectation value of o7 mea-
sures the fluctuations of of in imaginary time. It is not sur-
prising, then, that this quantity exhibits a maximum at
roughly the midpoint between the evolution from o;=-1 to
oi=+1, at p=~1.5. In the results of Fig. 4, and throughout
this paper unless otherwise stated, the simulations were per-
formed on 6 X 6 lattices.

Next, we compare the Mott gap and magnetic correlations
in the static and dynamic Hubbard models. In Fig. 5 we plot
the density p as a function of chemical potential x. A plateau
at p=1 indicates the formation of a Mott insulator. The cost
to add a particle suddenly jumps by U because additional
particles are forced to sit on sites which are already occu-
pied. At the inverse temperature chosen, S=35, for the static
Hubbard model, the plateau is only beginning to develop.
However, for the dynamic model the plateau is much more
robust. This is expected since near half-filling, as we have
seen, the on-site repulsion mostly takes on its maximum
value U,,,,=7.8, for the parameters in Fig. 5. We have cho-
sen dynamic Hubbard parameters g and w, which get the
system as close as possible to the most attractive (negative)
binding energy U while still having U,;,>0.

Figure 6 gives further insight into the behavior of the
density near full filling. In the static model, the cost to add
particles to the system is set by the on-site U (in the case that
U exceeds the bandwidth W=8¢). However, in the dynamic
model, as full filling is approached, the double occupancy
cost is reduced to U,;,. For the parameters chosen in Fig. 6,
Unin=0.2 is close to zero. Thus we expect the filling of
the lattice to be complete when the chemical potential
reaches the top of the band, 4¢, in good agreement with the
plot.

The static Hubbard model exhibits antiferromagnetic cor-
relations at half-filling on a bipartite lattice, since only elec-
trons with antialigned spins can hop between neighboring
sites. This leads to a lowering of the energy by the exchange
energy J=41>/U relative to sites with parallel spin, for which
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FIG. 6. (Color online) The density p as a function of chemical
potential u at U=4 and 8=5. As the coupling g increases, the cost
to add particles to an already occupied site decreases. As a conse-
quence, p rises more steeply with .

hopping is forbidden. Indeed, a finite size scaling analysis
of the structure factor has shown there is long range order
in the ground state.”’” Figure 7 compares the value of the
antiferromagnetic structure factor S(ar, ) for the static and
dynamic models. At half-filling, S(7r,7) for the dynamic
model attains a maximal value 50% larger than that of the
static model. There is a marked asymmetry in the magnetic
response at values greater and lower than p=1 in the dy-
namic model, with S(7,7) remaining high to values of p
10% larger than half-filling. We also show results for the
negative U Hubbard model, which has no tendency for mag-
netic order at any filling. (Instead, the attractive Hubbard
model exhibits long range charge and superconducting cor-
relations at p=1).

The spectral function A(w), which we obtain with an ana-
lytic continuation of G(7) using the maximum entropy

8 T T T
B ; o U=4, ©,=0.5, g=3.8H1
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FIG. 7. (Color online) The antiferromagnetic structure factor
S(7r, ) at inverse temperature B=5 as a function of density p. For
both the static and dynamic repulsive Hubbard Hamiltonians there
is significant antiferromagnetic order near half-filling, with the
magnetic correlations in the dynamic model somewhat more robust.
There is no magnetic signal for the attractive model which, instead,
is known to show strong charge density wave and s-wave supercon-
ducting correlations.
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FIG. 8. (Color online) Top: Comparison of the spectral function
A(w) for the static and dynamic Hubbard models at =5 and half-
filling. We can see clearly that the Mott gap is more robust in the
dynamic case. Middle and bottom: The behavior of A(w) away from
half-filling (Ref. 29). In all cases the spectral function is finite at the
Fermi energy, indicating metallic behavior. However, for the dy-
namic model at p=1.5 there is a sharp resonance at w=0 whereas in
the other cases the spectral function is suppressed there. A(w) was
obtained with the maximum entropy method (see the text).

