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We consider a system composed of two qubits and a high excitation energy quantum object used to mediate
coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of
the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well-known results concerning the
leading term in the mediated coupling, we obtain an expression for the residual coupling between the qubits in
the off state. We also analyze the entanglement between the three objects, i.e., the two qubits and the coupler,
in the eigenstates of the total Hamiltonian. Although we focus on the application of our results to the recently
realized parametric-coupling scheme with two qubits, we also discuss extensions of our results to harmonic-
oscillator couplers, couplers that are near resonance with the qubits and multiqubit systems. In particular, we
find that certain errors that are absent for a two-qubit system arise when dealing with multiqubit systems.
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I. INTRODUCTION

Superconducting qubits are among the main candidates
for the possible implementation of quantum-information-
processing tasks.1 Coherent dynamics of a single qubit has
been achieved at various laboratories. Several interesting
two-qubit experiments have also been performed.2–20 The
early experiments2–12 were limited to fixed interqubit cou-
pling. In order to scale up qubit circuits, however, it is highly
desirable to be able to tune in situ the coupling strengths
between the different qubits. The idea of coupling two qubits
to a high excitation energy quantum object that would medi-
ate coupling between the qubits21–26 has lead to experimental
demonstrations of tunable coupling.13–15 However, Refs. 13
and 14 probed the magnetic properties of the circuit in its
ground state; thus, the approach used there is not suited to
implement the standard gate-based quantum computing, but
possibly adiabatic quantum computing,27 where the quantum
register is ideally never excited. In Ref. 15, tunability of the
coupling was demonstrated through spectroscopic measure-
ments with the qubits biased away from their coherence op-
timal points. Generalizing the idea of mediated coupling21–26

to parametric tunable coupling,28–31 it was proposed that one
can bias the qubits at their optimal points and also adjust the
dc component of the mediated coupling to cancel the direct
interqubit coupling throughout the experiment. Applying a
microwave pulse to the coupler at the sum or difference fre-
quency of the qubits’ characteristic frequencies would then
turn on the coupling, but only for the duration of the applied
microwave pulse. This proposal, combining tunable coupling
and long coherence times, was realized experimentally in
Ref. 17.

Another related direction of growing research activity is
the idea of using a harmonic-oscillator “cavity” as a data bus

with the potential that a single cavity could mediate coupling
between a large number of qubits.19,20,32,33 If the harmonic
oscillator mediates coupling via high-energy virtual excita-
tions, it can be described similarly to other high excitation
energy couplers. Couplers that are near resonance with the
qubits, but sufficiently detuned such that they mediate cou-
pling through virtual excitations, can also be treated using a
similar approach. We shall show, however, that it would be
rather difficult to achieve tunability in the coupling in the
case of harmonic-oscillator couplers.

Early theoretical studies on tunable couplers have gener-
ally taken the semiclassical approach, which we shall explain
below. The semiclassical treatment is sufficient to evaluate
the leading term in the effective coupling mediated by the
coupler. As qubit circuits that include couplers are becoming
an experimental reality, however, there is an increasing need
for a more careful analysis of these quantum couplers. Some
recent studies29,34 used a number of quantum-mechanical
techniques and obtained results beyond the semiclassical cal-
culations. For example, Ref. 34 derived an expression for the
residual coupling term when the main coupling channel is
turned off. Here, we take a fully quantum approach, where
we analyze the properties of the eigenvalues and eigenstates
of the total Hamiltonian. We obtain results that were not
captured by previous studies, particularly results concerning
the ideality of the off state in this coupling scheme.

The main questions of interest that the quantum treatment
can be used to answer include the following. �1� Can we
make the coupler’s energy splitting very large but still main-
tain the mediated coupling between the qubits? �2� Can we
turn the coupling off completely? In other words, will there
be any residual coupling terms if the system is biased such
that the main coupling channel is at its zero point? �3� How
much entanglement is there between the qubits and the cou-
pler, and how does this entanglement affect a realistic experi-
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mental setup? These questions will be answered in the analy-
sis below.

The paper is organized as follows. In Sec. II, we describe
the system and its Hamiltonian. In Sec. III, we review the
semiclassical approach and discuss what predictions we can
expect from it regarding the ideality of the off state. In Sec.
IV, we perform the fully quantum analysis of the problem:
We derive expressions for the leading-order effective cou-
pling strength mediated by the coupler, the residual coupling
in the off state, and the amount of entanglement between the
qubits and the coupler. We also discuss the extension of our
results to the case of a harmonic-oscillator coupler and that
of a coupler that is almost resonant with the qubits. We dis-
cuss in Sec. V the implications of the results obtained in Sec.
IV with regard to present-day and future experiments. In this
context, we also consider multiqubit systems. Section VI
contains concluding remarks. Some details of the calcula-
tions are explained in the Appendix.

II. SYSTEM AND HAMILTONIAN

Let us take a system composed of two qubits and a third
object that we would like to use as a coupler. Although tun-
ability is considered the main advantage of this coupling
scheme, for the purpose of answering the questions of main
interest to us, it suffices to focus on the case where the ex-
ternal bias parameters are set to fixed values. We therefore
treat a time-independent Hamiltonian. Since we are assum-
ing that we can speak of three distinct quantum objects, we
must be able to write down a Hamiltonian that reflects this
clear separation of the different objects in the system. We
therefore express the Hamiltonian as

Ĥ = Ĥ1 + Ĥ2 + ĤC + Ĥ12 + Ĥ1C + Ĥ2C, �1�

where the first three terms are the Hamiltonians of the sepa-
rate objects in the system, and the last three terms describe
coupling between those objects. As a realistic, representative
case, we take the different terms in the Hamiltonian to have
the forms

Ĥ1 =
�1

2
�̂z

�1� +
�1

2
�̂x

�1�, �2�

Ĥ2 =
�2

2
�̂z

�2� +
�2

2
�̂x

�2�, �3�

ĤC =�
0 0 0 ¯

0 �1 0

0 0 �2

] �

� , �4�

Ĥ12 = J0�̂x
�1�

� �̂x
�2� =�

0 0 0 J0

0 0 J0 0

0 J0 0 0

J0 0 0 0
� , �5�

Ĥ1C = �̂x
�1�

� Â , �6�

Ĥ2C = �̂x
�2�

� B̂ , �7�

with the coupler energies 0 ,�1 ,�2 , . . .. arranged in increasing
order,

Â =�
A00 A01 A02 ¯

A10 A11 A12

A20 A21 A22

] �

� , �8�

and similarly for B̂. For the case of superconducting flux
qubits, � j is the minimum gap of qubit j, � j represents the
deviation from the degeneracy point of half-integer flux
quantum threading the qubit loop �i.e., � j = Ip,j��ext,j −�0 /2�,
where Ip,j is the persistent current of qubit j, �ext,j is the
externally applied flux in the loop of qubit j, and �0 is the
flux quantum�, J0 is the direct qubit-qubit coupling strength,
and �̂�

�j� are the usual Pauli matrices of qubit j. Note that the
minimum gap � j is the coefficient of �̂z

�j� above, in contrast
with some alternative conventions used in the literature
where � j is the coefficient of �̂x

�j�. Note also that the opera-

tors Â and B̂ must satisfy the relations Aij =Aji
* and Bij =Bji

*.

