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We investigate the low-energy quantum transport in ballistic normal metal-insulator-superconductor junction
exposed to a magnetic field, creating Abrikosov vortices in the superconducting region. Within the
Bogolubov–de Gennes theory, we show that the presence of the subgap quasiparticle states localized within the
vortex cores near the junction interface leads to the strong resonant enhancement of Andreev reflection prob-
ability, and the normal-to-supercurrent conversion. The corresponding increase of charge conductance is de-
termined by the distance from the vortex chain to the junction interface, which can be controlled by the applied
magnetic field.
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I. INTRODUCTION

Recently, the investigation of transport properties of nor-
mal metal-superconducting �N/S� hybrid structures has at-
tracted considerable interest. In the classical work by
Blonder et al.,1 it was shown that at the energies below the
superconducting gap �0, the charge transport can only be
realized via the Andreev reflection at the N/S interface. This
is a two-particle process in which the electrons with low
energies ���0 incident from the normal metal �N� are re-
flected at the N/S interface as holes traversing the backward
trajectories �and vice versa�. In accordance with the charge
conservation law, at the superconducting �S� region, the Coo-
per pairs are formed and the normal current converts into the
supercurrent. For the perfectly transparent N/S interface, the
charge doubling due to Andreev reflection results in enhance-
ment of the subgap conductance by a factor of 2 compared
with the corresponding normal state conductance. Being the
two-particle process, Andreev reflection is strongly sup-
pressed due to quasiparticle �QP� scattering at the layer of
insulator separating the N and S regions. Indeed, in the case
of the small interfactial barrier transparency T�1, the An-
dreev reflection probability, and therefore the conductance, is
proportional to T2, which is smaller by a factor T as com-
pared to the single-electron case.

The phenomenon of subgap conductance suppression re-
sults in the remarkable dependence of transport properties of
N/S structures on the spatial distribution and symmetry of
the superconducting gap. For example, recently, the charge
current measurements were utilized for the direct observation
of multivortex structures in mesoscopic superconductors.2

The mixed state of mesoscopic superconductors is formed by
a small number of vortices and reveals a rich variety of ex-
otic vortex configurations, such as vortex molecules and
multiquantum giant vortices, realized in such samples due to
the quantum confinement of the Cooper pair motion.3 In Ref.
2, the phase transitions between different vortex configura-
tions were observed by the multiple-small-tunnel-junction
method, in which several small tunnel junctions were at-
tached to the mesoscopic superconductor to simultaneously
measure the charge transport at the different points of the
sample. The measured transport characteristics were related

to the local density of states �DOS�, depending on the local
supercurrent density and, hence, on the configuration of the
vortex system. Generally, when there is a uniform supercur-
rent flowing at the superconductor, the excitation spectrum
acquires a Doppler shift by the value vspF, where vs is a
superfluid velocity and pF is a Fermi momentum. In this
case, the minimal excitation energy is given by Emin=�0
−vspF. At large distances from the vortex core �r��, where
� is a coherence length�, the Doppler shift model gives quite
a good approximation of the QP spectrum with �s=� /2mr
�see Ref. 4�. As long as the superfluid velocity is small com-
pared to the critical value �0 / pF, the Doppler shift of the gap
edge results in the reduction of the height and broadening of
the superconducting DOS peak.5 Close to the vortex core
�r��� where �s��0 / pF, the gap edge Emin goes to zero.
However, in this case, the Doppler shift model does not hold:
it completely misses one of the remarkable features of the
vortex state: the presence of low-energy QP states localized
within the vortex core. These vortex core states were found
in the pioneering work by Caroli–de Gennes–Matricon6

�CdGM� within the more rigorous approach based on the
quasiclassical solution of Bogoliubov–de Gennes �BdG�
equations. It was shown that QP states with energy lower
than the bulk superconducting gap value �0 are localized
within the vortex core and have the discrete spectrum �	 as a
function of the quantized �half-integer� angular momentum
	. This spectrum of the CdGM states varies from �0 to −�0
as 	 changes from −
 to +
, crossing zero when 	 changes
its sign. At small energies �����0, the spectrum is given by
�	�−	�0, where kF= pF /� and �0=�0 /kF�. For conven-
tional superconductors, the interlevel spacing �0 is much less
than the superconducting gap �0 since kF��1; therefore,
the CdGM spectrum can be considered continuous as a
function of the impact parameter of quasiclassical trajectory
b=−	 /kF. The presence of the QP states bounded in the
vortex core was confirmed in scanning tunnel spectroscopy
�STS� experiments by the observation of the zero-bias con-
ductance peak at the vortex core.7 The analogous effect of
the zero-bias conductance enhancement due to the resonant
tunneling into the midgap surface states was thoroughly
studied in high temperature D-wave superconductors.8

