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The latest generation of high quality, narrow gap, superconducting tunnel junctions �STJs� exhibits a steady-
state and time-dependent behavior which cannot be described satisfactorily by previous treatments of nonequi-
librium quasiparticle �qp� dynamics. These effects are particularly evident in experiments using STJs as
detectors of photons, over the range from near infrared to x ray. In this paper, we present a detailed theoretical
analysis of the spectral and temporal evolution of the nonequilibrium qp and phonon distributions in such STJs
excited by single photons, over a wide range of excitation energy, bias voltage, and temperature. By solving the
coupled set of kinetic equations describing the interacting excitations, we show that the nonequilibrium qp
distribution created by the initial photoabsorption does not decay directly back to the initial undisturbed state
in thermal equilibrium. Instead, it undergoes a rapid adiabatic relaxation to a long-lived, excited state, the
spectral distribution of which is nonthermal, maintained by a balance between qp creation, recombination, and
trapping. The model is able to describe successfully photoabsorption data taken on several different aluminum
STJs, using a single set of parameters. Of particular note is the conclusion that the local traps responsible for
qp loss are situated specifically in the region of Nb contacts.
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I. INTRODUCTION

The phenomenon of tunneling has been widely used as a
tool to explore the basic physics of superconductivity, as well
as to provide the underlying principle for numerous super-
conducting devices.1 There is currently great interest in using
high quality superconducting tunnel junctions as single pho-
ton detectors for astrophysical and other applications.2 Such
detectors operate under highly nonequilibrium conditions
which do not occur in any other experimental scenario. Their
performance is very sensitive to microscopic details of the
quasiparticle �qp� dynamics and hence provides a unique op-
portunity for studying nonequilibrium behavior of the qp
population.

As a photon detector, the superconducting tunnel junction
�STJ� possesses excellent responsivity �charge output per
unit photon energy input�, energy resolution, and count rate
capability over a broad spectral range, from near infrared to
hard x ray.3–6 In order to optimize these characteristics, re-
cent work at ESA and elsewhere has been focused on the
development of improved devices having smaller energy
gaps, highly homogeneous and transparent barriers, and ex-
tremely low quasiparticle loss rates. A key parameter is the
energy gap, and first generation Nb STJs were succeeded by
Ta, then by proximized Nb /Al and Ta /Al ones, and most
recently by pure Al structures, with energy gap one-eighth
that of Nb. While, as expected, the new devices exhibit sig-
nificantly improved detector characteristics, several totally
new phenomena have also emerged, including internal am-
plification due to qp back tunneling,7 enhanced tunneling and
phonon noise,8,9 and time-dependent tunneling statistics.10,11

However, the most exciting discovery has been that of a
whole new class of phenomena related to the formation of a
nonequilibrium, coupled qp-phonon state due to multiple
tunneling under bias.

The observation of this nonequilibrium situation in
steady-state experiments and the explanation of its origins
have been reported earlier.12,13 In a low loss, narrow band
gap, multitunneling device, qps may retain accumulated en-
ergy of 2eV, where V is the bias voltage, for each cycle of
forward and back tunneling before relaxation. In this context,
a narrow gap STJ is the one in which a qp may tunnel several
times before relaxing to a lower energy state. This should not
be confused with multiple tunneling, when a qp tunnels sev-
eral times with or without relaxation, before recombination
takes place.13 As a consequence, a stable nonequilibrium
state is established in which many qps may have energy ex-
ceeding the 3� threshold for breaking further Cooper pairs,
resulting in an additional excess current and an increase in
generation-recombination noise.14,15 The development of a
quantitative theory of the phenomenon required the solution
of the coupled system of kinetic equations for the interacting
qps and phonons, resulting in a set of spectral balance equa-
tions describing the qp populations in different energy inter-
vals.

The objective of the present work has been to carry out
parallel calculations for the dynamic situation created by the
absorption of a single photon in the energy range between
near infrared and x ray. The time-dependent scenario is sig-
nificantly more complicated than the stationary one, and a
full solution including spectral balance within the qp and
phonon distributions has never been achieved previously.
Until recently, the only attempts to model the response of a
biased STJ to the absorption of a photon creating a popula-
tion of nonequilibrium qps used the framework of the
Rothwarf-Taylor �RT� balance equations.16 The main as-
sumption of this approach is that during the initial down-
conversion process, qps relax directly to states at the super-
conducting edge. However, for the latest STJs, the modeled
results for charge output and its rise time as functions of bias
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voltage and temperature, both of which influence qp distri-
butions, do not agree with the experimental data. Following
more realistic calculations based on balancing the two pro-
cesses of tunneling and spontaneous phonon emission,17,18 it
is clear that the RT approach is too simplistic to treat satis-
factorily a nonequilibrium situation. An attempt to tackle the
problem was made recently by Segall et al.,19 beginning
from a phenomenologically derived system of rate equations
to describe the dynamical situation. However, this formula-
tion did not include the complete kinetic equations for inter-
acting qps and phonons and took no account of nonequilib-
rium phonon distributions or qp generation effects.