method,”® shows supporting evidence for the enhancement of
the Mott gap at half-filling, Fig. 8 (top). At p=1.5, A(w)
exhibits a sharp resonance at w=0, Fig. 8 (bottom). In the
doped static Hubbard model the spectral function has broad
peaks at £U/2 which reflect charge excitations (upper and
lower Hubbard bands), and a peak at the Fermi energy asso-
ciated with the coherent motion of the quasiparticles.’® In its
general structure, our A(w) plots for the doped dynamic Hub-
bard model are rather similar. However, the comparison of
A(w) for p=0.5 and p=1.5 further emphasizes the lack of
particle-hole symmetry, Fig. 8 (bottom) in the dynamic case.
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FIG. 9. (Color online) The extended s-wave pair susceptibilities
P: and P as a function of temperature for U=3, wy=0.5, and g
=2.9. Here, unlike the static model, P* exceeds 135* when the tem-
perature is lowered. However, we cannot say if Pg* might diverge at
low temperature because of the sign problem.

B. Pairing susceptibilities

We turn now to a discussion of superconductivity in the
dynamic model. In the static Hubbard model, it has been
shown that the s-wave pairing vertex is repulsive (positive).
The d-wave vertex is negative, but only relatively weakly so
at the temperatures accessible to the simulations.>® Near
half-filling, the extended s-wave vertex is also attractive, but
markedly less so than d wave, suggesting that d-wave sym-
metry is the most likely instability. However, the same sign
problem which precludes a definitive statement about super-
conductivity in the static model also limits what we can con-
clude here for the dynamic model. Nevertheless, there is an
interesting qualitative difference between the two models
which can be clearly discerned.

Specifically, the extended s-wave vertex is attractive in
the dynamic model in the regime of g where U is negative,
while it is repulsive in the static model at these high fillings.
In Fig. 9 we compare the temperature evolution of the

correlated and uncorrelated susceptibilities P,x and P at

p=1.89 and U=3 and see that the P> P +. The average
sign takes the values 0.94, 0.92, 0.83, 0.73, and 0.63 at
B=5,6,7,8,9, respectively. The resulting attractive (nega-
tive) vertex is given in Fig. 10. For g=0, the static model, the
vertex is repulsive. But it systematically decreases and
goes negative as the coupling to the dynamic field is
strengthened. In this plot the inverse temperature is fixed at
B=5 and the density is allowed to vary. The average sign
takes the values 0.36, 0.54, 0.73, 0.89, and 0.96 at
p=1.50,1.60,1.70,1.80,1.90.

Figure 11 (top) shows that, in contrast to the behavior of

I'#P ., the s-wave vertex is strongly repulsive, although g
does weaken the repulsion somewhat as it increases. Mean-
while, we see in Fig. 11 (bottom) that near full ﬁlhng the
d-wave vertex is more weakly attractive than the s -wave
vertex. This suggests that if the dynamic Hubbard model
does have a superconductmg instability at small hole doping
that it would be of s symmetry, unlike the d-wave symmetry

which is most attractive for the static model.3!
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FIG. 10. (Color online) rs*ﬁs* as a function of density p for
B=5 near full filling. The 5" channel becomes attractive when g

increases. T';*P*——1 would signal a superconducting instability.

It is informative to compare the onset of attraction in the
pairing vertex with the development of negative binding en-

ergy. Figure 12 shows I P?Y, Iy ‘ﬁ , and Fd ) de 22 VS8 for
U=4 and wy,=0.5. The filling p=1.8. On 2><2 lattlces for

which the ED calculation of U is feasible, FS*P; becomes
negative at somewhat larger values of g than where U be-
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FIG. 11. (Color online) Top: I',P, as a function of p for different
values of g at B=5. Unlike I';*P*, the s-wave channel remains
repulsive. Bottom: I’ dp v’Pd , »as a function of p. The d2_,2- wave

channel is attractive, but the effect is less pronounced than for s s
especially near full filling.
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FIG. 12. (Color online) Pairing vertices and binding energy as
functions of the dynamical coupling g. I';*P,* becomes negative at
g>3.5 while U.;<0 when g>2.3. As long as g<4, i.e., for the
entire range of the horizontal axis, both U, and U, are repul-

sive. I' ;P is strongly repulsive in the static model g=0.

comes negative. The figure also shows that I'P is relatively
insensitive to lattice size: the 2X2 and 6 X 6 lattices give
results which are quantitatively rather similar for most values

of g. Note also that I'#P* is strongly repulsive in the static
model g=0.