The goal of our work is to develop a theory to calculate
the zero-bias conductance of N/S junction in the case when
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the external magnetic field generates vortices in the S region
near the N/S interface. We consider the charge transport
across the direction of applied magnetic field. The N and S
regions are assumed to be separated by the interfacial barrier,
suppressing the Andreev reflection and the electron transport.
We predict the strong enhancement of the Andreev reflection
due to the resonant tunneling of QP through the barrier into
the CdGM states localized within the vortex cores. The es-
sential physics of this effect is analogous to the one which
takes place in a double-barrier resonant tunneling diode.9

The resonant tunneling in double-barrier quantum well struc-
tures occurs if the energy of incident QP wave coincides with
the resonant energy, then the reflection probability is effec-
tively suppressed due to the interference of the QP waves
within the quantum well. In our case, the quantum well is
represented by the vortex core and the bounded low-energy
QP state consists of coupled electron and hole waves of al-
most the same amplitude. Therefore, if the incident electron
has resonant energy, then the reflected electron wave is sup-
pressed and the hole wave leaking from the vortex core con-
tributes to the Andreev reflection probability. The important
difference between our situation and the double-barrier diode
case is that the spectrum of bound states is very dense, with
the characteristic interlevel spacing �0��0 /kF� being much
smaller than the bulk energy gap �0. At the same time, the
broadening of this level due to the finite barrier transparency
can be estimated as �E��0Te−2a/�, where T is the transpar-
ency of the interfacial barrier, the factor e−2a/� is due to the
exponential decay of subgap QP at the superconducting slab
of thickness a, which is, in fact, the distance from the vortex
to the N/S interface, and � is the superconducting coherence
length. Hereafter, in this paper, we will neglect the discrete-
ness of the bound energy levels, assuming that Te−2a/�

� �kF��−1. In fact, this condition is not very restrictive since
kF� is large in many superconducting materials, for example,
kF��3
102 in Nb and kF��104 in Al. Neglecting the dis-
creteness of the spectrum of bounded QP states, we can use
the quasiclassical approximation of QP quantum mechanics
�see, e.g., Ref. 10�. Within such approximation, QP moves
along linear trajectories, i.e., the straight lines along the di-
rection of QP momentum n=kFkF

−1= �cos �p , sin �p�. Note
that for the N/S point contacts of atomic size in magnetic
field, it is necessary to take into account the nonquasiclassi-
cal divergence of the electron and hole trajectories.11 In the
present work, we consider the transport properties of wide
N/S junction so that its transverse dimension Ly is much
larger than the Fermi wavelength Ly ��F=2� /kF; therefore,
the trajectory divergence can be neglected. Also, we assume
that Ly is much larger than the distance from the vortices to
the N/S interface a and the characteristic intervortex distance
Lv. The important point is that the total QP reflection prob-
abilities can be found as a sum of individual vortex contri-
butions. Indeed, the intervortex distance is much larger than
the Fermi wavelength since Lv�� and kF��1. Therefore,
the quasiclassical trajectories �except those with �p= ±� /2�
can pass through not more than one vortex core. For some
directions of QP momentum, two resonant trajectories
�i.e., passing through the vortex cores� are coupled by the
normal reflection at the interfacial barrier. Assuming the
specularly reflecting barrier, this coupling occurs for the mo-

mentum angles at the narrow angle domains near �p
=arctan�nLv /2a�, where n is an integer. The width of the
resonant angle domains ���Te−2a/��� is determined by the
width of the resonant vortex core levels. Therefore, the con-
tribution of such trajectories to the amplitude of the reflected
QP waves, is negligible. Then, evaluating the amplitude of
the QP wave we can separate the resonant trajectories
coupled with bounded QP states localized within the differ-
ent vortex cores. Since different trajectories do not interfere
with each other, the resulting reflection probabilities and the
conductance can be found as a sum of contributions from
individual vortices.