In order to be able to include nonequilibrium phenomena
explicitly, we have developed a theoretical approach based
on the projection of the exact kinetic equations for the qps
and phonons on to a discretized energy space. Interacting
distributions of qps and phonons are described in terms of a
system of spectral balance equations with all scattering and
interaction terms rigorously derived from the corresponding
collision integrals. We previously used this approach to
model successfully the nonequilibrium qp dynamics for a
BCS superconductor in the stationary regime12,13 and for the
general situation of a proximized structure with time-
evolving distributions.20,21 However, the latter scheme was
incomplete since it did not take account of the qp self-
generation and used an oversimplified model of qp detrap-
ping at localized traps. In addition, the effects of the non-
equilibrium subgap phonon distribution were not considered.
All effects are included in the present work.

In this paper, we develop a general technique for model-
ing nonequilibrium, time-dependent phenomena in supercon-
ducting tunnel junctions. For comparison, we also present
recent experimental results taken on several narrow gap STJs
of different sizes over a range of photon energy, bias voltage,
and temperature. Convincing agreement between experimen-
tal results and theoretical predictions is obtained for all de-
vices using a single set of fitting parameters.

The paper is organized as follows. In Sec. II, the various
processes involved in the interactions between nonequilib-
rium and trapped qps and phonons are described. The result-
ant time-dependent spectral balance equations are derived in
Sec. III. Section IV contains details of the experiments and
modeling, followed by a comparison of experimental data
with theoretical calculations in Sec. V, and a brief summary
of our conclusions in Sec. VI.

II. KINETIC DESCRIPTION OF NONEQUILIBRIUM
QUASIPARTICLES AND PHONONS IN A

SUPERCONDUCTING TUNNEL JUNCTION

A fully dynamical description of nonequilibrium qps and
phonons in an STJ begins from the kinetic equations for a
superconductor with all qp and phonon processes including
tunneling, represented by collision integrals.22,23 For qps and
phonons, respectively, the equations are

�f���
�t

= Iqp-ph�f ,N� + Irec�f� + Iloss�f� + Itun�f , f̃� , �1�

�N���
�t

= Iph,loss�N� + Iph-qp�N, f� + Ipb�N, f� . �2�

Here, f��� and N��� are the respective distribution functions
for qps and phonons, where � is the qp energy relative to the
Fermi level. Collision integrals in Eq. �1� describe the fol-
lowing qp processes: Iqp-ph�f ,N� relates to qp-phonon scat-
tering processes with either emission or absorption of a
single phonon, Irec�f� takes into account recombination,
while Iloss�f� incorporates processes other than recombina-
tion which also result in the loss of qps. The latter include
trapping with subsequent recombination on the trapping site,
and diffusion and loss in the lead connections. Finally,

Itun�f , f̃� describes the rate of qp exchange with the other
electrode, where the qp distribution function is described by

f̃ . Collision integrals in the kinetic equation �Eq. �2�� for
phonons are Iph,loss�N� taking account of phonon escape from
the electrode, Iph-qp�N , f� relating to phonon reabsorption by
qps, and Ipb�N , f� describing the effect of Cooper pair break-
ing by phonons. The latter is nonzero only for energetic
phonons with ���2�, where � is the superconducting gap.

We showed earlier24,25 that the kinetics of qps and
phonons in nonequilibrium superconductors cannot be ad-
equately described without taking explicit account of the in-
teraction between the mobile qps and phonons and the
trapped qps. The microscopic nature of the defects respon-
sible for the trapping states in a particular superconductor is
often uncertain. Possible sources are magnetic impurities or
clusters, macroscopic regions of locally suppressed gap such
as the core regions of trapped magnetic flux, small normal
metal inclusions, surface layers of smaller gap natural oxide
and suppressed gap regions due to sample geometry. The role
of these states in the nonequilibrium kinetics in supercon-
ductors can be compared with that of traps or deep levels in
semiconductors. Their importance was first demonstrated in
Ref. 24, and their effect can be seen in the dynamic response
of the STJs to any transient perturbation.26 Although the pro-
duction of qps in photon absorption experiments occurs in a
tiny excited volume close to the photon absorption site, for a
typical STJ only a few tens of microns in size, diffusion
rapidly homogenizes their distribution over the whole elec-
trode on a time scale which is much shorter than any of the
processes which control subsequent evolution of the qp dis-
tribution. Thus, we may omit spatial gradients from the ki-
netic equations and, equally, we may disregard the positional
dependence of qp trapping. We assume that trapping centers
of depth �t are distributed through the STJ with density Ft.
Thus, the activation energy of the trapped qps is �−�t.