The coupler’s Hamiltonian ĤC is written in its own eigenba-
sis �thus, it is diagonal�, and its ground-state energy has been
set to zero. We shall express Hamiltonians and energies in
frequency units throughout this paper.

We now make the assumption that the largest energy scale
in the problem is the excitation energy of the coupler. In
other words, �1 is larger than any relevant energy scale in the

Hamiltonian excluding ĤC. We shall not make any assump-
tion regarding the relation between the qubit energy scale
�� j

2+� j
2 and the qubit-coupler coupling energy scale �i.e., the

scale of the matrix elements in Â and B̂�. Although it is not
crucial for most of our analysis below, we shall generally
take the direct coupling energy scale J0 to be smaller than the
qubit energy scale.

III. SEMICLASSICAL TREATMENT

Before embarking on the semiclassical description of our
system, it is instructive to recall the problem of calculating
interatomic forces within the hydrogen molecule.35 One
starts by assuming that the nuclei have fixed locations in
space, leaving the degrees of freedom associated with elec-
tron motion as the only variables in the problem. The ground
state of the electronic degrees of freedom is calculated and
expressed as a function of the distance between the nuclei. At
this point, the total energy �direct Coulomb energy of the
nuclei plus electronic ground-state energy� is expressed as a
function of the relative position operator between the nuclei,
and the nuclear motion is treated quantum mechanically. One
can now obtain information related to atomic motion or mo-
lecular states without having to worry about electronic mo-
tion. The first step in the calculation ensures that the effects
of the electrons’ adiabatic adjustment to nuclear motion are
properly taken into account. The reason why the electronic
degrees of freedom can adjust adiabatically to nuclear mo-
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tion is that they are associated with a much higher energy
scale and thus changes that result from nuclear motion are
felt by the electrons as very slow variations.

A similar procedure can be applied when dealing with
interqubit couplers. Since the qubit-coupler interactions con-
tain the operators �̂x

�j�, one first assumes that the qubits are in
eigenstates of �̂x

�j�. One therefore needs to calculate the
ground-state energy of the Hamiltonian �or, more precisely,
the four Hamiltonians�,

ĤC,eff � ĤC + Ĥ1C + Ĥ2C →
�x

�j�=�1

ĤC � Â � B̂ . �9�

The ground-state energy �i.e., the four values obtained from
Eq. �9�� can then be expressed in the form36

E0	ĤC,eff
 = c1 + c2�x
�1� + c3�x

�2� + c4�x
�1�

� �x
�2�. �10�

Note that we have started with the assumption that the qubits
have well-defined values of �x

�j�. One could therefore say that
the above expression is not a quantum operator. However, it
is straightforward to follow the adiabaticity argument: the
coupler will, to a very good approximation, always be in the
ground state that corresponds to the instantaneous values of
�x

�j� �including the possibility of quantum superpositions�.
One can therefore turn back to the qubits and analyze their
dynamics using the effective Hamiltonian,

Ĥq,eff = Ĥ1 + Ĥ2 + Ĥ12 + Ĥmediated, �11�

where

Ĥmediated = c1 + c2�̂x
�1� + c3�̂x

�2� + c4�̂x
�1�

� �̂x
�2�. �12�

The above derivation shows that the response of the coupler
to external perturbations �induced by the qubits and repre-

sented by the terms �Â and �B̂� translates into a renormal-
ization of the qubit bias points �second and third terms in Eq.

�12�� and an additional coupling term between the qubits
�last term in Eq. �12��.

It is interesting to note here that in the semiclassical treat-
ment above, the effect of the coupler on the qubits is com-

pletely described by the Hamiltonian Ĥmediated. Therefore, if
the bias point is chosen such that the coefficient c4 in Eq.
�12� cancels the direct coupling strength J0, there would be
no residual coupling between the qubits. The off state would
therefore correspond to complete decoupling between the qu-
bits. In contrast, we shall show below that the fully quantum
treatment predicts the presence of finite residual coupling
effects.

IV. QUANTUM TREATMENT

We now take the Hamiltonian of Sec. II �Eq. �1�� and treat
it quantum mechanically. In particular, we would like to ana-
lyze the properties of the eigenvalues and eigenstates of the
total Hamiltonian. For the purposes of the calculations in this
section, we divide the Hamiltonian into two parts as follows:

Ĥ = Ĥ0 + V̂ , �13�

where

Ĥ0 =
�1

2
�̂z

�1� +
�2

2
�̂z

�2� + ĤC, �14�

V̂ =
�1

2
�̂x

�1� +
�2

2
�̂x

�2� + Ĥ12 + Ĥ1C + Ĥ2C. �15�

We use the basis 	�000� � , �010� � , �100� � , �110� � , �001� � , �011� � ,
�101� � , �111� � , �002� � , . . . 
, where the first, second, and third
quantum numbers describe, respectively, the state of the first
qubit, second qubit, and coupler �the state of the coupler will
be distinguished from those of the qubits using an underline
throughout this paper�; note that we allow the coupler to
have more than two levels, and we shall assume an infinite
number of levels in the expressions below. We can now ex-

press Ĥ0 as
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FIG. 1. Coefficients of the �a� main and �b� residual coupling
terms �i.e., J and Jresidual� as functions of the coupler’s bias point �C.
In generating this figure, we took �1=4 GHz, �2=5 GHz, �C

=30 GHz, J0=50 MHz, and J1C=J2C=�J0�C. It should be noted,
however, that the results are only weakly dependent on the exact
choice of parameters.
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FIG. 2. Same as in Fig. 1, except that J1C=J2C=0.75�J0�C. As
opposed to Fig. 1, J and Jresidual now vanish at the same bias point.
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Ĥ0 =

⎝
⎜
⎜
⎜
⎛

− �1 − �2

2
0 0 0 ¯

0
− �1 + �2

2
0 0 0

0 0
�1 − �2

2
0

0 0 0
�1 + �2

2

�1 +
− �1 − �2

2
0 0 0

0 0 �1 +
− �1 + �2

2
0 0

0 0 �1 +
�1 − �2

2
0

0 0 0 �1 +
�1 + �2

2

] �

⎠
⎟
⎟
⎟
⎞

.