A significantly larger enhancement of superconductivity
was reported®” in a Hubbard Hamiltonian in which the hop-
ping of one spin species is modulated by the density of the
other. This model was argued to be connected to the dynamic
Hubbard Hamiltonian in the limit of large w,. We conclude
this section by exploring the w, dependence of the pairing
vertex, to see if larger w, might show a greater tendency for
superconductivity. In Fig. 13 we show the vertices as a func-
tion of w,. We have fixed the product gwy=1.9 and U=4 so
we can stay near the values of U, where the binding energy
is maximized. The attraction does not seem to increase mark-
edly with wy,.

C. Energy

The total energy (Fig. 14) also shows a markedly different
dependence on the density p in the dynamic Hubbard Hamil-

0.6
[p=1.8 U=4.0, go=1.9
oI P, N=4x4
0.4 [ Aa-AT_ P N=4x4
ool P, N=dxd

0.2

N X T

®y

FIG. 13. (Color online) Pairing vertices as functions of fre-
quency o at fixed gwy=1.9, p=1.8, B=5, and U=4. The attractive
d-wave vertex shows only a weak dependence on wy.
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FIG. 14. (Color online) Total energy as a function of p at =5
for the static attractive and repulsive Hubbard models, and for the
dynamic model. The static models show clear positive curvature,
indicative of thermodynamic stability. In the dynamic model E(p) is
nearly linear.

tonian. Whereas the static positive and negative U Hubbard
Hamiltonians have d°E/dp®> 0, the positive curvature of the
dynamic model that is evident below half-filling becomes
very small for p>1 as g increases and eventually the curva-
ture nearly vanishes. Figure 15 shows this linear behavior
developing with g.

The temperatures at which we performed our simulations
are low enough that the total internal energy E is nearly
equal to the free energy F. As it is well known, negative
curvature in the free energy as a function of the density, in
the canonical ensemble, leads to negative compressibility
and is thus a signal for phase separation and a first order
phase transition.3* Thermodynamic stability requires positive
curvature for the free energy versus density. While our simu-
lations are performed in the grand canonical ensemble,
where such negative curvatures are not observed, we do see
(Fig. 15) a progression from positive to zero curvature as
g—4. At the same time, and recalling that w=d(F/V)/dp,
we see in Fig. 6 that as g—4, the p versus u curves get
steeper signaling higher compressibility k=dp/du. Noting
that U, vanishes for g=4 and becomes negative when g

1 1 T T T
- |00 g=3.8
Bmg=2.0
100} |*® g=1.0
4A—-A Hubbard U=4

p=5, N=6"6, U=4, v,=0.5

1.4 1.5 1.6 1.7 1.8 1.9 2

FIG. 15. (Color online) Total energy as a function of p at B=5.
For g=0, the static model, the curvature is positive. As g gets larger,
the energy becomes linear in the density.
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>4, we interpret these observations as a possible phase sepa-
ration setting in at g=4 whereby the system develops hole-
rich and hole-deficient regions.

IV. CONCLUSIONS

In this paper we have performed determinant quantum
Monte Carlo simulations of a two-dimensional Hubbard
Hamiltonian in which the on-site repulsion is coupled to a
fluctuating bosonic field. Our studies complement earlier
work using the Lang-Firsov transformation and exact diago-
nalization and QMC in one dimension. We note a number of
interesting features of the model. First, the Mott gap at half-
filling is stabilized. Second, antiferromagnetic correlations
are enhanced above half-filling. The extended s-wave pairing
vertex, which is repulsive in the ordinary static Hubbard
Hamiltonian, is made attractive in the dynamic model. The

PHYSICAL REVIEW B 77, 014516 (2008)

value of g for which this attraction manifests is roughly con-
sistent with the value at which the binding energy U, goes
negative on 2 X2 clusters. The sign problem prevents simu-
lations at low temperatures to see if an actual pairing insta-
bility occurs. We have also observed that as g—4, i.e., as
Upin— 0, E(p) becomes linear in p signaling possible phase
separation into regions of hole-deficient and hole-rich re-
gions when U, becomes negative for g >4.
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