The dimensionless conductance �further, we will measure
it in terms of the conductance quantum e2 /��� induced by a
single vortex at zero temperature can be estimated as fol-
lows: Gv�Nre

−2a/�T. Here, Nr�kF� is the number of trans-
verse modes of the N/S junction which effectively interact
with the QP states bounded within the vortex core �� is the
characteristic transverse size of the vortex core�. The factor
e−2a/�T is the one-particle tunneling probability through the
barrier consisting of the insulating layer at the N/S interface
and the superconducting slab of thickness a. The total
vortex-induced conductance is the sum of the individual vor-
tex contributions Gvt=nvGv, where nv=Ly /Lv is the total
number of vortices near the N/S interface, Lv is the intervor-
tex spacing, and Ly is the transverse size of the junction. The
resonant mechanism of Andreev reflection exists along with
the usual nonresonant scheme involving the two-particle tun-
neling through the interfacial barrier with the probability T2.
The corresponding zero-bias conductance can be estimated
as G0�N0T2, where N0=kFLy /� is the total number of trans-
verse modes in the N/S junction. Therefore, the total conduc-
tance of the N/S junction in magnetic field can be evaluated
as follows:

G = �N0T2 + nv�Nre
−2a/�T , �1�

where the coefficients � ,��1. Then, for the strong barrier
T�1, the conductance induced by the vortex chain with
spacing Lv becomes dominant at a�ac, where the threshold
distance ac��� /2�ln�� /TLv� can be much larger than the
vortex core size and the coherence length.

The parameters of the vortex lattice can be estimated as
follows: a ,Lv���0 /B, where B is the average magnetic
field of the superconducting sample and �0=��c /e is the
flux quantum. Then, the magnetic field dependence of the
vortex-induced second term in Eq. �1� conductance is given
by

Gvt � N0� B

Hc2
e−2�Hc2/BT , �2�

where Hc2��0 /�2 is the upper critical magnetic field of the
superconductor. Note that at zero magnetic field B=0, the
conductance is G�N0T2 and, at B=Hc2, the conductance is
much larger: G�N0T. Therefore, we suggest that if the sur-
face barrier is high T�1, it should be possible to observe in
experiment the field-induced increase of the conductance ac-
cording to Eq. �2�.
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In the present work, we do not take into account the sub-
gap QP states which exists near the surface of supercon-
ductor due to the Meissner screening of external magnetic
field.12 Such QP levels lie higher at the energy scale than the
CdGM states if the density of supercurrent near the surface is
less than the critical value. Therefore, as long as the zero-
bias conductance is considered, the influence of the surface
QP states can be neglected.

The paper is organized as follows. In Sec. II, a description
of the model and the basic equations are given. In Sec. III,
we solve the scattering problem to find the Andreev and
normal reflection probabilities. Section IV is devoted to the
conductance calculation and Sec. V to the discussion of ob-
tained results. Finally, conclusions are given in Sec. VI.

II. MODEL AND BASIC EQUATIONS

Shown in Fig. 1 is the scheme of the N/S junction with
vortex lines in the S region parallel to the N/S interface. For
the sake of simplicity, we assume that there is only one quan-
tized QP mode in the z direction and take into account only
the QP motion in the xy plane, perpendicular to the vortex
lines.

Considering one vortex from the array, the coordinate sys-
tem is chosen so that the z axis coincides with the vortex
line, and the origin at the xy plane coincides with vortex
phase singularity point. Neglecting the suppression of the
superconductivity near the N/S interface due to the proximity
effect, we assume that at x�−a �superconducting region�,
the order parameter can be taken as follows:

��r� = �0Dv�r�ei��r�. �3�

Here, �0 is the gap value far from the vortex core, and Dv�r�
and ��r� are the dimensionless profile and the phase of the
order parameter. The particular form of Dv�r� is not essential
for our consideration, therefore it can be chosen similar to
the model profile of the isolated vortex core:13 Dv�r�

=r /�r2+�2, where � is the coherence length. The phase dis-
tribution ��r� consists of a singular part �v�r�=arg�r� and a
regular part �r�r�, determined by the particular metastable
vortex lattice configuration realized near the boundary.

In principle, the method developed in the present paper is
applicable to the arbitrary order parameter phase distribution
corresponding to the metastable vortex configuration. At
first, we solve a generic problem of the influence of a single
vortex near the N/S surface on the zero-bias conductance of
the junction. The vortex stability condition given by the Lon-
don model requires vanishing regular part of the superfluid
velocity at the vortex position: ���r− �2� /�0�A� �r=0�=0,
where A is the vector potential. On the microscopic level,
this condition is necessary for the existence of the CdGM QP
states forming the vortex phase singularity.14,15 The next step
is the summation of the individual vortex contributions to the
conductance, which add independently. The particular vortex
configuration near the boundary depends on many factors,
such as the random pinning potential, geometry of the super-
conducting sample, magnetization history, etc. To estimate
the dependence of the conductance on the magnetic field, we
consider the model situation assuming that the vortices near
the boundary of the superconductor sit periodically on a
chain with an intervortex spacing Lv at a distance a from the
N/S interface. We take a and Lv as external parameters of the
order a, Lv���0 /B, where B is the average magnetic field
of the superconducting sample. The influence of the next
vortex chains on the conductance can be neglected due to the
rapid decay of the QP tunneling probability with the growing
distance from vortices to the N/S interface.