�16�

A. Coupling strength: Leading term

In order to calculate the effective coupling strength, we
now calculate the energies of the lowest four energy levels.
We therefore want to construct a 4	4 effective-Hamiltonian
matrix describing the lowest energy levels while taking into
account the effects of the higher levels.

We now follow a standard calculation37 �see Appendix�
that gives

Ĥeff 
 Ĥeff
�0� + Ĥeff

�1� + Ĥeff
�2�, �17�

where

Ĥeff
�0� = Ĥ1 + Ĥ2 + Ĥ12

=
1

2�
− �1 − �2 �2 �1 2J0

�2 − �1 + �2 2J0 �1

�1 2J0 �1 − �2 �2

2J0 �1 �2 �1 + �2

� ,

�18�

Ĥeff
�1� = A00�x

�1� + B00�x
�2� =�

0 B00 A00 0

B00 0 0 A00

A00 0 0 B00

0 A00 B00 0
� , �19�

Ĥeff
�2� = �

l=1




�
k=00,01,10,11

P̂
V̂�k,l��k,l�V̂

Ĥeff − Ek,l

P̂ , �20�

where the operator P̂ projects the state onto the space of the
lowest four eigenstates of H0 ��000� � , �010� � , �100� �, and �110� ��;
alternatively, one could say that the operator P̂ removes the
size mismatch between the four-dimensional Hilbert space of

interest and the infinite-dimensional operator V̂. The sum
over l in Eq. �20� runs over states where the coupler is in one
of its excited states. The energies Ek,l are the eigenvalues of

Ĥ0 with the qubits in state k and the coupler in state l. In
order to find the lowest-order expression for the mediated

coupling term, we make the approximation Ĥeff−Ek,l
−�l in
Eq. �20�. Thus, we obtain the expression

Ĥeff
�2� = Ĥcoupling

�2� + Ĥshift
�2� ,

Ĥcoupling
�2� 
 �

0 0 0 − J1

0 0 − J1 0

0 − J1 0 0

− J1 0 0 0
� = − J1�̂x

�1�
� �̂x

�2�,

Ĥshift
�2� 
 − �shift�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� , �21�

where
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J1 = �
l=1



A0lBl0 + B0lAl0

�l
,

�shift = �
l=1


 �A0l�2 + �B0l�2

�l
. �22�

The overall shift Ĥshift
�2� does not have any physical conse-

quences to this order of the calculation and can be neglected.
The effective Hamiltonian can now be expressed as

Ĥeff = H̃0 + H̃coupling, �23�

where

H̃0 =
�1

2
�̂z

�1� +
�̃1

2
�̂x

�1� +
�2

2
�̂z

�2� +
�̃2

2
�̂x

�2�,

H̃coupling = J�̂x
�1�

� �̂x
�2�,

with the parameters

�̃1 = �1 + 2A00,

�̃2 = �2 + 2B00,

J = J0 − J1. �24�

The above results agree with those of Ref. 29 when the pa-
rameters of our model are taken to correspond to those con-
sidered in Ref. 29.

First, we mention the physical interpretation of the terms
2A00 and 2B00 in the expressions for �̃ j. Taking the experi-
mentally relevant case of flux qubits as an example, these
terms describe the fluxes generated by the coupler �in its
ground state� and going through the qubit loops. As a result,
if one wishes to bias the qubits at their optimal points, the
externally applied fluxes through the qubit loops are not set
to �0 /2, but they are shifted from that value to compensate
for the coupler-induced contributions. This is the physical
explanation of the difference between � j and �̃ j.

38

We can now answer the question of how high the cou-
pler’s energy splitting can be. We note that the mediated

coupling strength J1 is second order in the scale of Â and B̂,
and it is inversely proportional to the scale of �l. Although
this means that we cannot simply take �1→
 keeping the
other parameters fixed �otherwise J1→0�, it also means that
if we increase Anm, Bnm, and �l �keeping the ratio A0lBl0 /�l
fixed�, we can in fact take �1→
 while maintaining the
same level of mediated coupling. We shall see below that this
situation is desirable for purposes of reducing residual-
coupling effects.

We are also in a position to comment on the question of
monostability of the coupler �i.e., the idea that a single en-
ergy level of the coupler is relevant in the system under
consideration�. The presence of the matrix elements Al0 and
Bl0, which describe coupling between the coupler’s ground
and excited states, in the expression for the mediated cou-
pling strength �Eq. �22�� demonstrates that the excited states
of the coupler play an important role in the coupling mecha-

nism. The semiclassical treatment relies on the fact that the
relevant information contained in these matrix elements is
also encoded, and more easily accessible experimentally, in
the response of the coupler’s ground state to weak perturba-
tions. As a result, knowledge of the matrix elements them-
selves is not necessary; knowledge of simple response pa-
rameters is sufficient in order to calculate the mediated
coupling strength.

B. Residual coupling in the off state

In Sec. IV A, we have derived the leading-order terms in
the effect of the coupler on the two-qubit system. The results
agree with the predictions of the semiclassical treatment �al-
though no explicit expressions were given in Sec. III�. Our
main motivation for using the fully quantum treatment, how-
ever, is that it allows us to go further in the calculation, e.g.,
evaluating any off-state residual coupling terms in the two-
qubit effective Hamiltonian. Such closer examination of the
off state will be the subject of this and the following subsec-
tion �as well as part of Sec. V�.

Since we are interested in an ideal off state with the qubits
at their optimal points, we consider the case where J= �̃1
= �̃2=0 �we shall allow J to take nonzero values in the course
of the discussion below�. In order to enhance the robustness
of the decoupling between the qubits, we take �1��2. The
effective Hamiltonian �Eq. �23�� is diagonal to lowest order
in this case. We can therefore proceed with calculating
higher-order corrections using the states �000� �, �010� �, �100� �,
and �110� �.

