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We study the competition between antiferromagnetic order and valence-bond-crystal formation in a two-
dimensional frustrated spin-1 /2 model. The J1-J2 model on the square lattice is further frustrated by introduc-
ing products of three-spin projectors which stabilize four dimer-product states as degenerate ground state.
These four states are reminiscent of the dimerized singlet ground state of the Shastry-Sutherland model. Using
exact diagonalization, we study the evolution of the ground state by varying the ratio of interactions. For a
large range of parameters �J2�0.25J1�, our model shows a direct transition between the valence-bond-crystal
phase and the collinear antiferromagnetic phase. For small values of J2, several intermediate phases appear
which are also analyzed.
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I. INTRODUCTION

In the last several years, a large amount of work has been
devoted to the study of quantum systems with frustrated
magnetic interactions due to their propensity to present spin
liquid states. These phases indeed present interesting low
energy properties, starting with the absence of magnetic or-
der even at zero temperature. Recently, a lot of attention has
been focused particularly on the valence bond crystal �VBC�
states, and more precisely on the transition between these
states and a magnetically ordered phase. In this context, it
has been suggested1,2 that this could be a second order tran-
sition which does not belong to the Landau-Ginsburg
paradigm.3

In a VBC state, spins are coupled in pairs forming singlet
states, evocating valence bonds. These pairwise singlets are
themselves arranged in a periodic pattern. Such states break
the translation symmetry, and it is possible to define an order
parameter quantifying the singlet long range order. The ques-
tion on the nature of quantum phase transition that separates
this state from a long-range ordered magnetic phase is very
interesting as well as current. Supposing a second order tran-
sition within the Landau-Ginsburg paradigm,3 the order pa-
rameters of both phases should vanish precisely at the tran-
sition. Intuitively, it seems more probable that the two order
parameters will not vanish exactly at the same point, leading
either to a first order transition, or to two second order tran-
sitions separated by an intermediate phase. For a spin-1 /2
system on square lattice, Senthil and co-workers have re-
cently suggested an alternative scenario of second order
phase transitions that are not described by Landau-Ginsburg
theory.1,2 The transition could instead be described by means
of fractional degrees of freedom, namely spinons. These
spinons become deconfined at the transition point, called the
deconfined quantum critical point.

A priori, the spin-1 /2 J1-J2 antiferromagnet on square
lattice seems to be the simplest choice to investigate the rel-
evance of this new scenario. Here, J1 and J2 denote the
strengths of first and second neighbor spin interactions. In
the two limiting cases where either J1 or J2 is very large

compared to the other, the system presents antiferromagnetic
order. In the former case it corresponds to the usual Néel
order, and in the latter case the ground state has a collinear
antiferromagnetic order, corresponding to the Néel order on
two sublattices �that are obtained by connecting second
neighbor sites�. It is generally accepted that this model pre-
sents an intermediate spin disordered phase in the range
0.4�J2 /J1�0.6, which might break the translational
symmetry.4–10 It is still unclear if the transition between the
Néel state and the spin disordered phase is a deconfined
quantum critical point or a simple first order transition, al-
though recent works are in favor of a weak first order
transition.11–13

The difficulty in understanding the J1-J2 model comes
from the intermediate phase whose nature is subject to
discussions.14 Some studies show a four-spin plaquette
order,9,10 while others are in favor of a columnar dimer
order.6–8 In the latter case, not only the translational symme-
try, but also the fourfold lattice rotational symmetry is bro-
ken. However, if this phase develops dimer-dimer correla-
tions, it is far away from being the simple direct product of
dimer singlet wave functions. Indeed, if that was the case,
the ground state would present a strong signal of long-range
dimer order which is not observed for the intermediate phase
of the J1-J2 model. Exact diagonalization studies show that
the dimer-dimer correlation is rapidly decreasing with
distance6,15 and that, if the dimer order exists, it should be
rather small.15 The analysis of the properties of the phase
transition is therefore not so easy in the J1-J2 model. Re-
cently, a new model including ring-exchange has been
proposed16 to explore the possibility of non Landau-
Ginsburg phase transitions. It has however been shown that
this model presents a first order transition.16 On the other
hand, Sandvik explored an SU�2� symmetric ring-exchange-
like model on square lattice, and found strong numerical evi-
dence in favor of a true deconfined quantum critical point.17