The expression for the dimensionless zero-bias conduc-
tance of the N/S junction can be written as follows �see Ref.
1�:

G =
N0

2
	

−�/2

�/2

�1 − Rn��0� + Ra��0��cos �0d�0, �4�

where Rn��0� and Ra��0� are the probabilities of normal and
Andreev reflections, respectively, and �0 is the incident
angle: kF=kF�cos �0 , sin �0�. The total number of propagat-
ing modes N0 is determined by the channel width: N0
=kFLy /�. The problem of QP scattering at the N/S interface
is formulated within the BdG theory. The equation for the
electron and hole waves coupled by the superconducting gap
��r� reads as follows:


Ĥ0�r� ��r�

�*�r� − Ĥ0�r�
��̂�r� = E�̂�r� . �5�

Here,

Ĥ0�r� =
1

2m

p̂ −

e

c
A�2

− EF + V�x� ,

with p̂=−i�� and �̂�r�= (u�r� ,v�r�). The interfacial barrier
separating the N and S regions is modeled by the repulsive
delta potential V�x�=H��x�, parametrized by the dimension-
less barrier strength Z=H /�VF.1 The boundary conditions at
the N /S interface are

FIG. 1. Geometry of N/S junction and sketch of QP trajectories.
The width of the junction is Ly. External magnetic field directed
along the z axis introduces vortices in the superconductor. The dis-
tance from the first vortex chain to the N/S interface is a, and the
intervortex spacing is Lv. The electrons are injected with the inci-
dent angle �0 and experience Andreev and normal reflections at the
N/S interface.
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��̂�− a�� = 0, �6�

��x�̂�− a�� = �2kFZ��̂�− a� , �7�

where �f�x��= f�x+0�− f�x−0�.
To overcome the complexity of the scattering problem

coming from the broken spatial invariance of the supercon-
ducting gap, we treat Eq. �5� within quasiclassical approxi-
mation. Generally, the quasiclassical form of the wave func-

tion can be constructed as follows: �̂�r�=eikF·r f̂�r�, where

f̂�r�= (U�r� ,V�r�) is a slowly varying envelope function.
Then the system �5� reduces to the system of the first-order
quasiclassical equations along the linear trajectories defined
by the direction of the QP momentum n=kFkF

−1

= �cos �p , sin �p�. Each trajectory is specified by the angle �p

and the impact parameter b=r sin��−�p�, where � is the po-
lar angle: r=−r�cos � , sin ��. Introducing the coordinate
along trajectory s= �n ·r�=−r cos��p−��, we arrive at the fol-

lowing form of the quasiclassical equation: Ĥ f̂ =� f̂ , with the
Hamiltonian

Ĥ = − i��̂z�s + F + Dv��̂x cos � − �̂y sin �� , �8�

where �=E /�0 ,�=�VF /�0 is the coherence length, Dv�r�
and ��r� are the dimensionless magnitude and phase of the
order parameter, and F�r�= ��� /�0�n ·A.

Considering the zero-bias problem, we will have to ana-
lyze only the zero-energy excitations with �=0. Within the
normal metal region at x�−a, neglecting the influence of
magnetic field on the QP motion, the quasiclassical equation

�8� becomes trivial: �s f̂�s ,b�=0. It means that the envelope
function is constant along the trajectories.

Obviously, this is not the case at the superconducting re-
gion x�−a, where the electron and hole waves are coupled.
Note that for the wave functions at the S region correspond-
ing to the zero energy, the following representation can be

used:10 f̂ =e��ei��+��/2 ,e−i��+��/2�, where �=��s ,b� and �
=��s ,b� are real-valued functions. Then, the quasiclassical
equation �8� can be written as follows:

��s� + 2Dv cos � + �d = 0, �9�

��s� + 2Dv sin � = 0, �10�

where �d�r�=�kFvs /�0 is the dimensionless Doppler shift

energy. For the wave functions f̂± decaying at the different

ends of the trajectory f̂±�s= ±
�=0 from Eq. �10�, we obtain

�±�s = ± 
� = ± �/2. �11�

As we will see below, the main contribution to the en-
hanced Andreev reflection probability comes from the trajec-
tories with small impact parameters �b���, passing through
the vortex core. For such trajectories, by neglecting the non-
singular part of the superfluid velocity near the vortex core,
the analytical solution of Eq. �9� can be obtained following
the results of Ref. 16:

tan �± = 0.5�A±
−1e−2K�s� − A±e2K�s�� , �12�

A±=��b��sgn�s��1�, where ��b�=−�b,

K�s� =
1

�
	

0

s

Dv�s��ds� =�
 s

�
�2

+ 1 − 1,

� =
1

�
	

0


 Dv�s�
s

e−2K�s�ds .