The calculation of the residual-coupling Hamiltonian is
now carried out by calculating the energies of the lowest four
levels of the entire system �we shall refer to them as E000�,
E010�, E100�, and E110��. The four values that we obtain for the
energies in the four-level spectrum can then be used to ex-
tract four quantities: �1� an overall energy that can be ne-
glected, ��2� and �3�� the corrected �i.e., renormalized� values
of the qubit splittings � j, and �4� a residual-coupling energy
�given by E000� +E110� −E010� −E100��. It is this last quantity that
is of most interest to us here. It characterizes a coupling
Hamiltonian of the form

Ĥresidual = Jresidual�̂z
�1�

� �̂z
�2�, �25�

where

Jresidual =
E000� + E110� − E010� − E100�

4
. �26�

Note that in writing Eq. �25�, we have used our assumption
that the qubits are biased at their optimal points.

Although one can make analytic progress calculating the
energies using the pseudodegenerate perturbation theory ap-
proach, reaching the relevant results requires several steps of
the iterative procedures explained in the Appendix �the
lowest-order corrections to the individual energies do not
contribute to the combination E000� +E110� −E010� −E100��. We
therefore only present the results of numerical calculations
that find the energy levels of the entire system. It also turns
out that proceeding with the rather general model used so far
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complicates the extraction of the important results. We there-
fore have to make some simplifying assumptions. From now
on, we focus on a simple case that also happens to be rel-
evant to recent experiments: We take the coupler to be a
two-level system, such that

ĤC =
�C

2
�̂x

�C� +
�C

2
�̂z

�C� =
�C

2
�tan �C�̂x

�C� + �̂z
�C�� ,

Ĥ1C = J1C�̂x
�1�

� �x
�C�,

Ĥ2C = J2C�̂x
�2�

� �x
�C� �27�

�note that, unlike the convention used in Sec. II, ĤC is not

diagonal here�. We therefore have �1=��C
2 +�C

2

=�C / �cos �C�, A00=−A11=−J1C sin �C, A10=A01=J1C cos �C,

and similarly for B̂. As a result, we find from Eq. �22� that

J = J0 −
2J1CJ2C cos3 �C

�C
. �28�

.
For clarity and definiteness in the following analysis, we

now focus on the parametric-coupling scheme,28–30 and we
start by noting three factors that can contribute to determin-
ing the ideal dc bias point �it is worth mentioning at this
point that in general it will not be possible, nor necessary, to
satisfy all three conditions simultaneously�. First, we note
from Eq. �28� that the range of values for the effective cou-
pling strength J extends from J0−2J1CJ2C /�C �at �C=0� to
J0 �at �C=� /2�. In order to maximize the effective coupling
strength of the parametric-coupling scheme, it would be de-
sirable to set the dc bias point such that J=J0−J1CJ2C /�C,
i.e., halfway between the two extremes. This situation would
be obtained by setting �C
0.65
� /5, irrespective of the
specific system parameters. At this bias point, the allowed
amplitude of the ac driving signal �i.e., before encountering
nonlinearities in J� is maximized �see Fig. 1�a��. Second, it is
desirable to set J=0 at the dc bias point. Third, it is also
desirable to set the residual coupling energy Jresidual=0.

We now proceed with the numerical calculations as fol-
lows: We first fix the parameters �1, �2, �C, and J0 �e.g.,
�1=4 GHz, �2=5 GHz, �C=30 GHz, and J0=50 MHz�.
The coupling strengths J1C and J2C are then chosen as J1C
=J2C and J1CJ2C /�C=J0. This choice ensures that a single dc
bias point satisfies at least two of the three desirable condi-
tions mentioned above, i.e., J vanishes while maximizing the
achievable effective coupling strength for the parametric-
coupling scheme. The coupler’s bias point, determined by
the angle �C, is now treated as the only variable in the prob-
lem. For each value of �C, we �numerically� bias the qubits at
their optimal points �determined by simultaneously minimiz-
ing both qubit energy splittings� and calculate the residual
coupling energy. The results are shown in Fig. 1. We can
clearly see that there is some residual coupling in the off
state �i.e., at �C
0.65�; however, the residual coupling
strength in Fig. 1 is very small compared to typical relax-

ation and dephasing times. After varying all the parameters
by at least a factor of 2 in either direction, we can identify
that the residual-coupling term is given by

Jresidual 
 4
�1�2J0J1CJ2C

�C
4 cos6 �C

− �
�1�2J1C

2 J2C
2

�C
5 cos5 �C sin2�2�C� , �29�

where the coefficient � is approximately 20.
It is encouraging for future experimental efforts that the

residual-coupling term obtained above decreases rapidly
with increasing coupler gap �C, even if the mediated cou-
pling strength is kept at a fixed level. Furthermore, it is pos-
sible to adjust the system parameters such that the conditions
of vanishing J and Jresidual are simultaneously satisfied. An
example of this situation is shown in Fig. 2. Note that the
achievable effective coupling strength for the parametric-
coupling scheme has been reduced from that in Fig. 1 be-
cause the dc bias point has now moved away from the desir-
able point �C
0.65 mentioned above.

Another relevant quantity when analyzing the ideality of
the off state is how the effective coupling strength changes in
response to changes in the coupler’s bias point. This quantity
can be derived easily from Eq. �28�,

dJ

d�C
=

6J1CJ2C cos4 �C sin �C

�C
2 . �30�

With proper design parameters, this quantity also decreases
rapidly with increasing �C.

C. Entanglement in the energy eigenstates

In addition to the residual-coupling Hamiltonian, another
natural question to ask when analyzing the ideality of the off
state is how much entanglement there is between the qubits
and the coupler, and between the qubits themselves, in the
different energy eigenstates. Unlike the residual-coupling
Hamiltonian, where we had to resort to numerical calcula-
tions, this entanglement can be evaluated using the analytic
approach. The analysis of how the energy-eigenstate en-
tanglement manifests itself as errors in a quantum calculation
will be postponed until Sec. V.

Here, we are interested in the nearly ideal situation where
any residual entanglement is treated as a small error. We
therefore take the situation analyzed in the previous subsec-
tion �J= �̃1= �̃2=0, �1��2, and the coupler is a two-level
system�, and we analyze the degree of entanglement to low-
est nonvanishing orders.