In the present paper, we propose a quantum spin-1 /2
model on square lattice with frustrated antiferromagnetic in-
teractions. Interestingly, for a simple choice of the interaction
parameters, this model has an exactly solvable singlet ground
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state. The exact ground state is a pure direct product of
dimers, arranged in the same pattern as in the ground state of
the Shastry-Sutherland model.18 However, unlike in the
Shastry-Sutherland model, the VBC ground state of our
model presents a case of spontaneous symmetry breaking,
and is fourfold degenerate, in agreement with field-theory
arguments.19,20 Using exact diagonalization, we investigate
the evolution of the ground state as the interaction param-
eters are varied away from the exactly solvable VBC case. In
the following section, we describe the model and discuss its
main properties and its relation to the J1-J2 model. In Sec.
III A, we study the competition between the VBC phase and
the collinear ordered antiferromagnetic phase. In Sec. III B,
we analyze the competition with the usual Néel antiferro-
magnetic phase. Finally, the last section is devoted to con-
clusions and perspectives.

II. MODEL

Consider a system of spin-1 /2 on the square lattice. The
model we consider contains only two and four spins interac-
tions which can be conveniently described using a six-site
rectangular plaquette �see Fig. 1�. It is also convenient to
distinguish between the two sublattices A and B of the square
lattice. The six sites of a plaquette thus contain three sites
belonging to A sublattice, and the other 3 sites belonging to
B sublattice. For each set of three spins, we consider the spin
projector on the quartet �S=3 /2� state

Pi,j,k
A =

1

3
��S� i + S� j + S�k�2 −

3

4
� , �1�

Pl,m,n
B =

1

3
��S� l + S�m + S�n�2 −

3

4
� , �2�

where A and B refer to the two sublattices, and i , j ,k , l ,m ,n
are the sites of the plaquettes as depicted in Fig. 1. The
interaction we consider is obtained by taking the product of
two projectors of a plaquette

H0 = �
�i,j,k,l,m,n�

9

4
Pi,j,k

A Pl,m,n
B , �3�

where the sum runs over all horizontal and vertical
plaquettes and �i , j ,k , l ,m ,n� are the sites of one plaquette.

One should notice that the value of a projector is always
positive except when the three spins are in a doublet state

�i.e., when �S� i+S� j +S�k�2=3 /4�, in this case it becomes zero.
The latter condition is fulfilled, in particular, if any two of
the three spins form a singlet. These two spins could either
be two first neighbor or two second neighbor spins of a sub-
lattice, and correspond, respectively, to two second or two
third neighbor spins of the original square lattice. Since the
interaction in the model is the product of two projectors, it is
only necessary to cancel one of these projectors to minimize
the corresponding term. For this purpose, it is thus sufficient
to have one dimer on the plaquette, either between second or
third neighbor spins. Therefore, it is obvious that if a valence
bond configuration has one such dimer on every plaquette, it
will form a zero energy ground state of H0.

Historically, the original case of stabilizing valence bond
states by spin projectors was presented in the Majumdar-
Ghosh model on a spin-1 /2 chain.21 Motivated by this work,
Klein proposed a general scheme of constructing quantum
spin models with exact dimer ground states, going beyond
one dimension �1D�.22 Though Klein’s method uses the
theory of symmetric group for constructing models with
dimerized ground states, these constructions can be conve-
niently described in terms of the spin projection operators
introduced by Löwdin.23 Encouraged by Klein’s approach,
several model Hamiltonians have been derived on different
types of 2D lattices.24 Some of these investigations were
done in order to find spin models that could be accurately
described by the quantum dimer model of Rokhsar and
Kivelson.25 There have been several other studies, inspired
by Majumdar-Ghosh model, in which various exactly solv-
able spin models with dimer ground states were constructed
in different spatial dimensions �some of which have exten-
sive entropy in the exact dimer ground state�.26 Recently,
Batista and Trugman studied a model with such projectors on
four-site square plaquettes16 but their Hamiltonian has a
highly degenerate ground state since a great number of dimer
patterns minimize all projectors.