III. SCATTERING PROBLEM: NORMAL AND ANDREEV
REFLECTION PROBABILITIES

The boundary conditions �6� and �7� determine the specu-
larly reflecting N/S interface, coupling the waves with wave
vectors kF=kF�cos �0 , sin �0�, and k�F=kF(cos��
−�0� , sin��−�0�). Therefore, if the incident electron wave is
ui=eikFr, then reflected electron ur and hole vr waves will
have the form

ur = Ure
ikF�r, vr = Vre

ikFr,

where Ur�b ,s� and Vr�s ,b� are the envelope functions. Each
point �−a ,y� at the N/S interface lies on the intersection of
two quasiclassical trajectories, characterized by the angles
�p=�0 and �p=�−�0. From the simple trigonometry, it is
easy to see that the impact parameters of these trajectories
are b+=−a sin��0−�� /cos � and b−=−a sin��0+�� /cos �,
correspondingly, where �=−arctan�y /a� is the polar angle.
The coordinate of the intersection point is s+=−a cos��
−�0� /cos � and s−=a cos��+�0� /cos � for the trajectories
characterized by the angles �p=�0 and �p=�−�0, corre-
spondingly. Then, the reflection probabilities are given by

Rn��0� =
a

Ly
	

−�

�

�Ur��,�0��2�cos ��−2d� , �13�

Ra��0� =
a

Ly
	

−�

�

�Vr��,�0��2�cos ��−2d� , �14�

where the integration is done over the N/S interface,
�=arctan�Ly /2a� ,Ur�� ,�0�=Ur�b− ,s−�, and Vr�� ,�0�
=Vr�b+ ,s+�.

Following the usual procedure to find the reflected wave
amplitudes Ur�� ,�0� and Vr�� ,�0�, one needs to match the N
and S region solutions at the N/S interface. For the envelope
functions, the boundary conditions �6� and �7� yield

1 + Ur = ei�+/2C+ + ei�−/2C−,

Vr = e−i�+/2C+ + e−i�−/2C−,

�1 − Ur� + 2iZ�1 + Ur� = ei�+/2C+ − ei�−/2C−,

Vr�1 + 2iZ� = e−i�+/2C+ − e−i�−/2C−,

C+ ,C− are arbitrary constants and �±=�±�s± ,b±�, where
�±�s ,b� are the solutions of Eq. �9� with boundary conditions
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�11� along the trajectories, with �p=�0 and �p=�−�0 for the
upper and lower signs, correspondingly.

Solving this system, we obtain

Ur��,�0� = −
�1 − ei���Z̃2 − iZ̃�

1 + Z̃2�1 − ei��
, �15�

Vr��,�0� =
e−i�+

1 + Z̃2�1 − ei��
, �16�

where ��� ,�0�=�−−�+ and Z̃=Z /cos �0.
Note that for the small impact parameters �b±���, the

factors ei�± can be obtained analytically with the help of Eq.
�12� as follows:

ei�+ = i
J − i�� − �0�
J + i�� − �0�

, �17�

ei�− = − i
J − i�� + �0�
J + i�� + �0�

, �18�

where J=e−2K�a/cos �� cos � /2�a. For the small angles
��� , ��0��� /a, Eqs. �17� and �18� are valid simultaneously,
yielding

ei� = −
J2 + �2 − �0

2 − 2i�0J

J2 + �2 − �0
2 + 2i�0J

. �19�

IV. VORTEX-INDUCED ZERO-BIAS CONDUCTANCE

Now, using expressions �15� and �16� for the amplitudes
of reflected waves and reflection probabilities �13� and �14�,
it is possible to find the zero-bias conductance. Introducing
the function g�� ,�0�=1− �Ur��0 ,���2+ �Vr��0 ,���2, the ex-
pression for the dimensionless conductance �4� reads as fol-
lows:

G =
kFa

2�
	

−�

�

�cos ��−2d�	
−�/2

�/2

g��,�0�cos �0d�0, �20�

where �=arctan�Ly /2a�. It is convenient also to introduce
here a local conductivity, i.e., the conductance per unit length
of the N/S surface:

���� =
kF

2�
	

−�/2

�/2

g��,�0�cos �0d�0.