As explained earlier in this section, we can start our cal-
culation using the states �000� �, �010� �, �100� �, and �110� �. For
the lowest order of this calculation, we can use the pseudo-
degenerate perturbation theory calculation explained in the
Appendix. We find that

��00� 
 �000� � −
J0

2�1
�110� � −

A10

�1
�101� � −

B10

�1
�011� � ,
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��01� 
 �010� � −
J0

2�1
�100� � −

A10

�1
�111� � −

B10

�1
�001� �

��10� 
 �100� � −
J0

2�1
�010� � −

A10

�1
�001� � −

B10

�1
�111� � ,

��11� 
 �110� � −
J0

2�1
�000� � −

A10

�1
�011� � −

B10

�1
�101� � , �31�

up to a normalization constant slightly smaller than 1. Note
that the above expressions can be collectively summarized
as39

��nm� 
 �nm0� � −
J0

2�1
�n̄m̄0� � −

A10

�1
�n̄m1� � −

B10

�1
�nm̄1� � = �1

−
J0

2�1
�̂x

�1�
� �̂x

�2� −
A10

�1
�̂x

�1�
� �̂x

�C� −
B10

�1
�̂x

�2�
� �̂x

�C��
	�nm0� � = �1 −

J0 cos �C

2�C
�̂x

�1�
� �̂x

�2�

−
J1C cos2 �C

�C
�̂x

�1�
� �̂x

�C� −
J2C cos2 �C

�C
�̂x

�2�
� �̂x

�C��
	�nm0� � . �32�

Two notes are in order here. �1� The mixing of
computational-basis states in the energy eigenstates �Eq.
�32�� cannot be identified as arising from a simple residual-
coupling Hamiltonian. In other words, one cannot find a two-
qubit Hamiltonian that reproduces any of the corrections in
Eq. �32�. This can be perhaps most clearly seen in the fact
that the signs in front of the small terms in Eq. �32� are
independent of the state. In contrast, one always expects dif-
ferent states to acquire corrections of different signs when
dealing with a direct coupling Hamiltonian. Higher-order ef-
fects in this system therefore cannot be completely described
by simply using small corrections to the reduced �i.e., 4	4�
two-qubit Hamiltonian. �2� The above expressions were ob-
tained assuming only that the coupling strength J vanishes,
�̃1= �̃2=0, and �1��2. They are not affected by the value of
the residual-coupling Hamiltonian discussed in Sec. IV B.
This fact demonstrates that the vanishing of both J and
Jresidual does not imply that the qubits are entirely decoupled.
Corrections to the energy eigenstates still have to be consid-
ered when calculating possible errors, as will be explained in
Sec. V.

As in the case of the residual-coupling Hamiltonian, it is
encouraging for scalability considerations that the entangle-
ment in the energy eigenstates decreases and approaches zero
with increasing �C, assuming that J0 and J1 are kept fixed.
One can therefore say that the coupler becomes more and
more ideal as �C is increased. It should be noted that the
superconducting gap for aluminum is �50 GHz. It would be
interesting to investigate in the future how serious a con-
straint this number imposes on the maximum allowed value
of �C.

D. Harmonic oscillator as a coupler

We can use the results derived above for a two-level cou-
pler to infer the corresponding results for a harmonic-
oscillator coupler. We now consider the situation where

ĤC = 
Câ†â ,

Ĥ1C = J1C�̂x
�1�

� �â + â†� ,

Ĥ2C = J2C�̂x
�2�

� �â + â†� , �33�

where â† and â are the creation and annihilation operators for
the coupler. The above coupling Hamiltonians change the
state of the coupler by one excitation. It should therefore be
a good approximation to truncate the coupler to its lowest
two energy levels. We now find that

J = J0 −
2J1CJ2C


C
�34�

and

Jresidual 
 4
�1�2J0J1CJ2C


C
4 . �35�

In order to study the tunability of a harmonic-oscillator
coupler, we now consider the effect of an applied external
field on the mediated coupling, adding the term

Ĥfield = h�â + â†� �36�

to the Hamiltonian. By defining b̂� â+2h /
C, we can see
that the new Hamiltonian takes the same form it had in the

absence of Ĥfield, except that â and â† are replaced by b̂ and

b̂†, and the qubit bias parameters �1 and �2 are shifted to �̃1
and �̃2 �just as discussed in the general case above�. In par-
ticular, the values of J and Jresidual are not affected by the
applied field. The mediated coupling is therefore not tunable,
assuming that the coupler’s bias point is set by an applied
linear field, i.e., a field that affects the coupler according to
Eq. �36�.

If the frequency of the harmonic oscillator �or alterna-
tively J1C and J2C� were tunable, one would be able to obtain
a tunable value of J �see Eq. �34��. Possible designs for such
tunable couplers have been proposed theoretically,40 but they
have not been realized experimentally. Given the advantages
they could provide in terms of tunable coupling, it would be
highly desirable to fabricate such tunable oscillators in the
future.

A related design would be to use a �possibly nontunable�
harmonic-oscillator element, which can be made large in
size, in the circuit and add a tunable coupler between this
oscillator and each qubit around it. With this design, one
would gain the advantages of both �1� the large “cavity”
being able to function as a data bus connecting a large num-
ber of qubits and �2� the coupling being tunable. With this
design, one would also be able to use the parametric-
coupling scheme to perform entangling operations on any
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qubit in the circuit and the cavity relatively easily �using red-
or blue-sideband transitions�, with the qubits biased at their
optimal points.

E. Coupler that is near resonance with the qubits

So far, we have focused on the case where the coupler’s
excitation energy is the largest energy scale in the problem.
For completeness, we consider in this section the case where
the coupler’s excitation energy is close to those of the two
qubits, but with sufficient detuning to avoid exciting the cou-
pler. In other words, we consider a situation similar to the
experiment of Ref. 20, but not that of Ref. 19.

The largest energy scale in the problem is now the qubit
and coupler energy splittings, which are almost equal. The
next largest energy scale is the detuning between the qubits
and the coupler �this assumption is made in order to avoid
large entanglement between the qubits and the coupler in the
energy eigenstates, in which case we would have to deal with
real excitations in the coupler�. The detuning between the
qubits, direct interqubit coupling strength, and qubit-coupler
coupling strength can take any values.

Because the qubit energy scale is the largest energy scale
in the problem, the mediated-coupling term now describes an
excitation transfer between the two qubits. As such, the form
of the effective-coupling term will only make sense in con-
nection with the single-qubit Hamiltonians, not the physi-
cally defined operators �̂x and �̂z as in the case of a high
excitation energy coupler. Assuming that the qubits are bi-
ased at their optimal points and the coupler is a harmonic
oscillator with only one relevant excited state �and using the
notation of Sec. IV D�, the mediated-coupling term for this
excitation-transfer process is well described by the Hamil-
tonian

Ĥmediated = −
J1CJ2C


C − �̄
��̂+

�1��̂−
�2� + H.c.� , �37�

where �̄= ��1+�2� /2 �note that ��1−�2� is assumed to be

much smaller than �
C− �̄�; note also that the qubit splittings
� j will be slightly modified because of the interaction with
the coupler�. Using numerical calculations, we find that the
residual-coupling term is given by Eq. �25� with

Jresidual 

J0J1CJ2C

�
C − �̄�2
. �38�

The fact that the residual-coupling strength scales inversely
with the second power of the qubit-coupler detuning as op-
posed to the fourth power of the coupler’s energy splitting
indicates that residual coupling can be a more serious issue
in this case than in the case of a high excitation energy cou-
pler. It should be noted, however, that in the experiment of
Ref. 20, J0 was essentially zero, in which case residual cou-
pling should be negligible.