In the present model, the ground state is obtained when
dimers are arranged in the pattern given in Fig. 2 and is
much less degenerate �see also the discussion in the Appen-
dix�. This arrangement evokes the Shastry-Sutherland �SS�
model �and we will further refer to this phase as the SS-VBC
phase�, but contrary to the SS model, our Hamiltonian does

FIG. 1. Representation of a 3 by 2 horizontal rectangular
plaquette. A vertical 2 by 3 plaquette can be obtained by a 90°
rotation of the plaquette. Solid and dashed gray lines represent A
and B sublattices. Spins are represented by black and white dots for
sublattices A and B, respectively.

FIG. 2. One of the four VBC configurations in the ground state
of H0. Thick black lines indicate the pairs of spins that form singlet
states. The three other ground states can be obtained by translation
of the dimer pattern by lattice vectors.
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not break the translational symmetry of the square lattice.
The ground state presents a spontaneous symmetry breaking,
and is fourfold degenerate. The other three of SS-VBC states
can be obtained from this dimer pattern by simple lattice-
translations. Interestingly, the four SS-VBC states are also
the exact zero energy eigenstates �although not the ground
state� of the nearest-neighbor Heisenberg model on square
lattice, which motivated us to seek for a model on the square
lattice with four SS-VBC states as the exact ground state.27

The spin projectors are two-spin operators which can be
rewritten in terms of the exchange couplings between the
first and second neighbor spins of a sublattice

Pi,j,k
A =

2

3
�S� i · S� j + S� i · S�k + S� j · S�k� +

1

2
. �4�

Therefore, the product of two projectors generates two- and
four-spin interactions in H0. Since the projector is invariant
under spin-rotation and involves spins on a given sublattice,
it will commute with the total spin of this sublattice, and
obviously, with the total spin of the other sublattice. H0 will
thus conserve the total spin on each sublattice. This extra
symmetry can introduce a further factor two in the degen-
eracy of excited states.

It is interesting to notice that this Hamiltonian is some-
how related to the J1-J2 model. Let us assume that a state can
be expressed as a direct product of the wavefunction of spins
on A sublattice ��A	 and of spins on B sublattice ��B	:

��	 = ��A	 � ��B	 . �5�

In that case, it is possible to define a Hamiltonian for one
sublattice. Let us, for instance, choose the A sublattice

HA = �
�i,j,k,l,m,n�

9

4
Pi,j,k

A 
�B�Pl,m,n
B ��B	 . �6�

This Hamiltonian corresponds, for the A sublattice, to a
model with first and second neighbor interactions whose am-
plitudes are modulated by the local spin state of the B sub-
lattice. It is easy to show that, in the case where the mean
value of the projector on B sublattice is homogeneous, the
Hamiltonian can be expressed as

HA = 3
PB	 �

i, j	A

S� i · S� j +
3

2

PB	 �



i, j		A

S� i · S� j , �7�

where 
i , j	A are the first neighbor couples of spins of A
sublattice, and 

i , j		A the second neighbor ones, 
PB	 is the
uniform value of 
�B � Pl,m,n

B ��B	. This Hamiltonian is pre-
cisely the J1-J2 model on the A sublattice at the J2 /J1=0.5
point, which is located in the intermediate spin liquid phase
of the model. Clearly, if we consider the ground state of our
model, we do not expect the mean value of the PB projector
to be homogeneous. Nevertheless, this comparison intro-
duces a simple picture of the model, in which the local spin
correlations self-consistently modulate the J1-J2 model on
each sublattice. This process allows the system to stabilize a
pure direct product of dimers as ground state. This valence
bond ground state is different in nature from the one ex-
pected in the intermediate phase of J1-J2 model, since the

dimer order on each sublattice is not columnar but
staggered28 �see Fig. 2�.

The existence of this exact ground state makes this model
an interesting candidate to explore the transition between the
VBC phase and the antiferromagnetically ordered state. In
order to drive the system into such phases, we consider the
following Hamiltonian:

H = J�1 − ���1 − ���

i,j	

S� i · S� j + J� �1 − �� �


i,j		

S� i · S� j + J� H0,

�8�

where 
i , j	 and 

i , j		 are, respectively, first and second
neighbor spins of the original �square� lattice, � and � are
dimensionless parameters, and J is the energy scale �assumed
to be positive�. When � is equal to 1, one just retrieves the
H0 model, while when �=0, the Hamiltonian is simply the
J1-J2 model, with � being equal to J2 / �J1+J2�. A sketch of
the phase diagram of the Hamiltonian �8� is shown in Fig. 3.
It contains three unambiguously identified phases denoted by
“N” �antiferromagnetic �� ,�� Néel order�, “col. AF” �collin-
ear �� ,0� / �0,�� order with Néel order each sublattice�, and
“SS-VBC” �valence-bond order with Shastry-Sutherland ar-
rangement�. Between these phases, there is a region where
correlations change very significantly, defining possible
phase transitions between three phases denoted by A, B, and
C. These phases are discussed in the last part of the next
section.