Employing Eqs. �15� and �16�, we obtain

g��,�0� =
2

�Z̃4 + Z̃2��1 − ei��2 + 1
. �21�

If the applied magnetic field is zero and the supercon-
ductor is homogeneous �=�, we obtain g�� ,�0�=g0��0�,

where g0��0�= �1 /2��Z̃2+1 /2�−2. Then, the vortex-induced
part of the conductivity is given by

�v��� =
kF

2�
	

−�/2

�/2

gv��,�0�cos �0d�0,

where gv=g−g0:

gv =
�Z̃4 + Z̃2��4 − �1 − ei��2�

2�Z̃2 + 1/2�2��Z̃4 + Z̃2��1 − ei��2 + 1�
.

To start the analysis of Eq. �21�, let us note that for the

low surface barrier Z̃→0, we get gv�� ,�0�=0. In this case,
all the incident QP undergo Andreev reflection and the zero-
bias conductance is the same as in the case of a homoge-
neous superconductor: G=2N0. As the barrier becomes
higher, the Andreev reflection is suppressed and the conduc-
tance is reduced.

The function gv�� ,�0� reaches its maximum

gvm = 2
Z̃4 + Z̃2

�Z̃2 + 1/2�2

if �1−ei��=0. In fact, this condition determines the resonant
trajectories corresponding to the zero-energy vortex core
states modified by the normal reflection from the interfacial
barrier. The resonant trajectories should pass through the vor-
tex core, therefore the function gv�� ,�0� has a sharp peak at
�0� ±�. The width of this peak is determined by the barrier
strength and the distance from the vortex to the surface. For
the small angles ��� , ��0��� /a, with the help of Eq. �19�, we
obtain

gv��0,�� =
gvmJ0

2�0
2

�Z̃2 + 1/2�2��0
2 − �2 − J0

2�2 + J0
2�0

2
, �22�

where J0=e−2K�a� /2�a��� /a�e−2a/�, which is a small param-
eter since J0�1 for a��. The maximum of gv�� ,�0� deter-
mined by Eq. �22� lies at �0

2=�2+J0
2.

Employing Eq. �22�, it is easy to compute the vortex-
induced part of the conductivity �v��� at the small angle
domain ����� /a. The main contribution to the integral over
�0 comes from the small vicinity of the point �0=�. Then
with good accuracy, we obtain �v=�v0, where

�v0 = kFJ0
Z4 + Z2

�Z2 + 1/2�3 . �23�

At larger angles, the function �v��� can be evaluated only
numerically. Numerical calculation described below shows
that �v��� is maximal at �=0 and steadily decreases to zero
as ���→� /2 �see inset in Fig. 2�. Then, the resulting conduc-
tance induced by a single vortex Gv=a�−�

� �cos ��−2�v���d�
is given by

Gv = ��kF��e−2K�a� Z4 + Z2

�Z2 + 1/2�3 , �24�

where �= �2���−1�−�
� �cos ��−2�v��� /�v0d��1.
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To evaluate the conductance rigorously, we find the factor
ei� in Eq. �21� and then the reflection probabilities, solving
numerically Eq. �9� with boundary conditions �11�. We as-
sume that the regular part of the phase distribution is �r�r�
=−arg�r−rav� corresponding to the image vortex situated
at the point rav= �−2a ,0 ,0� behind the N/S interface. The
vector potential is chosen as A=B�z0
 �r−r0�� /2, where
r0= �−a ,0 ,0� is the point at the boundary between the vortex
and the image vortex, and z0 is the unit vector along the z
axis. Within such model the condition of vanishing current
through the N/S interface ��x�− �2� /�0�Ax�=0 is satisfied
automatically, and the vortex stability is achieved by setting
a=��0 /B. The numerical plot of the function �v��� /�v0 at
different distances a from the vortex to the interface is pre-
sented in the inset in Fig. 2. The maximum value �v��=0�
with good accuracy coincides with the analytical estimation
given by Eq. �23�. The coefficient � in Eq. �24� is found to
be nearly constant as a function of a: it decreases slightly
from �
0.6 at a=2� to �
0.4 at a=5�. In Fig. 2, for the
various magnitude of barrier strength, we plot the ratio
�̄v /�0 of the average vortex-induced conductivity �̄v=Gv /�
to the conductivity of the N/S junction in the absence of
vortices, given by

�0 =
kF

2�
	

−�/2

�/2

g0��,�0�cos �0d�0.