As a consequence, the main system of equations must be
modified to include additional terms representing the various
interactions between the three subsystems, mobile qps,
trapped qps, and phonons. Thus, instead of Eqs. �1� and �2�,
we may write

�f���
�t

= Iqp-ph�f ,N� + Irec�f� + Irec�f , f trap� + Iloss�f� + Itun�f , f̃�

+ Itrap�f , f trap� − Idetrap�f trap� , �3�
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�f trap

�t
= + Iloss�f trap� − Itrap�f , f trap� + Idetrap�f , f trap�

− Irec�f , f trap� − Ipb�N, f , f trap� , �4�

�N���
�t

= Iph,loss�N� + Iph-qp�N, f� + Iph-trap�N, f trap� + Ipb�N, f�

+ Ipb�N, f , f trap� . �5�

Here, we introduce the notation f trap for the trapped qp den-
sity. The collision integrals Iloss�f trap�, Itrap�f , f trap�, and
Idetrap�f , f trap� describe, respectively, the rate of qp loss due to
recombination on the trap, the rate of qp trapping from mo-
bile qp states, and the rate of trap depopulation. We have also
split the recombination terms in Eq. �3� into two parts, the
first Irec�f� accounting for the normal recombination of a test
qp colliding with another mobile qp and the second
Irec�f , f trap� being the contribution due to the collision with a
trapped qp. Similarly, in Eq. �3�, we have split the phonon
pair breaking term into the two terms with Ipb�N , f� describ-
ing the process resulting in the creation of two mobile qps,
while Ipb�N , f , f trap� leads to the creation of one trapped and
one mobile qp. In what follows, we will assume that the
number of traps is small, so that we may disregard
Irec�f , f trap� in comparison with Irec�f� in Eq. �3� and
Ipb�N , f , f trap� in comparison with Ipb�N , f� in Eq. �5�. Simi-
larly, in Eq. �4� we will disregard the terms with Irec�f , f trap�
and Ipb�N , f , f trap�, which describe the population of traps in
the processes of recombination and pair breaking and are
small in comparison with Itrap�f , f trap�. However, quadratic
terms of the kind f f trap must be retained in Idetrap�f , f trap�
since detrapping may occur either through collision with a
thermal phonon, with the strength of the process depending
exponentially on temperature, or through depopulation of the
trap by one of the nonequilibrium carriers, which may be-
come important at low temperature and high nonequilibrium
qp density.

The equation for the phonon distribution function �Eq.
�5�� is a first order linear differential equation and can be
solved in terms of the qp distribution function. It has been
shown previously that, after the fast, initial energy down
conversion, all succeeding evolution of the nonequilibrium
qp distribution is controlled purely by tunneling loss and
recombination, which occur much more slowly. Thus, the qp
distribution in the biased STJ remains “frozen-in” and the
energetic phonon distribution quickly accommodates itself to
the slowly varying qp distribution. In this situation, for pair-
breaking phonons with energy above 2�, all processes in the
phonon system occur much faster than those which control
the nonequilibrium qp distribution. Hence, we can use an
adiabatic approximation and neglect all effects of temporal
dispersion of phonon response. By setting the time derivative
of the phonon distribution to zero, we reduce the differential
equation to an algebraic one, resulting in a coupled system of
equations for mobile and trapped qps. This approach is not
valid for lower energy subgap phonons as their loss rate may
be very slow and the temporal response may become
dispersive.13,27,28 In addition, their significant accumulation

changes the rates of detrapping through the term Idetrap�f trap�.
However, for the moment, we will ignore this group of
phonons but will discuss their possible role in the later con-
sideration of real structures and experimental situations.

III. TIME-DEPENDENT SPECTRAL BALANCE
EQUATIONS

Time-dependent spectral balance equations were previ-
ously derived in Refs. 20 and 21 for the general case of a
proximized STJ. However, nonequilibrium phonon effects
were only partially taken into account, through simplified
phonon reabsorption terms in the collision integrals describ-
ing the recombination. Conversely, in Ref. 13, the phonon
contribution was fully accounted for, but only for the station-
ary situation. In the previous work, we used the expressions
for the collision integrals in Eqs. �3�–�5� and projecting these
kinetic equations onto energy space as has been described in
Refs. 13 and 20, we obtained a system of coupled spectral
balance equations for qps. The energy range of interest is
split into M +1 �M �1� elementary intervals with width �,
labeled by the integer m, so that the mth elementary interval
in energy space becomes �m����m+1, where �m=�+m�
and the index m defines the qp energy relative to the gap, �.
The number M is chosen so that M�	3� falls into the ac-
tive region defined as �	3�, so that the inelastic relaxation
of a qp from this region may release a pair-breaking phonon,
leading to qp generation.13 We take only values of bias volt-
age which are integer numbers of the elementary width �,
that is, Vb=v�. The trap depth measured from the supercon-
ducting edge is also assumed to be an integer multiple of �,
so that �−�t= t�.

After the transformation of Eqs. �3� and �4�, our main
equations for mobile �Eq. �6�� and trapped �Eq. �7�� qps be-
come

�Pm
i

�t
= −

Pm
i


m
+ �

s=m+1

M
Ps

i


s→m
−

Pm
i − Pm

0


l,m
− �m→m+vPm

i

+ �m+v→mPm+v
j − ��m − v + 0���m→m−vPm

i

− �m−v→mPm−v
j � − 2N̄�0���

s=0

M

Rm,s
* �Pm

i Ps
i − Pm

0 Ps
0�

−
Pm

i


m→trap
�1 −

f t

Ft	 +
f t


trap→m

+ f t �
s=m+t

M 

0

t dt�


0
Ps

i�t��Km,s�t − t�� + �
s=m+ceil�2�/��

M
Ps

i


g,s
,

�6�

�f t

�t
= −

f t − f0
t


trap-loss
+ �

s=0

M
Ps

i


s→trap
�1 −

f t

Ft	 −
f t


detrap

− f t�
s=0

M

�
s�=s+t

M 

0

t dt�


0
Ps�

i �t��Ks,s��t − t��

− 2N̄�0�� �
s=ceil��t/��

M

Rtrap,s�Ps
i f t − Ps

0f0
t � , �7�
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where ceil�x� is the smallest integer greater than or equal to
x. Here, we have introduced Ps

i , which is the dimensionless

density in units of 2N̄�0�� of qps which belong to the sth
interval, and Ps

0 is its value for thermally excited qps. The
superscript i labels the base and j the top STJ electrodes, and

N̄�0� is the density of states at the Fermi level in the normal
state, per spin. Similarly, f t is the dimensionless density of
trapped qps in the same units, f0

t is its equilibrium value, and
Ft is the overall dimensionless trap density including both
occupied and vacant traps.