III. NUMERICAL RESULTS

We study the evolution of the eigenstates of this model by
an exact diagonalization technique based on the Lanczos al-
gorithm. Finite clusters of N=16, 20 and 32 sites were used.

FIG. 3. �Color online� Tentative phase diagram of the model �8�.
Phase transitions obtained by exact diagonalizations of the present
work are indicated by full dots. These points have been obtained
from finite size scaling analysis of the order parameters, except for
those at the transition between SS-VBC and C phases. The latter
transition correspond to a level crossing. The points correspond to
the position of the crossing obtained for the largest cluster size.
Phase transitions in dashed line are estimations based on the cross-
ing of preponderant Q dependent magnetic structure factors �see
Fig. 10�. The nature of the different phases is described in the fol-
lowing sections. The points on the �=0 line are taken from Ref. 4.
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Larger clusters were not accessible because of the complex-
ity of the interaction.

The first noticeable result concerns �=1 case, when H
=JH0. We checked numerically that the four SS-VBC ground
states presented in previous section are the only ground
states of the model. This is always true except for the 16 site
cluster, for which two more ground states are also present, as
shown in Fig. 4. These two states are ground states only for
the 16 site cluster, due to the very short loops which wrap
around the boundaries of the cluster �also see the Appendix�.
Indeed, in this case a third neighbor dimer between the sites
�x ,y� and �x ,y+2� also represents a dimer between the sites
�x ,y+2� and �x ,y+4� because of the periodic boundary con-
ditions. This is no longer true for larger clusters and by ex-
tension in the thermodynamic limit.

In the following two subsections, we map out the phase
diagram of the model, with an emphasis on two lines: first
the case of �=1, studied in Sec. III A and, secondly, �=0,
presented in Sec. III B. The former line connects the case of
J1=0, J2=J and �=0 to the fourfold degenerate SS-VBC
ground state, and the latter connects the unfrustrated square
lattice Heisenberg antiferromagnet to the same dimerized
ground state.

A. SS-VBC versus collinear order „�=1…

In the present section, we consider the case where �=1.
According to the previous discussion on the relation between
our model and the J1-J2 model, J2 corresponds to a first
neighbor interaction on each sublattice which, for large
enough values, will lead to a Néel state on each sublattice.

For �=1, the SS-VBC states are exact ground states even
for finite clusters. Note that these four states are nonorthogo-
nal on a finite cluster: they have a finite overlap that de-
creases exponentially with the cluster size.29 However, since
they are linearly independent, the ground state is indeed four-
fold degenerate on a finite cluster for �=1. This degeneracy
is lifted by the J2 interaction that appear for ��1. Figure 5
presents the energy differences between the ground state and
the lowest state of some symmetry sectors, obtained for the
32 site cluster. The energy differences between the four low-

est singlet states stay relatively small in the range 0.8��
�1, while the spin gap progressively decreases. Below 0.8
the energy difference between singlet states rapidly in-
creases, while the spin gap remains approximately constant.
The fact that the spin gap is close to its �=0 value �i.e., the
value of the J1 model� suggests that the system is in the
corresponding antiferromagnetic phase, and hence that it will
have a zero spin gap in the thermodynamic limit.

In order to further investigate the transition, we calculate

the Q� dependent magnetic susceptibility for each cluster32

MN
2 �Q� � =

1

N�N + 2��i,j 
S� i · S� j	eiQ� �r�j−r�i�, �9�

where r�i denotes the position of ith spin, 
¯	 the expectation
value in the ground state, and N the number of sites in the

cluster. The evolution of the Q� 1= �� ,0� magnetic susceptibil-
ity relevant for antiferromagnetic collinear order is presented
in Fig. 6. The extrapolation to the thermodynamic limit of
the corresponding sublattice magnetization4 has been per-
formed using the finite size scaling predicted by nonlinear
sigma model studies30,31

MN
2 �Q� 1� =

1

8
m0

2�Q� 1� +
const
�N

. �10�

The fitted value of m0�Q� 1� is also shown in Fig. 6. The ex-
trapolated magnetization stays large up to ��0.7, which
confirms that the collinear phase is stable in this range of
parameter. It then rapidly drops, and vanishes around �

0.75.