V. DISCUSSION

Considering the strong barriers Z�1, Eq. �24� can be
written as Gv=��kF��e−2K�a�T, where we introduced the bar-
rier transparency T= �1+Z2�−1�Z−2. A simple understanding
of this result can be obtained within the framework of the
tunneling Hamiltonian approach.17 The conventional expres-

sion for the tunneling conductivity of the N/S junction at
zero temperature reads

� = �n�/�0, �25�

where � is a local superconducting DOS at the Fermi level
and �n is a normal state tunneling conductivity. For the
S-wave superconductor, the transformation of vortex core
states near the surface can be neglected at first
approximation.18 Then the local DOS near the surface at the
Fermi level is determined by the density of vortex core states
�v�r� given by19,20

�v�r� =
1

2�
	

0

2�

� f̂�r,�p��2���0kFr sin�� − �p��d�p, �26�

where f̂�r ,�p� is the envelope of the QP wave function. For

the CdGM wave functions � f̂�r ,�p��2�e−2K�r�kF /�, then
�v�r���0�� /r�e−2K�r�, where �0=m /�2 is the two-
dimensional DOS at the normal metal. Substituting �=�v�r
=a /cos �� and �n�TkF, we obtain the conductivity �
�kFTJ���, which coincides with the order of magnitude of
expression �23� if Z�1 and ����1. Integrating ���� over the
N/S interface, we arrive at expression �24� for the conduc-
tance, with factor � given by ���−�

� exp�2K�a�
−2K�a /cos ����cos ��−1d�. Note that although yielding the
qualitatively right answer for the vortrex-induced conduc-
tance, the tunneling Hamiltonian approach drops out the con-
tribution from the nonresonant Andreev reflection with the
probability of the order T2. As we will see below, the contri-
butions of the resonant and nonresonant Andreev reflections
can be comparable even when the surface barrier is rather
strong. Certainly, the tunneling Hamiltonian approach fails to
provide the answer if the barrier strength is not very high,
when the influence of vortices on the conductance is re-
duced, and the nonresonant Andreev reflection prevails. In
Fig. 3�a�, we show in logarithmic scale the vortex-induced
conductivity �̄v as a function of the barrier strength Z for
several values of the distance a. At small values of Z, the
function �̄v�Z� grows �̄v�Z2 in accordance with the estima-
tion �23�. At larger values of the barrier strength Z�1, the
behavior of �̄v�Z� changes to �̄v�Z−2, but, at the same time,
the conductivity without vortices at Z�1 behaves as �0

FIG. 2. Plot of the ratio �̄v /�0 of the average vortex-induced
conductivity to the conductivity in the absence of vortices. Curves
from top to bottom correspond to Z=5, 4, 3, and 2. Inset: function
�v��� /�v0 for a /�=2 �open circles�, a /�=3 �filled circles�, and
a /�=5 �asterisks�; Z=2.

FIG. 3. �a� Plot of the average vortex-induced conductivity �̄v as
a function of the barrier strength Z in logarithmic scale. �b� Plot of
the ratio �̄v /�0 as a function of the barrier strength Z in logarithmic
scale. Curves from top to bottom correspond to a /�=2, 2.5, 3, and
3.5.
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�Z−4. Therefore, the ratio �̄v /�0 is monotonically growing
as a function of the barrier strength Z proportional to Z2 �see
Fig. 3�b��.

Let us have a look at the expression for the total conduc-
tance of the N/S junction, which has quite a simple form if
Z�1. Neglecting edge effects and summing up the indi-
vidual vortex contributions, we obtain

G = �8/15�N0T2 + nv��kF��e−2K�a�T , �27�

where nv=Ly /Lv is the total number of vortices near the N/S
interface. The obtained expression for the total conductance
�27� consists of two terms. The first term G0�N0T2