Other kinetic parameters in Eqs. �6� and �7� are defined as
follows:13

1


m
=

1


0
� �

kBTc
	3


�

�max d��

�

����B̄���,�m� , �8�

where B�� ,���= ���−��� /��2�1−�2 /��������−�� and
����−�� is the Heaviside function, so that

B̄���,�m� =
1


m



�m

�m+1

d�
���B���,��

is the average over the mth spectral interval, where


m = 

�m

�m+1 d�

�

��� .

Here, Tc is critical temperature, 
0 is the characteristic
electron-phonon relaxation time in the superconductor, and

��� is the qp dimensionless density of states. It is seen from
Eq. �8� that 
m is the lifetime of a qp with respect to scatter-
ing from the initial state in the mth interval down to any
lower lying state with the spontaneous emission of a phonon.
Similarly,

1


s→m
=

1


0
� �

kBTc
	3


�m

�m+1 d��

�

����B̄���,�s� , �9�

where 
s→m describes the rate of electronic transition of a qp
with the spontaneous emission of a phonon from an initial
state in the sth interval to any state in the mth interval. The
loss rate for qps belonging to the mth interval is

1


l,m
=

1


m



�m

�m+1

d��
����
1


l���
. �10�

The matrix Rm,s
* defining the recombination contribution

from qps, one in the mth and the other in the sth interval, to
the total recombination rate can be written as

Rm,s
* =

1

4N̄�0��
0

� �

kBTc
	3


�m

�m+1 d�

�


���

m



�s

�s+1 d��

�


����

s

�B��,− ������� + ���
e�� + ����−1, �11�

where ����=
e
−1���+
ph

−1���+
ph-e
−1 ��� is the total loss rate for a

phonon of energy �, including the effects of phonon escape
from the electrode, phonon pair breaking �if ��2�� and
phonon absorption by qps. It represents a generalization
of the Rothwarf-Taylor recombination coefficient16 for the
situation when each of colliding qps has an arbitrary

energy. When both reside at a superconducting edge
�m=s=0�, we obtain the Rothwarf-Taylor result R0,0

*

=1 / �4N̄�0��
0��2��
e�2����2� /kBTc�3. The expressions for
the elements of the matrix of tunnel rates are

�m→m±v =
1


m



�m

�m+1

d�
����t�� ± v�� , �12�

with �t��+eVb�= �G /4e2N̄�0��0�
��+eVb�, where G is the
conductance of a barrier and �0 the electrode volume.33 Fi-
nally, 
g,s, which is the rate of qp injection into the sth inter-
val due to the energy accumulation in tunneling cycles of
direct and back tunneling events,13 is given by

1


g,s
=

2

�
0
� �

kBTc
	3 1


s



�m

�m+1 d��

�

�
����

�s

�s+1 d��

�

����


�

��−��−� d��
�

�
����
��� − �� − ����1 −
�2

����
	

����� − �� − 2��
B��� + �� − ��,���

���� − ���
ph
. �13�

The trapping time 
m→trap describes the qp transition from a
mobile state in the mth interval to the trap and is assumed to
be proportional to the time for the spontaneous emission of a
phonon of the same energy �m+ t��. Thus,

1


m→trap
=

1


m+t→0
�trap. �14�

The magnitude of the proportionality coefficient �trap de-
pends on the microscopic origin of the trap and has been
introduced here as a fitting parameter. For detrapping, we
write

1


detrap
= �

s=0

M
1


trap→s
, �15�

where the detrapping time 
trap→s refers to transitions from
the trap into the sth elementary interval �s=0, . . . ,M� due to
the absorption of a thermal phonon with energy �s+ t��. The
function Km,s�t�, describing the detrapping effect of subgap
phonons, is given by

Km,s�t� =
1

�
ph
� �

kBTc
	3 1

N̄�0��



�m+t��

s�

d��2
�� + �t�

�exp�−
t


e����
�s

�s+1 d��

�
s

����
��� − ��

��1 −
�2

��� − ����
� , �16�

where 
e��� is the loss time for subgap phonons in the
STJ.27,28 Then, the array of detrapping coefficients relating to
pair-breaking phonons emitted in the recombination process
with participation of a trapped qp is
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Rtrap,s =
1

4N̄�0��
0

� �

kBTc
	3


�s

�s+1 d�

�


���

m

�B��,− t������ + t��
ph-e�� + ����−1. �17�

Finally, it is convenient to split the overall qp loss rate 
l,s
−1

into two distinct components, one of which, 
s→trap
−1 , arises

from trapping of qps by local traps and is a strong function
of qp energy, and the second, 
res