The VBC phase, which is expected for larger values of �,
is characterized by long range dimer-dimer correlation. This
long range correlation can be considered as the order param-

FIG. 4. Representation of one of the two additional ground
states for the 16 site cluster. Full lines connect the 16 sites of the
cluster, dashed lines symbolize the boundary conditions. The other
additional ground state can be obtained by translation of the dimer
pattern by lattice vectors.

0 0.2 0.4 0.6 0.8 1
δ

0

2

4

E/J

(0,0) A1

(π,0) A1, (0,π) A1

(π,π) B2

(π,0) B1, (0,π) B2
γ=1

FIG. 5. �Color online� Energy differences between the ground
state and some of the lower states of the 32 site cluster. The sym-
metry of different states is indicated in the figure. Values in paren-
thesis correspond to momentum, while A1, B1, A2, and B2 refer to
the irreducible representations of the point group symmetry. For
�0,0� and �� ,�� momentum the point group is C4v, and for �� ,0�
momenta it is C2v. A �respectively, B� notation indicates that the
state is symmetric �respectively, antisymmetric� under � /2 rotation
for C4v or � rotation for C2v. The last number corresponds to the
reflection symmetries. A1 �respectively A2� states are symmetric
�respectively antisymmetric� under reflections, while for B1 and B2
it depends on the axis. States with �� ,0�-A1 and �0,��-A1 symme-
try are triplet states, others are singlet states.
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eter of this symmetry-breaking phase. In order to determine
the stability of the phase, we compute the following dimer-
dimer correlations in the ground state:

DN�r�� = 
�S�0� · S�r�1
��S�r� · S�r�+r�2

�	 − 
S�0� · S�r�1
	
S�0� · S�r�2

	 , �11�

where 0� stands for the origin, and r�1 and r�2 can be either
equal to �1,1�, �1,−1�, �−1,1�, or to �−1,−1�. As expected,
for ��1, the values of D�r�� that correspond to the dimers of
the Shastry-Sutherland pattern are quite large. For a given
cluster, and close to �=1, the fluctuations of these values are
very small, of the order of a few percent of the average value
of these correlations. Since we are interested in the value of
D�r�� for r going to infinity, we only considered among these
correlations the one obtained for the largest r value �DN�r�m��.
These correlations, shown in Fig. 7, are quite small in the
antiferromagnetic phase, and rapidly increase at around �
�0.8. Interestingly enough, the curves cross at �=0.76, very
close to the point where the antiferromagnetic order van-
ishes. This behavior is consistent with a first order transition,
with an order parameter scaling down to zero with the cluster
size below a critical value, and scaling up to a finite value
above. However, with only two sizes available �the 16 site
cluster turns out to be rather pathological with essentially �

independent correlations�, this information should be taken
with care, and a definitive identification of the nature of the
phase transition requires further investigation.

B. Competition with „� ,�… Néel order „�=0…

We now consider the case of �=0, which corresponds to
the competition between the first neighbor coupling and the
six site plaquette interaction. The interest in the model ob-
tained for �=0 comes from the fact that the SS-VBC states
remain eigenstates for all values of � with an energy equal to
zero. It follows that the transition at which the valence-bond-
crystal vanishes has to be a level crossing and is therefore
first order.

In the case discussed in the previous section, we argued
that the transition between the collinear �� ,0� Néel phase
and the SS-VBC could in principle be a continuous transi-
tion. A very simple observation in this direction is the fact
that both phases rely on strong antiferromagnetic spin corre-
lations between second neighbor spins. This is no longer the
case for �� ,�� Néel order which is stabilized by the nearest-
neighbor coupling J1 ��=0,�=0�, and therefore presents
strong antiferromagnetic correlations between nearest neigh-
bor spins and ferromagnetic correlations between second
neighbor spins, hinting at a severe reorganization of the
wavefunction between the Shastry-Sutherland VBC and the
�� ,�� Néel phase. According to this simple consideration, a
direct transition between the SS-VBC phase and the �� ,��
Néel phase seems unlikely. In the following, we will see that
these observations are indeed corroborated by the results of
the numerical simulations.