coincides with the conductance of the N/S junction at
zero magnetic field. The factor T2 is determined by the prob-
ability of the sequential tunneling of the incident and re-
flected QP through the high interfacial barrier. The second
term is the total vortex-induced conductance Gvt=nvGv
�nv�kF��e−2K�a�T; it comes from the tunneling of the inci-
dent QP into the zero-energy CdGM states inside the vortex
core. Indeed, it is easy to see that e−2K�a�T, where K�a�
=��a /��2+1−1, is the one-particle tunneling probability
through the interfacial barrier and the superconducting layer
of thickness a with slightly suppressed gap due to the pres-
ence of the vortex. The factor kF� is the number of resonant
transverse modes for a single vortex. The vortex-induced
conductance Gvt prevails over G0 when a�ac, where the
critical distance ac is determined by ac��� /2�ln�Lv /T��. The
parameters of the vortex configuration, such as the intervor-
tex spacing Lv and the distance a from the vortex array to the
boundary of superconductor, are determined by the magnetic
field; therefore, the conductance of the N/S junction can be
controlled by the magnetic field. Using Eq. �2�, we obtain
that the critical magnetic field Bc when Gvt�G0 is deter-
mined by the following transcendental equation: ln�x /T�
=2 /x, where x=�B /Hc2. Taking, for example, the barrier
strength Z=5, we obtain that the critical field is Bc
�0.5Hc2 and the critical distance ac�1.5�. Therefore, the
influence of the resonant vortex core states on the conduc-
tance can become significant when the magnetic field is less
than the upper critical field and vortices are quite far from
the N/S interface.

Finally, we should note that in real N/S junctions, the
motion of QP is certainly affected by impurity scattering.
The influence of impurities can be neglected completely, as-
suming that the lifetime of the vortex core states due to the
finite barrier transparency is much shorter than the relaxation
time of the QP momentum: � /�E� , or

le � �Te−2a/��−1� , �28�

where le=VF is an elastic mean free path of QP at the S
region. This condition certainly can be fulfilled if the barrier
transparency is not very high, i.e., T�1, and the vortex chain
is situated not far from the N/S interface, so that the factor
Te−2a/� is not very small. Otherwise, if condition �28� is not
fulfilled, the impurity scattering will modify the conduc-
tance. The simplest approach to estimate the conductance in

this situation is based on the tunneling Hamiltonian, yielding
Eq. �25� for the conductivity. Due to the impurity scattering,
the local superconducting DOS differs from that given by
Eq. �26�, which is valid for the clean case le��. In particular,
the sharp peak at r=0 is smeared; therefore, at the center of
the vortex, the DOS is smaller as compared to the clean case.
However, at distances r�� from the vortex core �e.g., at the
N/S interface�, the DOS is not suppressed by the impurities
even if le��. On the contrary, it is even larger than in the
clean case due to the smearing of the DOS peak at the center
of the vortex.21 Therefore, in the case of the rather high
impurity concentration on the S side, the dependence of the
vortex-induced conductance on the magnetic field is still de-
scribed by Eq. �2�. Another important point is the influence
of impurities on the nonresonant part of the conductance, i.e.,
the first term in Eq. �1�. In particular, the interference of QP
waves reflected from the interface barrier and impurities on
the N side of the N/S junction can also result in the low-bias
conductance enhancement, known as reflectionless tunneling
�see Ref. 22 and references therein�. In experiments where
the reflectionless tunneling effect was observed,24 the condi-
tion le�� was fulfilled. In this case, the critical value of
magnetic field suppressing the reflectionless tunneling23 Hc

��0 /12le
2 was much less than the upper critical field of the

superconductor. In our case, the applied magnetic field must
be strong enough to create the dense vortex lattice in the
superconductor: B�Hc2�Hc. Therefore, under the same ex-
perimental conditions as in Ref. 24, the reflectionless tunnel-
ing effect is absent in the range of magnetic fields that we are
interested in.

VI. CONCLUSION

To summarize, we have investigated the low-energy
charge transport in N/S junction across the direction of ap-
plied magnetic field. We have found the strong enhancement
of the zero-bias conductance due to the resonant tunneling of
the incident QP into the subgap vortex core states. The effect
is most sound if the conventional channel of Andreev reflec-
tion is suppressed by the high interfactial barrier. Note that,
usually, the vortex core states are investigated in STS experi-
ments, where the charge transport is measured along the di-
rection of magnetic field. For an alternative to the STS meth-
ods, now we can suggest the transport measurements in
planar structure with wide-area N/S contacts. The vortex-
induced conductance that we have studied depends exponen-
tially on the distance from the vortex chain to the N/S inter-
face and, therefore, can be effectively controlled by the
external magnetic field. Also, for the possible experimental
setup, one can consider the mesoscopic superconducting
sample with lateral tunneling junctions, such as in Ref. 2.
Since the vortex-induced conductance is proportional to the
number of vortices, the conductance vs magnetic field depen-
dence should reveal pronounced steps marking the switch of
the total vorticity of the sample.
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