−1, which describes residual
losses resulting from bulk and surface recombination and
outdiffusion into leads, all essentially independent of energy.
Hence, the residual loss rate can be represented as a sum of
the two terms, one independent of the STJ size �bulk and
surface recombination� and the other inversely proportional
to L2 arising from the diffusive nature of qp transport leading
to qp loss.30,31 Thus,


res
−1 = 
res,�

−1 �1 +
a

L2	 , �18�

where 
res,�
−1 is the magnitude of the residual loss rate in the

infinite sample �L=��, that is, the residual bulk loss, and a is
a numerical coefficient defining the relative magnitude of
outdiffusion versus bulk terms.

In the derivation of the spectral balance equations �Eq.
�6��, we have ignored electron-electron interactions and the
energy exchange and equilibration terms originating from
self-recombination followed by sequential pair breaking. In
contrast to the quadratic terms leading to recombination,
such processes conserve qp number. For this reason, they are
not directly relevant to recombination and detrapping and
any effect arises indirectly through their modification of the

qp spectral distribution. However, for nonequilibrium qp
densities in typical photon absorption experiments, they are
small and may be neglected.

IV. EXPERIMENT AND MODELING

In order to demonstrate the application and success of the
theoretical approach described above, we will present experi-
mental results obtained for a series of narrow gap, multitun-
neling, aluminum-based STJs and discuss their analysis in
terms of our model. The STJs studied were square devices,
of varying sizes L, 30, 50, and 70 �m on a side, all fabri-
cated on the same sapphire substrate with the same layer
structure 100 nm Al /AlOx /50 nm Al on a single chip �chip
set MUL 127�. An image of a typical STJ is given in Fig. 1,
clearly showing the Nb plugs in the leads intended to limit
qp loss through outdiffusion. Measurements were made of dc
current, photoresponsivity, and charge output rise time as a
function of device bias voltage and, in addition, of the de-
pendence of responsivity and rise time on temperature and
photon energy. It is important to note that the current pulse
itself is not observed. The measured quantity is the total
charge detected, and the time scale over which the level of
1−1 /e of the total charge is reached, the so-called rise time,
is identically equal to the current decay time.32 Although
sample measurements of IV curves, responsivity, and rise
time are routinely made for all STJs on all chip sets, the
complete data for all measurements in the full range of varia-
tion of photon energy, bias voltage, and temperature were
available only for MUL 127, obtained specifically to test the
theoretical model. Experiments were carried out at tempera-
tures between 40 and 400 mK using either an adiabatic de-
magnetization cryostat �40–200 mK� or a He sorption cooler
�200–500 mK�. Josephson effects were suppressed by appli-
cation of a small �
3 mT� parallel magnetic field. The ap-
paratus was carefully shielded to ensure that no fluxoids
were present in the samples. The junctions were illuminated
by monochromatic near IR �1–5 eV�, multiple photon LED
sources �2–30 eV�, and an 55Fe radioactive source �6 keV�.
Typical IV characteristics are shown in Fig. 2, illustrating the
effect of varying temperature and device size.

Measurements of responsivity and rise time for different-
sized STJs are shown later as a function of bias voltage,
photon energy, and temperature, in Figs. 3–5, respectively.
For each type of measurement, the data obtained are shown

FIG. 1. �a� Micrograph of the 30 �m STJ showing the Nb plugs
in the leads. �b� Layer structure of the STJ. Schematic side view
from the left.

FIG. 2. IV curves in Al STJ:
�a� L=30 �m, T=70 mK
�crosses� and T=180 mK
�triangles�. Solid curves, theory.
�b� T=40 mK, L=30 �m
�crosses�, L=50 �m �triangles�,
and L=70 �m �diamonds�.
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as experimental points with modeled results superimposed as
continuous curves. It is important to stress that the model
curves for all three devices are generated using the same,
single set of parameters. In contrast, within a simpler model
such as that of Rothwarf and Taylor,16 a separate set of pa-
rameters, different for each STJ, would be required to model
each data set, for each experiment. In addition, this model
predicts monotonic decreases of both responsivity and rise
time with bias voltage, which are not observed. In our model,
the common parameters are of two types, first, material pa-
rameters, listed in Table I, which are obtained either from
standard BCS theory or previously published in the relevant
literature, or directly measured by us using standard STJ
characterization procedures. For instance, the value of the
effective trap depth is determined from an independent mea-
surement of the responsivity of any of the STJs as a function
of temperature. Table II given later in Sec. V contains spe-
cific parameters relating to the chip set, not previously
known but obtained through the modeling procedure itself.
They are nt, the total number of traps, �trap, the trapping
constant determining the residual loss time, 
res, the residual
loss rate, and phonon escape times 
e and 
e�2�� for subgap
and for pair-breaking phonons, respectively. The values of
these fitting parameters are totally realistic on physical
grounds. The total number of traps determined by the mod-
eling is found to be the same for all STJs, implying that they

reside in an area of fixed size, such as the leads to a device.
The quantities that vary with device size are residual loss
time, which because of the diffusive nature of qp transport
contains a quadratic dependence on device size as described
earlier in Eq. �18�, and local trapping constant �trap�L−2. The
latter dependence is again due to the diffusive nature of qp
transport delivering qps to the area where local traps reside,
on the assumption that the number of local traps is indepen-
dent of the STJ size. We believe that the excellent agreement
between experimental results and modeled curves confirms
that the behavior of such STJs is determined primarily by a
strongly nonequilibrium qp distribution.