We start the discussion by presenting in Fig. 8 the evolu-
tion of the energies of some of the lowest eigenstates ob-
tained for the 32-site cluster, taking the lowest fully symmet-
ric k� = �0,0� level as the energy reference. To identify
intermediate phases present in the range 0.1���0.4, we
searched for predominant signals in either the real space
dimer-dimer correlations or the momentum dependent mag-
netic structure factor �see Fig. 10�. Due to the difficulty in
performing a finite-size scaling of the order parameters, this

0 0.2 0.4 0.6 0.8 1
δ

0

0.05

0.1

0.15

0.2

M
2

20(Q1)

M
2

32(Q1)

m
2

0(Q1)/8

γ=1

FIG. 6. �Color online� MN�Q� 1�2 square magnetic susceptibility

for 20 and 32 site clusters �Q� 1= �� ,0�� and its extrapolation to the

thermodynamic limit M	�Q� 1�2=m0
2�Q� 1� /8.

0 0.2 0.4 0.6 0.8 1
δ

0

0.05

0.1
D20(rm)
D32(rm)

γ=1

FIG. 7. �Color online� Dimer-dimer correlation Dm /D0 obtained
for the 20 and 32 site cluster. This value corresponds for one cluster
to the correlation between the two dimers of the Shastry-Sutherland
pattern separated by the largest distance. D0=33 /44 is the maximal
correlation obtained for a pure fourfold degenerate dimer state.

0 0.1 0.2 0.3 0.4 0.5
δ

0

0.2

0.4

0.6

0.8

1

E/J

(0,0)−A1
(0,0)−A2
(0,0)−B1
(0,0)−B2

(π,0)−A1
(π,0)−B1
(π,0)−B2
(π,π)−A1
(π,π)−B2

N A B C SS−VBC

γ=0

FIG. 8. �Color online� Energy differences between the lowest
fully symmetric state with k� = �0,0� momenta and some of the low-
est states of the 32 site cluster. The labeling of the symmetry sectors
follows the caption of Fig. 5.
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identification of the phases as well as the transition points
has a preliminary character at this stage, and is mainly based
on the qualitative differences of structure factors and energy
level orderings as one tunes � from 0 to 0.4. Based on this
analysis, we are led to propose three different phases, tenta-
tively labeled as “A,” “B,” and “C” in addition to the well
characterized �� ,�� Néel phase at �=0 and the fourfold de-
generate Shastry-Sutherland states for ��0.4. We discuss
each of these three additional phases in the following, start-
ing with the phase “A” adjacent to the �� ,�� Néel order at
small �, continuing with the phase “C” adjacent to the exact
Shastry-Sutherland eigenstates at ��0.4, and concluding
with the elusive region “B” in between.

Phase “A”. Starting at small values of �, we note that the
plaquette interactions favor antiferromagnetic correlations
between second neighbor spins, similar to a frustrating AF J2
coupling. Therefore one could expect the evolution of the
system to be similar to the J1-J2 model for intermediate val-
ues of J2. The symmetry of the four lowest states near �
=0.15 with momenta �0,0� �two states�, �� ,0�, and �0,��,
are indeed compatible with the hypothesis of a fourfold de-
generate ground state with a translational symmetry breaking
of the columnar dimer type, although the energetic separa-
tion of these four states with respect to the higher levels has
not been achieved yet. Figure 9 shows for �=0.15 the fol-
lowing nearest neighbor dimer-dimer correlations:

DN�r�� = 
�S�0� · S�r�3
��S�r� · S�r�+r�4

�	 − 
S�0� · S�r�3
	
S�0� · S�r�4

	 , �12�

where this time r�3 and r�4 can be either equal to �0,1�, �0,
−1�, �1,0�, or �−1,0�. These correlations are relatively large
and long ranged through the sample, and provide support for
valence bond ordering of the nearest neighbor dimers. How-
ever, one should note that, as for the J1-J2 model, it is diffi-
cult to determine whether this phase presents columnar
dimer order or plaquette order in the thermodynamic limit.14

So based on the properties of the spectrum and the presence

of sizable dimer correlations we suggest the presence of a
phase “A” which forms some sort of valence bond crystal
based on dimers on nearest-neighbor bonds. The transition
point between this phase and the Néel phase N has been
evaluated by computing the finite size scaling of the stag-
gered magnetic structure factor �not shown�. This structure
factor, which corresponds to the order parameter squared of
the Néel phase, vanishes at about �=0.06.