V. ESTIMATING ERRORS IN A TYPICAL EXPERIMENT

In this section, we discuss a typical present-day experi-
mental procedure. Using concrete examples, we will be able

to discuss rather clearly the possible errors that the residual
coupling and energy-eigenstate entanglement might cause.

In most, if not all, present-day experiments, the qubits are
controlled using a single microwave line. This situation,
however, cannot be maintained for larger multiqubit systems,
where the energy levels of the entire system become densely
packed. We shall therefore assume that local control lines are
used to address the individual qubits.

A. Two-qubit system

The usual theoretical approach to describing a quantum
system that is composed of several distinct objects com-
monly runs along the following line of reasoning. First, we
assume that these objects are in a separable initial state, then
we controllably evolve the system using the total Hamil-
tonian, we take the trace over the degrees of freedom of the
unused objects �in this case the coupler�, and we find the
answer to the physical questions of interest. Given the en-
tangled form of the energy eigenstates obtained in Sec. IV,
one might expect that this “contamination” of the states will
reduce the observed coherence effects. Indeed, following the
above-described recipe, one finds such a reduction in observ-
able coherence effects, e.g., reduced gate fidelities. As we
now explain, however, this is not the correct description of a
typical experiment, and the resulting errors and limitations
are also described incorrectly in this way.

First, let us consider the assumption about the initial con-
ditions. In a real two-qubit experiment �assuming essentially
zero temperature�, the system starts in its ground state ��00�
� �000� �. When preparing the desired initial state �e.g., a
product of two single-qubit states�, single-qubit operations
are performed using small-amplitude pulses that are resonant
with individual qubits. These pulses are typically weak
enough that the single-qubit operations are performed over
times that are long compared to 1 / ��1−�2� �the energy dif-
ference ��1−�2� is used here because it is, to a good approxi-
mation, the smallest energy difference in the spectrum of the
four lowest energy levels�. Rather than perform ideal single-
qubit operations, such weak pulses drive transitions between
the eigenstates of the Hamiltonian of the entire system, re-
gardless of the form of these eigenstates. One could therefore
ignore the fact that ��nm�� �nm0� � and simply use the eigen-
states of the Hamiltonian �i.e., ��00�, ��01�, ��10� and ��11�� as
the computational basis for performing a quantum algorithm.
One can then use weak pulses with properly calibrated fre-
quencies to perform any operation on this effective two-qubit
system. Thus, the initial and all subsequent states in the ex-
periment can be very close to the desired form, except that
the basis states do not have the simple, separable form �e.g.,
the state ���00�+ ��10�� /�2 is prepared instead of the state
��000� �+ �100� �� /�2�.

There are two main possible sources of errors that can
affect the above picture. They are both related to the fact that
in most quantum algorithms, one needs to perform opera-
tions on a certain qubit without knowing the states of the
other qubits. The residual-coupling Hamiltonian �Eq. �25��
provides the first source of errors. For example, the reso-
nance frequencies for the transitions ��00�↔ ��10� and
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��01�↔ ��11� are shifted from each other by a frequency dif-
ference given by 4Jresidual. As a result, the resonance fre-
quency for performing operations on qubit 1 depends on the
state of qubit 2, and vice versa. In principle, one could per-
form a single-qubit gate using two pulses, with each pulse
being resonant with one of the transitions. This approach,
however, is impractical for many-qubit systems, where reso-
nance lines generally split into an exponentially large num-
ber of lines. A more scalable alternative is to perform single-
qubit operations using driving amplitudes that are large
compared to the spread in the relevant resonance frequen-
cies, such that the pulse can be considered on resonance for
all the relevant transitions. However, the residual-coupling
Hamiltonian will then cause an undesirable phase accumula-
tion over the course of running the algorithm. Until this re-
sidual coupling is suppressed in future experiments �e.g., by
increasing �C, as discussed in Sec. IV B�, one might need to
apply refocussing pulses to reduce its effects. As can be seen
from Figs. 1 and 2, pushing Jresidual to the kilohertz range
should be possible using realistic experimental parameters.
The other possible source of errors is the fact that the Rabi
frequency of qubit 1 oscillations generally depends on the
state of qubit 2, and vice versa �this splitting of the Rabi
frequencies is a result of the mixing in the energy eigen-
states�. Such errors can be described by quantities of the

form ��̃Rabi,1����10��̂x
�1���00�− ��11��̂x

�1���01�� /2. It is
straightforward to see that, to the lowest order given in Sec.
IV C,

��10��̂x
�1���00� = ��11��̂x

�1���01� . �39�

In order to obtain an estimate for ��̃Rabi,1, we perform some
numerical calculations. We show in Fig. 3 the results for the
parameters of Fig. 2. With these parameters we can see that

��̃Rabi,1�10−8. This type of errors can therefore be made
extremely small using realistic experimental parameters.

A third, but less serious, point of potential concern relates
to quantities of the form ��00��̂x

�1���01�. This quantity de-
scribes, in some sense, how much qubit 2 “feels” a signal

applied to qubit 1 �similar to the splitting of Rabi frequencies
mentioned above, this type of error is a result of the mixing
in the energy eigenstates�. Using the parameters of Fig. 2, the
error estimator ��00��̂x

�1���01� is of order of 10−2 and vanishes
close to the point where J=0. This type of errors can be
suppressed further by using microwave amplitudes such that
the small fraction of a signal applied to qubit 1 that is felt by
qubit 2 is small enough to be considered far off resonance.
Alternatively, one could say that single-qubit operations on
qubit 1 must be performed on a time scale that is long com-
pared to ���00 � �̂x

�1� ��01� � / ��1−�2�. This is a very mild con-
straint, even for existing experiments.