V. ANALYSIS AND DISCUSSION OF RESULTS

A. Bias voltage dependence of dc current

Typical dc IV characteristics for the 30 �m device are
given in Fig. 2�a�, showing the comparison between mea-
sured and calculated curves at different temperatures. In Fig.
2�b�, data for all three devices, 30, 50, and 70 �m, are shown
at the same temperature. Only the range above �100 �V is
meaningful; the rising current below �40 �V toward zero
bias is an imperfectly suppressed Josephson current, while
the residual subgap current is due to leakage. We concentrate
on the section of the IV characteristic over which the current

FIG. 3. �a� Responsivity and
�b� rise time as a function of ap-
plied bias voltage for different de-
vice sizes at a temperature of
40 mK.

FIG. 4. �a� Measured respon-
sivity and �b� rise time of the 30
�crosses�, 50 �diamonds�, and 70
�triangles� �m Al junctions as a
function of incoming photon en-
ergy. V=50 �V, H� =5 mT, and
T=40 mK. The results of the
simulations are shown by various
curves.
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increases rapidly by 3–4 orders of magnitude above the rela-
tively smooth background level at around 100 �V and show
that it can be attributed to the excitation of qps across the gap
through multitunneling. The exact bias voltage correspond-
ing to the current edge should be very sensitive to the qp loss
rate consistent with the observation that the current edge
moved toward lower bias voltage with rise in temperature
�Fig. 2�a�� and increase in STJ size �Fig. 2�b��, both corre-
sponding to lower qp loss rates.

In order to model the IV characteristic, the dynamic
model described in Sec. III can be simplified significantly
since in the stationary situation, all time derivatives are iden-
tically equal to zero. Thus, in Eqs. �6� and �7� with � /�t=0,
it is easy to solve the resulting system of algebraic equations
to eliminate trap densities. The problem is then reduced to
solving the closed system of spectral balance equations for
mobile qps alone with appropriate terms to describe the in-
teraction of qps with local traps. The latter includes detrap-
ping due to the absorption of both thermal and nonequilib-
rium phonons with energy exceeding the trap depth. Spectral
balance equations are obtained from Eq. �6� if 
l,s is replaced
by 
res,s and the terms describing trapping and detrapping in
Eq. �6� replaced by an effective trapping term 
s→trap

eff . The
resulting system of balance equations coincides with that of
Ref. 13 but with the qp loss rate written as

1


l,s
=

1


res
+

1


s→trap
ef f . �19�

The relation of the rise time �experimental mean loss time� 

to 
l,s can only be found when it is simulated through the
solution of spectral balance equations and the qp and phonon
response to photon absorption calculated. The expression for
�s→trap

eff = �
s→trap
eff �−1 has the form

�s→trap
ef f = �s→trap�1 +

�
s�

�s�→trap
ef f Ps�

i

�detrap + �
s�

Rts�Ps�
i �

−1

, �20�

where �s→trap=1 /
s→trap. Finally, the detrapping rate �detrap
is expressed in terms of the complete distribution of
phonons, including both thermal and nonequilibrium, which
are capable of promoting a trapped qp into any mobile state.
This rate is given by

TABLE I. STJ material characteristics used as parameters for the model.

Symbol Name Value Unit Comment

Rn Normal barrier resistivity 6.65 �� cm2 Measured

� Energy gap 180 �eV Measured


0 Characteristic e-ph scattering time 440 ns a

N�0� Single spin normal state
density of states at Fermi level

12.2 1023

eV cm3

a


ph Characteristic pair-breaking time 0.242 ns a

�t Effective trap depth 84 �eV Measured

�t��� Tunnel rate 2.58 106 /s Calculated from Rn

aReference 29.

FIG. 5. �a� Responsivity and
�b� rise time versus temperature.
V=85 �V.
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�detrap =
1


0
� �

kBTc
	3

�
s�=0

Nt+s��t + s��2� �

�
	2

���� �s�+1

�
	2

− 1 −�� �s�

�
	2

− 1� , �21�

where the expression for the phonon distribution function Ns
was obtained in the form13

Ns = N0,s +
2
e�s��

�
ph
�
s�

Ps�+s
i


s�+s



�s�

�s�+1 d��

�

����
��s + ���

��1 −
�2

����s + ���
� , �22�

where N0,s is the Planck distribution and subscript s denotes
the phonon energy of s�. After the solution of the system of
spectral balance equations for qp spectral densities Pm

i , the
current through the STJ is found as

J = 2eN�0��VSTJ�
m

��m→m+vPm
i − �m+v→mPm+v

j

+ ��m − v + 0���m→m−vPm
i − �m−v→mPm−v

j �� , �23�

where VSTJ is the STJ volume.