Phase “C”. At the other end of the � axis, starting from
large values of �, the ground state stays exactly fourfold
degenerate down to ��0.4, below which a level crossing
occurs. Note that in Fig. 8 at �=0.4 the levels �0,0�-A1 �one
dimensional�, �� ,0�-B1 �two dimensional�, and �� ,��-B2
�one dimensional� are exactly degenerate. Near �=0.35
many levels are very close in energy. Some of these states
are even found to be lower in energy than the fully symmet-
ric k� = �0,0� state, which is again the ground state for �
�0.3, but this may well be a finite size effect on this par-
ticular sample.

For �=1 studied in Sec. III A, we encountered a direct
transition between a collinear �� ,0� Néel ordered phase and
the Shastry-Sutherland–type VBC state. In order to rule out
this scenario here, we determined the static spin structure
factors for different momenta in Fig. 10. At a first glance the
�� ,0� components seem strongest around ��0.35. In order
to shed further light on the absence of magnetic long range
order we study the evolution of the collinear magnetic order
as a function of � for a fixed value of �=0.35. Using samples
of 20 and 32 sites we obtain in Fig. 11 a finite size scaling
which shows convincingly that the magnetic order is lost at a
finite value of ��0.1, i.e., the point �=0.35, �=0 indeed
does not sustain magnetic long-range order.

Looking at real-space spin correlations, the second neigh-
bor correlation is much larger than all other spin correlations,
so that the possibility of a dimer VBC state needs to be
considered. We therefore computed the real-space dimer-
dimer correlations which are presented in Fig. 12�a�. They
present a pattern reminiscent of the SS-VBC phase, although
the values of the correlations are considerably smaller than in
the pure phase. For the purpose of comparison, the same
correlations in the pure SS-VBC phase are displayed in Fig.
12�b�. We recall at this stage that in this range of parameters
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FIG. 9. �Color online� Correlations between first neighbor spin
dimers �see Eq. �12�� on the 32 site cluster for �=0 and �=0.15
�phase A�. Positive values are represented by �blue� plain lines, and
negative values by �red� dashed lines. The thickness is proportional
to the relative amplitude Dm /D0 of the correlation as depicted on
the figure �D0=33 /44 is the maximum of correlation obtained for a
pure fourfold degenerate dimer state�. The �black� dimer in the low-
est corner of the cluster is the reference dimer.
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FIG. 10. �Color online� Q-dependent magnetic structure factor
obtained for the 32 site cluster.
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several states are very close in energy �see Fig. 8�, all of
them singlets. We also observed that they present similar
dimer-dimer correlations. From our results it is however dif-
ficult to determine if these dimer-dimer correlations are short
or long ranged. It seems presently as though this phase
should be best visualized by a condensation of singlet exci-
tations above the SS ground states, and not by a simple level
crossing into a new ground state of completely different

character, as it happens, for example, in the original Shastry-
Sutherland model �Ref. 33�. The nature of this phase formed
by the condensing singlet levels is currently not understood.

Phase “B”. Upon close inspection of Fig. 10 it is reason-
able to suppose that there exists a third phase in the approxi-
mate region 0.2���0.3—sandwiched between the phases
“A” and “C”—which displays somewhat enhanced magnetic
correlations for Q= �� ,� /2� and Q= �� /2,� /2�. Unfortu-
nately the presence of correlations at these wavevectors ren-
ders the study of this parameter range more difficult, since
these momenta are not present on the 20 site cluster. It is
therefore not possible to perform a finite size scaling of the

Q� -dependent magnetic structure factor. Nevertheless, one
should note that there is also an enhancement of these com-
ponents on the 16 site cluster. While the structure factors
seem to be somewhat small for a true long-ranged spin order,
these correlations still signal the presence of rather different
magnetic correlations compared to the adjacent phases. Per-
haps a detailed study of a classical version of the present
Hamiltonian might shed some light on the possible magnetic
structure which could be hidden in this region of parameter
space. At this stage, it is difficult to characterize this phase
“B” and to know if these large components correspond to a
long-range spin order, or to some more exotic �e.g., nematic�
phase.