Finally, a tricky issue related to the usual theoretical ap-
proach mentioned at the beginning of this section is when the
coupler degrees of freedom are traced out at the end of the
actual quantum calculation. Here again, the measurement
process in typical experiments does not follow the simple
picture of a sudden, accurate measurement device that probes
the basis 0 /1. For flux qubits, for example, one typically
designs the readout device to simply be a very accurate de-
vice for measuring magnetic fields �measuring the flux gen-
erated by the qubits and going through the loop of a readout
superconducting quantum interference device �SQUID��. If
the qubit-SQUID coupling is weak compared to the qubits’
energy scale and it acts for a sufficiently long duration, the
readout device will perform the measurement in the basis of
the eigenstates of the system Hamiltonian, not the physically
defined clockwise and counterclockwise current states. If, in
addition, the relevant decoherence rates in the SQUID are
small enough, the readout fidelity will not be limited by the
exact amount of mixing between the clockwise and counter-
clockwise current states in the energy eigenstates.41 There-
fore, the readout device can, in principle, give the correct
reading �0 or 1� essentially 100% of the time even if the
energy eigenstates that are being used in the experiment con-
tain finite amplitudes of the “wrong” state �in particular, here
we have in mind the states in Eq. �32��. We should empha-
size here that present-day readout techniques are far from
this ideal limit.

B. Multiqubit systems

We now generalize some of the results concerning pos-
sible errors in a typical experiment to the case where the
system contains more than two qubits. The discussion below
also demonstrates an interesting issue related to the signifi-
cance of setting J=0 in the off state �here we have in mind
the parametric coupling scheme�.

In order to clearly identify whether a given effect is re-
lated to mediated coupling or not, we start by considering a
multiqubit system with no couplers �the expressions obtained
below for the errors also apply if we integrate out the cou-
plers in the circuit and use the effective, i.e., direct plus
mediated, coupling strengths between the qubits�. We first
take the two-qubit Hamiltonian,

Ĥ =
�1

2
�̂z

�1� +
�2

2
�̂z

�2� + J12�̂x
�1�

� �̂x
�2�. �40�

The above Hamiltonian has the interesting property that,
with the proper assignment of the labels 00, 01, 10, and 11 to
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FIG. 3. The error-estimating quantity ��̃Rabi,1����00��̂x
�1���10�

− ��01��̂x
�1���11�� /2 for the relative spread in the Rabi frequency of

qubit 1 as a function of the coupler’s bias point �C for the same
parameters as in Fig. 2. Similar results would be obtained for qubit
2.
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the eigenstates of the Hamiltonian, the relations

E10 − E00 = E11 − E01,

E01 − E00 = E11 − E10,

��10��̂x
�1���00� = ��11��̂x

�1���01� ,

��01��̂x
�2���00� = ��11��̂x

�2���10� �41�

hold regardless of the values of the different parameters in
the Hamiltonian. The above relations imply that the first two
sources of error discussed in the previous section vanish
completely for this system. It is therefore not required to
have J12� ��1−�2� in order to perform an almost error-free
quantum algorithm in this system.

The question now is whether this situation persists for a
system with more than two qubits. We approach this question
by performing numerical simulations of a one-dimensional
chain of three to ten qubits with the Hamiltonian

Ĥ = �
j=1

N
� j

2
�̂z

�j� + �
j=1

N−1

Jj,j+1�̂x
�j�

� �̂x
�j+1�. �42�

From the numerical calculations, we find that the generalized
version of the relations in Eq. �41� holds only for the two
qubits at the ends of the chain. The generalized version of the
resonance-frequency relation �i.e., the first two lines in Eq.
�41�� continues to hold for all the qubits �i.e., the resonance
frequency for flipping qubit j is independent of the states of
all the other qubits�. The Rabi frequency of qubit j oscilla-
tions, however, now generally depends on the states of the
other qubits.

In order to get an estimate for the above-mentioned errors,
we take the three-qubit case and calculate the standard de-

viation ��̃Rabi,2 in the quantity ��n1m � �̂x
�2� ��n0m�. When the

coupling strengths Jj,j+1 are small compared to the differ-
ences between qubit gaps, we find that

��˜

Rabi,2 �
J12

2 J23
2

���1 − �2���2 − �3���1 − �3�2�
, �43�

with a prefactor of order one �we also find that this expres-
sion remains valid when we add a few more qubits at the
ends of the chain�. It is for this reason that one would like to
set J=0 �for all pairs of qubits� in the off state, even though
violating this requirement does not necessarily have detri-
mental effects on a two-qubit experiment.42 It will also be
highly desirable to set the gaps � j to different values, even if
they are not nearest neighbors.

We now take a three-qubit chain with couplers, and we
perform numerical simulations for several sets of parameters
with the leading-order coupling strengths �i.e., the param-
eters that correspond to J in the two-qubit case� set to zero.
We calculate the resonance frequencies for qubit j �j
=1,2 ,3� for the four different states of the two other qubits.
We find that the resonance-frequency shifts are consistent
with the residual coupling strength given in Eq. �29�. We
therefore expect our results concerning the residual coupling
to hold for systems with more than two qubits. We also ex-

pect the form of the energy eigenstates to follow the rather
straightforward generalization of Eq. �32�. If a distant pair of
qubits have the same value of � j, the energy scale associated
with any possible hybridization of energy levels �e.g., in-
volving states of the form �00�n20�n30�n40�10�n6¯ � and
�10�n20�n30�n40�00�n6¯ �� will be small enough that it can be
neglected. Similarly, hybridization between energy levels
that require flipping the states of several qubits should be
greatly suppressed.

Next, we consider a loop of three or four qubits, i.e., in
triangle and square geometries. Denoting the typical scale of
the coupling strengths between neighboring qubits by J and
the detuning between the qubits by �
, which is taken to be
much smaller than the qubit frequencies, we find that the
standard deviation in the resonance frequency �
resonance and

the standard deviation in the transition matrix element ��̃Rabi
when attempting to change the state of a given qubit are
given by

�
resonance �
J3

�
2 ,

��˜

Rabi � � J

�

�3

�44�

in the three qubit case and

�
resonance �
J4

�
3 ,

��˜

Rabi � � J

�

�4

�45�

in the four qubit case. The detailed expressions for the above
quantities depend rather nontrivially on the values of the
different parameters in the problem. Errors stemming from
the spreads in resonance and Rabi frequencies therefore de-
pend on the geometry of the multiqubit system, e.g., chain
versus closed loop. A two-dimensional lattice would belong
to the latter category.