B. Responsivity and rise time: Bias voltage dependence

The dc, responsivity, and rise time are all calculated via a
numerical solution of the spectral balance equations. How-
ever, while for dc the latter becomes a system of algebraic
equations, the calculation of responsivity and rise time re-
quires a full time-dependent solution. The simulation begins
at an initial instant of time when the infinitesimally narrow
initial distribution containing N0=E /1.75� qps, where E is
the deposited energy, is taken at an arbitrary energy below
3�, to avoid any further qp generation. The exact energy and
shape of the initial distribution are of no importance20 be-
cause after a small number of tunnel events, the qp spectral
distribution converges very rapidly to a stable shape, which
remains unchanged during the remainder of the charge ac-
quisition process, with only the total number of qps decreas-
ing with time through losses. Hence, calculating the current
flowing through the STJ according to Eq. �23� but with Pm

i �t�
as the instantaneous qp density in the mth spectral interval,
we may find the integrated charge Q�t�=�0

�dt�J�t�� and de-
termine the responsivity and rise time as

R = �Q����E=1 eV,

�24�

Q�
� = �1 −
1

e
	Q��� .

Experimental results are shown in Figs. 3�a� and 3�b�. For
the 30 �m junction, the dependences of the responsivity and
rise time on the bias voltage are rather flat. The 50 and
70 �m junctions, on the other hand, show strong effects. We
note that the rise time of the pulse increases with the increase
of bias voltage, implying that qp losses decrease with in-
creasing bias voltage. As a consequence, the responsivity
also increases because on average qps have more time to
tunnel. A second noteworthy effect is that the responsivity
rises faster than the rise time, showing that not only does the
lifetime of qps increase with applied voltage but at the same
time tunneling becomes faster. To understand how is this
possible, we need to consider the details of the quasiparticle
dynamics and to examine the qp spectral distribution within
the current pulse. While the bias voltage is small �well below
the current edge on the IV characteristic�, the qp spectral
distribution, although increased in breadth, still remains con-
centrated below the 3� generation threshold for all STJs.
However, with increasing bias voltage, the tail of the qp
spectral distribution approaches the 3� threshold. With all
parameters except qp losses being the same for all STJs, the
high energy tail of the qp distribution in larger �lower loss�
STJs contains significantly more qps than in smaller devices.
When the qp numbers above the 3� threshold become suffi-
ciently large, self-generation occurs, resulting in a significant
increase of both responsivity and rise time. As seen in Fig. 3,
this occurs when the bias voltage approaches the current
edge in the dc IV curves and takes effect in the lowest loss
70 �m STJ at the lowest bias voltages. The dc edge seen in
the 30 �m STJ occurs at 120 �V, which was beyond the
range of measurements of responsivity and rise time because
of the developing current instability. Examining the qp dis-
tribution functions, we calculate that in the 70 �m STJ, the
fraction of qps above the 3� threshold is of the order of 10−5

at 80 �V bias. During the qp lifetime of approximately
100 �s, there will be on average �104 spontaneous emis-
sions of pair-breaking phonons resulting from qp inelastic
transitions initially above the 3� threshold. Thus, by the time
the initial distribution of qps has decayed, around 20% of it
has been replaced due to self-generation, resulting in the ob-
served behavior of responsivity and rise time.

C. Responsivity and rise time: Photon energy dependence

Responsivity and rise time data were measured for the 30,
50, and 70 �m junctions as a function of photon energy be-
tween 2 and 30 eV. The results of experiment together with
the modeled curves are shown in Fig. 4. For the 30 and
50 �m junctions, 6 keV data were also obtained. Nonlinear-
ity in the optical domain arises from the fact that the number
of active traps gradually saturates as the number of generated
quasiparticles increases24 and from this observation, it was
possible to obtain an estimate of the total number of traps.
The result of approximately 8.8�103 was the same for each

TABLE II. Fitting parameters for the model �L in �m�.

Symbol Name Value Unit


e�2�� Escape time for pair breaking

Phonons 0.35 ns


e Escape time for subgap

Phonons 10 ns


res
−1 Residual loss rate 21.5 /L2+0.003 106 s−1

�trap Trapping constant 72 /L2

nt Number of traps 8.8�103
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STJ regardless of size, confirming the earlier result that the
traps do not reside in the bulk, nor are dispersed evenly
along the device perimeter, but are concentrated at one or
more well defined locations, presumably at the Nb contacts.
In contrast, the observed responsivity of STJs with Ta con-
tacts is essentially independent of energy over in the same
range, indicating either that traps are much more numerous
than in junctions with Nb leads or that they are absent alto-
gether. The sensitivity of the theoretical fit to trap density
and trapping coefficient is good so that this experiment may
be considered as essentially a measurement of these two pa-
rameters. However, in modeling the curves in Fig. 4, theory
uses also the trap depth as a parameter. The results of the
simulations shown in Fig. 4 are not critically dependent on
the value of this parameter, and hence the determination of
�trap and Ft remains slightly uncertain, in the absence of an
independent determination of the trap depth. The latter was
achieved by measuring the STJ responsivity in the appropri-
ate range of temperature, as described below, since thermal
phonons will activate the trapped qps and thus increase re-
sponsivity with increasing temperature.25