IV. CONCLUSION

We introduced a model with frustrated interactions which
provides an interesting case of competition between antifer-
romagnetic orders and a valence-bond-crystal order. We have
shown that, for some values of the interaction parameters,
the fourfold degenerate VBC ground state is an exact direct
product of the dimer singlet wave functions. This model is
thus an interesting candidate for investigating the possibility
of a newly proposed scenario of quantum phase transition. It
indeed presents, for a large range of parameters �namely, �

0.2�, a direct transition between the SS-VBC phase and a
collinear antiferromagnetic phase. Further investigations are
needed to determine if the transition is first order, or if it
could correspond to the non-Landau-Ginsburg transition pro-
posed by Senthil and co-workers.1,2

For smaller values of the second neighbor interaction �i.e.,
small values of ��, the Néel and SS-VBC phases are sepa-
rated by an intermediate region where different types of cor-
relations dominate depending on the value of �. It is likely
that these correlations are the traces of intermediate phases,
but further work is clearly needed to fully characterize these
phases and the nature of the transitions between them.
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APPENDIX

The Hamiltonian H0 �Eq. �3� of Sec. II� has four zero
energy SS-VBC singlet configurations forming an exact
ground state. Proving �in a mathematically rigorous way�
that these four SS-VBC states are the only states in the
ground state and there exists no fifth state, is a nontrivial and
hard task. We are not going to attempt it here. Historically,
for the Majumdar-Ghosh model, which is considerably sim-
pler as compared to H0, it was already very hard to prove the
exact twofold degeneracy of the ground state �which was
eventually shown by AKLT �Ref. 34��. However, it was
much easier to show that there are two dimerized singlet
configurations which form the exact ground state of the
Majumdar-Ghosh model, and to argue that other dimer-
singlet configurations, generated by the allowed variations,
will not be the eigenstates. We will do a similar exercise for
H0, showing that the four SS-VBC states are the only al-
lowed dimer configurations in the ground state.

The block Hamiltonian h6= PAPB of a six-site plaquette is
the basic building block of H0. Since PA and PB are the spin
projectors, the lowest energy of h6 is zero. This corresponds
to either PA or PB or both becoming zero in a given spin
configuration of the block. This happens when the three A
sublattice spins in a six-site plaquette form a total spin�1/2
state, or the same thing happens for B sublattice spins or for
both. One way, in which this can be achieved, is by forming
exactly one singlet bond out of three A or B sublattice spins
of a plaquette. Thus a simple rule emerges for constructing

the dimerized ground state of H0. If a dimer configuration on
the full square lattice is such that, on every six-site plaquette,
there exists at least one singlet bond �dimer� between only A
or only B sublattice spins, then all the plaquette Hamilto-
nians can be simultaneously satisfied �that is, every h6 is in
its ground state�, and such a configuration will be an exact
zero energy ground state of H0.

Now, the number of rectangular plaquettes is equal to two
times the number of sites, hence four times the number of
dimers of any dimer covering of the lattice. Since a dimer
belongs at most to four rectangles, to satisfy all rectangles
simultaneously, each dimer should belong exactly to four
rectangles, and each rectangle should contain a single dimer.
Since a dimer constructed from third neighbors belongs to
only two rectangles, such dimers have to be rejected, and one
should only use diagonal dimers.

Let us now consider one diagonal dimer. The remaining
sites of the square plaquette on which this dimer sits have to
be part of a dimer. However, since two dimers cannot be on
the same rectangular plaquette, the only possibility is that
these dimers are perpendicular to the first one. This is pre-
cisely the prescription to construct a Shastry-Sutherland
state. The freedom to chose the position and orientation of
the first dimer leads to four different states. The exact diago-
nalization calculations on the 20 site and 32 site clusters
presented in this paper support this assertion. Note that with
periodic boundary conditions of length 4, a dimer con-
structed from third neighbors satisfies four rectangles, which
leads to two additional ground states on the 16-site cluster.
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