Finally, we consider the geometry where every qubit is
coupled to every other qubit, which is relevant to the case of
a single coupler mediating coupling between several qubits.
We find that the scaling of errors in this case follows the
triangle geometry discussed above, with �
 representing the
typical spacing of frequencies in the system. In particular,
adding qubits to the system at distant frequencies has little
effect on the errors associated with a given qubit.

The main result of this subsection is the fact that certain
errors that have not been relevant to past experiments �i.e.,
two-qubit experiments� will likely arise in future experi-
ments. Although this result might seem somewhat discourag-
ing, it is encouraging that the errors, quantified by the
spreads in the resonance and Rabi frequencies, follow scal-
ing laws that make them less serious than one might intu-

itively expect �e.g., ��̃Rabi scales as the third or fourth power
of J /�
, as opposed to being linearly proportional to J /�
�.
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VI. CONCLUSION

We have analyzed the problem of a high excitation energy
quantum object mediating coupling between two qubits. Af-
ter reviewing some known results concerning the leading-
order term in the mediated coupling, we obtained expres-
sions that describe the residual coupling in the off state and
the entanglement in the energy eigenstates of the system. We
have argued that our approach analyzing the properties of the
eigenvalues and eigenstates of the total Hamiltonian is the
appropriate one to describe recent and possibly future experi-
ments. We have also estimated the expected errors originat-
ing from the nonideality of the off state in typical experimen-
tal situations. Our results should be helpful in designing
future circuits that employ the mediated-coupling approach
in order to achieve tunable coupling between qubits. In par-
ticular, our results suggest that with properly chosen design
parameters, the residual coupling in the off state could be
greatly reduced in future experiments.

We have focused on the case of a two-qubit system, which
is the relevant case for present-day experiments. However,
we expect our results for the errors in a two-qubit system to
apply to multiqubit systems as well. As we have shown,
other sources of error that are absent in a two-qubit system
arise for systems with more than two qubits. It would there-
fore be interesting and important in the future to analyze in
more detail the properties of large, many-qubit systems.

Finally, we should mention that although a large part of
our analysis was formulated in the language of supercon-
ducting systems, our results are quite general and should
apply to other systems that employ similar mediated-
coupling mechanisms.43
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APPENDIX: QUASIDEGENERATE PERTURBATION
THEORY

In this appendix, we present a perturbation-theory proce-
dure for the case where the separation between some energy
levels is not large compared to the energy scale of the
perturbation.37

Let us take the Hamiltonian

Ĥ = Ĥ0 + V̂ , �A1�

where we want to treat V̂ as a perturbation. We assume,

however, that the energy scale of V̂ is not necessarily small
compared to the energy separations within a subset of n

eigenstates of Ĥ0. The energy scale of V̂ is small compared to
the energy separation between this subset of levels and all
the levels outside it.

We now want to find the approximate energy levels and

eigenstates of Ĥ in the vicinity of these n original energy

levels of Ĥ0. We proceed by assuming that these closely
spaced eigenstates can have a large amount of mixing among

themselves because of the added perturbation V̂, but we as-
sume that mixing with all other states will be small. In other
words, we express �any one of� the eigenstates of interest as

��i� = �
j=1

n

f ij�� j� + �
j=n+1




gij�� j� , �A2�

where �� j� are the eigenstates of Ĥ0 with

Ĥ0�� j� = � j�� j� �A3�

the states ��i� with j=1,2 , . . . ,n represent the states of in-
terest, and gij are understood to be small enough to be treated
perturbatively �this is the only reason we express the ampli-
tudes f ij and gij using two different symbols�. We can now
express the eigenvalue problem as

�
j=1

n

f ij� j�� j� + �
j=n+1




gij� j�� j� + �
k=1


 ��
j=1

n

f ijVkj��k�

+ �
j=n+1




gijVkj��k�� = Ei��
j=1

n

f ij�� j� + �
j=n+1




gij�� j�� .

�A4�

If we multiply the above equation from the left by ��l� with
1� l�n, we obtain the equation

f il�l + �
j=1

n

f ijVlj + �
j=n+1




gijVlj = Eifil. �A5�

If we multiply the equation by ��l� with l�n, we obtain
instead

gil�l + �
j=1

n

f ijVlj + �
j=n+1




gijVlj = Eigil, �A6�

which can be rewritten as

gij =

�
j=1

n

f ijVlj + �
j=n+1




gijVlj

Ei − �l
. �A7�

Equation �A7� is now treated using a perturbative �or rather
iterative� approach. If we neglect the sum over the states
with j=n+1, . . ., we obtain

gil 

�
j=1

n

f ijVlj

Ei − �l
. �A8�

Substituting this expression into Eq. �A5�, we obtain �for
every l with 1� l�n�
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�
j=1

n ��l�lj + Vlj + �
j�=n+1


 Vlj�Vj�j

Ei − � j�
� f ij = Eifil, �A9�

where �lj is the Kronecker delta function.
If we want to obtain more accurate results, we can take

Eq. �A8� and substitute it into the right-hand side of Eq.
�A7�. Expressing gij in Eq. �A8� as gij

prev, we obtain

gil 

�
j=1

n

f ijVlj

Ei − �l
+

1

Ei − �l
� �

j=n+1




gij
prevVlj� =

�
j=1

n

f ijVlj

Ei − �l

+
1

Ei − �l
� �

j=n+1


 �
j�=1

n

f ij�Vjj�

Ei − � j
Vlj� . �A10�

Using this expression for gij in Eq. �A5�, we find that to the
next order,

�
j=1

n ��l�lj + Vlj + �
j�=n+1


 Vlj�Vj�j

Ei − � j�

+ �
j�=n+1




�
j�=n+1


 Vlj�Vj�j�Vj�j

�Ei − � j���Ei − � j��
� f ij = Eifil.

�A11�

The generalization to all orders is now obvious, if needed.
One must be careful, of course, that the denominators on the
left-hand side of Eqs. �A9� and �A11� contain the eigenvalue
Ei. The solution is therefore not yet obtained by a straight-
forward diagonalization of an n	n matrix. However, it is
usually a good first approximation to use some �averaged�
value for Ei on the left-hand side of the equation. This value
can be taken from the energy levels of the original Hamil-
tonian Ĥ0. One can then obtain more accurate results by
introducing a second iterative procedure. Every time we ob-
tain an approximate value of the energy Ei, we can substitute
it into the left-hand side of Eq. �A9� and �A11� to obtain an
even more accurate result. Note that this iterative procedure
is independent of the other one introduced above, i.e., the
iterative substitution of Eq. �A8� into Eq. �A7�. In order to
reach a given level of accuracy, both procedures must be
performed to the appropriate order.
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