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We present the theory of spin pumping by a field-driven domain wall for the situation that spin is not fully
conserved. We calculate the pumped current in a metallic ferromagnet to first order in the time derivative of the
magnetization direction. Irrespective of the microscopic details, the result can be expressed in terms of the
conductivities of the majority and minority electrons and the dissipative spin transfer torque parameter �. The
general expression is evaluated for the specific case of a field-driven domain wall and for that case depends
strongly on the ratio of � and the Gilbert damping constant. These results may provide an experimental method
to determine this ratio, which plays a crucial role for current-driven domain-wall motion.
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I. INTRODUCTION

Adiabatic quantum pumping of electrons in quantum
dots1,2 has recently been demonstrated experimentally for
both charge3 and spin.4 Currently, the activity in this field is
mostly concentrated on the effects of interactions,5

dissipation,6 and nonadiabaticity.7 Complementary to these
developments, the emission of spin current by a precessing
ferromagnet—called spin pumping—has been studied theo-
retically and experimentally in single-domain magnetic
nanostructures.8–10 One of the differences between spin
pumping in single-domain ferromagnets and quantum pump-
ing in quantum dots is that in the latter, the Hamiltonian of
the electronic quasiparticles is manipulated directly, usually
by varying the gate voltage of the dot. In the case of ferro-
magnets, however, it is the order parameter—the magnetiza-
tion direction—that is driven by an external �magnetic� field.
The coupling between the order parameter and the current-
carrying electrons in turn pumps the spin current.11 The op-
posite effect, i.e., the manipulation of magnetization with
spin current, is called spin transfer.12–15

Recently, the possibility of manipulating with current the
position of a magnetic domain wall via spin transfer torques
has attracted a great deal of theoretical16–30 and experi-
mental31–38 interest. Although the subject is still contro-
versial,18,21 it is by now established that in the long-
wavelength limit, the equation of motion for the magnetiza-
tion direction �, which in the absence of current describes
damped precession around the effective field −�EMM��� /
�����, is given by

� �

�t
+ vs · ��� − � � �−

�EMM���
���

�
= − � � ��G

�

�t
+ �vs · ��� �1�

and contains, to lowest order in spatial derivatives of the
magnetization direction, two contributions due the presence
of electric current.

The first is the reactive spin transfer torque,16,17 which
corresponds to the term proportional to �� on the left-hand
side of the above equation. It is characterized by the velocity

vs that is linear in the current and related to the external
electric field E by

vs =
��↓ − �↑�E

�e��s
, �2�

where �↑ and �↓ denote the conductivities of the majority
and minority electrons, respectively, and �s is their density
difference. �The elementary charge is denoted by �e�.� The
second term in Eq. �1� due to the current is the dissipative
spin transfer torque39 that is proportional to �.19–21 Both this
parameter, and the Gilbert damping parameter �G, have their
microscopic origin in processes in the Hamiltonian that
break conservation of spin, such as spin-orbit interactions.

It turns out that the phenomenology of current-driven
domain-wall motion depends crucially on the value of the
ratio � /�G. For example, for �=0, the domain wall is intrin-
sically pinned,18 which means that there is a critical current
even in the absence of inhomogeneities. For � /�G=1, on the
other hand, the domain wall moves with velocity vs. Al-
though theoretical studies indicate that generically
���G,26–28,30 it is not well understood what the relative im-
portance of spin-dependent disorder and spin-orbit effects in
the bandstructure is, and a precise theoretical prediction of
� /�G for a specific material has not been attempted yet.
Moreover, the determination of the ratio � /�G from experi-
ments on the current-driven domain-wall motion has turned
out to be hard because of the extrinsic pinning of the domain
and nonzero-temperature29,38 effects.

In this paper, we present the theory of the current pumped
by a field-driven domain wall for the situation that spin is not
conserved. In particular, we show that a field-driven domain
wall in a metallic ferromagnet generates a charge current that
depends strongly on the ratio � /�G. This charge current
arises from the fact that a time-dependent magnetization gen-
erates a spin current, similar to the spin-pumping mechanism
proposed by Tserkovnyak et al.8 for nanostructures contain-
ing ferromagnetic elements. Since the symmetry between
majority and minority electrons is by definition broken in a
ferromagnet, this spin current necessarily implies a charge
current. In view of this, we prefer to use the term “spin
pumping” also for the case that spin is not fully conserved,
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and defining the spin current as a conserved current is no
longer possible.

The generation of spin and charge currents by a moving
domain wall via electromotive forces is discussed very re-
cently by Barnes and Maekawa.40 We also note here the
work by Ohe et al.,41 who consider the case of the Rashba
model, and the very recent work by Saslow,42 Yang et al.,43

and Tserkovnyak and Mecklenburg.44 In addition to these
recent papers, we mention the much earlier work by Berger,
which discusses the current induced by a domain wall in
terms of an analog of the Josephson effect.45