D. Responsivity and rise time: Temperature dependence

Finally, we have measured the temperature dependence of
responsivity and rise time in the range of temperature
40–210 mK. The results of experiments and theoretical
modeling are shown in Fig. 5, from which we were able to
determine the trap depth �t. In Ref. 20, detrapping rate was
proposed to be proportional to that of qp absorption from the
initial state at the edge, �, into a final state above this level
corresponding to the trap depth. This assumption has never
been tested experimentally before and needs refinement be-
fore a quantitative modeling can be carried out. The differ-
ence between the rate of detrapping and that of phonon ab-
sorption arises from the different integrands in the
expressions describing the transition rates. It is clear that
absorbing a phonon of the energy exactly corresponding to
the trap depth raises a trapped qp to a final state at the su-
perconducting edge. In the BCS model, the latter is singular,
leading to an enhanced detrapping rate in comparison with
that proposed in Ref. 20. A realistic description of both the
density of states in the vicinity of the local trap as well as of
the detrapping rate requires an accurate model for the local
trap. The general expression for the phonon absorption rate
in an inhomogeneous superconducting system has the form33

�abs�x,�� =
1


0�kBTc�x��3

0

�D

d��2N����Re G�x,� + ��

−
��x�

�
Im F�x,� + ��� , �25�

where x is a coordinate and Re G, ��x�, and Im F are
position-dependent density of states, pair potential, and
imaginary part of the anomalous Green function, respec-
tively. To evaluate the detrapping rate, we take the argument
in the phonon absorption rate to be �−�t. The singularity in
the BCS density of states at the location of the local trap will
be smoothed out because of the presence of the trap. How-

ever, in spite of this singularity, the integral is convergent,
and hence we expect that the difference between the two
expressions for the density of states does not play a signifi-
cant role. Next is the problem of estimating the pair potential
��x� at the location of the trap, taking account of the local
suppression of the gap at the trap. Here, the result cannot be
derived in a general form independent of the model of the
local trap. If the trap is a normal region, ��x� inside the trap
is zero. However, the gap itself inside this normal region,
�−dt, still exists, while the pair potential is zero because
��x���F, where the electron-phonon coupling constant �
=0 in the normal region. Thus, we have a finite F function
and gap but zero ��x�, a common situation in proximized
structures. Of course, the result depends on our assumption
about the trap region, whether it is totally normal or whether
it still retains some small electron-phonon coupling. Finally,
our expression for the detrapping rate is obtained from Eq.
�25� by using the BCS density of states and zero pair poten-
tial at the location of the trap,

1


detrap
=

1


0�kBTc�3

0

�D

d��2N���
�� + �� . �26�

With this expression, we may model the temperature depen-
dence of both responsivity and rise time and compare the
results with experiment to establish the value of the param-
eter �t. The steepness of the simulated curves on the rising
side is greatly enhanced by the fact that dominant phonons
excite the trapped qps into the states close to the edge where
the BCS density of states is high. The results are shown in
Fig. 5. In view of the several assumptions made, the agree-
ment is promising. The general shape of the curve is similar
to that observed for larger gap Ta /Al proximized junctions25

in the region of higher temperatures, 200–800 mK, where
the full curves can be measured experimentally. The respon-
sivity and rise time curves reach maxima as a function of
temperature because with rising temperature, thermal recom-
bination first compensates for the effectively increased qp
lifetimes while detrapping becomes efficient, and then com-
pletely dominates, giving rise to enhanced loss, lower re-
sponsivity, and faster rise time.

Table II lists the fitting parameters which, together with
the set of material parameters of Table I, were found to
model convincingly all the experimental results for all three
devices. The good agreement of the model with experiment
provides strong justification for the expressions used to de-
scribe loss and trapping in the STJs and therefore of the
physics underlying them. The purely inverse quadratic de-
pendence of the trapping constant, together with the obser-
vation that the number of traps is independent of STJ size,
suggests strongly that the traps are localized in the Nb plugs
at the connection with the leads. We also note that the mag-
nitude of the bulk contribution �size independent� to the re-
sidual loss rate, corresponding to a rate of approximately
300 �s, is not far removed from the figure of 200 �s re-
ported in Ref. 15 for an Al STJ with Ta plugs.

VI. SUMMARY

We have developed a theory to describe the formation and
subsequent time evolution of the nonequilibrium qp state
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which is created in narrow gap, multiple tunneling STJs by
the absorption of an energetic photon. The theory is based on
the system of coupled dynamic equations which link qp and
phonon distributions via collision integrals describing all
generation, interaction, tunneling, and loss processes. No
previous attempt has been successful in modeling this com-
plex situation, which is a feature of the latest generation of
high quality STJs for use at very low temperatures. For com-
parison, experimental measurements of responsivity and loss
rate �rise time� were made on a series of Al STJs used as
photon detectors. Our model was fully able to predict the

responsivities and rise times and their dependence on experi-
mental parameters such as temperature, bias voltage, and
photon energy of all the related STJs in terms of a single set
of material and device parameters. An important implication
of the results is that local traps primarily responsible for qp
loss in our Al STJs are located explicitly in the region of the
Nb contacts. We believe that these studies provide
important insight both into the physics of photoabsorption
processes in STJ detectors and specifically into nonequilib-
rium qp phenomena in superconductors.
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