Barnes and Maekawa40 consider the case that spin is fully
conserved. In this situation, it is convenient to perform a
time- and position-dependent rotation in spin space, such that
the spin quantization axis is locally parallel to the magneti-
zation direction. As a result of spin conservation, the Hamil-
tonian in this rotated frame contains now only time-
independent scalar and exchange potential terms. The
kinetic-energy term of the Hamiltonian, however, will ac-
quire additional contributions that have the form of a cova-
riant derivative. Perturbation theory in these terms then
amounts to performing a gradient expansion in the magneti-
zation direction.17 Hence, the fact that Barnes and Maekawa
consider the case that spin is fully conserved is demonstrated
mathematically by noting that in Eq. �5� of Ref. 40, there are
no time-dependent potential-energy terms. Generalizing this
approach to the case of spin-dependent disorder or spin-orbit
coupling turns out to be difficult. Nevertheless, Kohno and
Shibata were able to determine the Gilbert damping and dis-
sipative spin transfer torques using the above-mentioned
method.46 Since Barnes and Maekawa40 consider the situa-
tion that spin is fully conserved, they are effectively dealing
with the case that �G=�=0. This is because both the Gilbert
damping parameter �G and the dissipative spin transfer
torque parameter � arise from processes in the microscopic
Hamiltonian that do not conserve spin.26–28,30 Hence, for the
case that �G=�=0, our results agree with the results of
Barnes and Maekawa.40

The remainder of this paper is organized as follows. In
Sec. II, we derive a general expression for the electric current
induced by a time-dependent magnetization texture. This
general expression is then evaluated in Sec. III for a simple
model of field-driven domain-wall motion. We end in Sec.
IV with a short discussion and present our conclusions and
outlook.

II. ELECTRIC CURRENT

Quite generally, the expectation value of the charge cur-
rent density, defined by j=−c�H /�A with c the speed of
light, H the Hamiltonian, and A the electromagnetic vector
potential, is given as a functional derivative of the effective
action

�j�x,��	 = c
�Seff

�A�x,��
, �3�

with � the imaginary-time variable that runs from 0 to
� / �kBT�. �Planck’s constant is denoted by � and kBT is the
thermal energy.� First, we assume that spin is conserved,

which means that the Hamiltonian is invariant under rota-
tions in spin space. The part of the effective action for the
magnetization direction that depends on the electromagnetic
vector potential is then given by17

Seff =
 d�
 dx�js,�
z �x,��	Ã�����x,�����	��x,�� , �4�

where a summation over Cartesian indices � ,�� ,��
� �x ,y ,z� is implied throughout this paper. In this expres-
sion,

js,��
� �x,�� =

�2

4mi
��†�x,���������x,��

− �����
†�x,�������x,���

+
�e��
2mc

A���
†�x,������x,�� �5�

is the spin current, given here in terms of the Grassman
coherent state spinor �†= �
↑

* ,
↓
*�. Furthermore, �� are the

Pauli matrices and m is the electron mass. �Note that since
we are, for the moment, considering the situation that spin is
conserved, there are no problems regarding the definition of
the spin current.� The expectation value �¯	 is taken with
respect to the current-carrying collinear state of the ferro-

magnet. Finally, Ã��	� is the vector potential of a magnetic
monopole in spin space �not to be confused with the elec-
tromagnetic vector potential A�x ,��� that obeys
��,��,���Ã�� /�	��=�� and is well known from the path-
integral formulation for spin systems.47 Equation �4� is most
easily understood as arising from the Berry phase picked up
by the spin of the electrons as they drift adiabatically through
a noncollinear magnetization texture.16,17 Variation of this
term with respect to the magnetization direction gives the
reactive spin transfer torque in Eq. �1�.

The expectation value of the spin current is given by

�js,�
z �x,��	 =
 d��
 dx���,��

z �x − x�;� − ���
A���x�,���

�c
.

�6�

The zero-momentum low-frequency part of the response
function ��,��

z �x−x� ;�−���
�js,�
z �x ,��j���x� ,���	0, with

�¯	0 the equilibrium expectation value, is determined by
noting that for the vector potential A�x ,��=−cEe−i
� /
, the
above equation �Eq. �6�� should in the zero-frequency limit
reduce to Ohm’s law �js

z	0=−���↑−�↓�E / �2 �e � �. Using this
result together with Eqs. �3�–�6�, we find, after a Wick rota-
tion �→ it to real time, that

�j�	 = −
�

2�e�V
��↑ − �↓�

�

�t

 dxÃ�����x,t����	���x,t� ,

�7�

with V the volume of the system. We note that the time
derivative of the Berry phase term is also encountered by
Barnes and Maekawa in discussing the electromotive force
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in a ferromagnet.40 Such Berry phase terms are known to
occur in adiabatic quantum pumping.48

We now generalize this result to the situation where
spin is no longer conserved, for example, due to spin-orbit
interactions or spin-dependent impurity scattering. Lineariz-
ing around the collinear state by means of ����	x ,�	y ,
1−�	x

2 /2−�	y
2 /2�, we find that the part of the effective ac-

tion that contains the electromagnetic vector potential reads30

Seff =
 d�
 dx
 d��
 dx�
 d��
 dx�

���	a�x,��Kab�x,x�,x�;�,��,���

· A�x�,����	b�x�,���� , �8�

where a summation over transverse indices a ,b� �x ,y� is
implied. The spin-wave photon interaction vertex

Kab�x,x�,x�;�,��,���

=
�2

8�c
�
†�x,���a
�x,��
†�x�,����b
�x�,���j�x�,���	0,

�9�

given in terms of the exchange splitting �, is also encoun-
tered in a microscopic treatment of spin transfer torques.30

The reactive part of this interaction vertex determines the
reactive spin transfer torque and, via Eqs. �3� and �8�, repro-
duces Eq. �7�. The zero-frequency long-wavelength limit of
the dissipative part of the spin-wave photon interaction ver-
tex determines the dissipative spin transfer torque. �Note that
in this approach, the definition of the spin current does not
enter in determining the spin transfer torques.� Although Eq.
�9� may be evaluated for a given microscopic model within
some approximation scheme,30 we need here only that varia-
tion of the action in Eq. �8� reproduces both the reactive and
dissipative spin torques in Eq. �1�. The final result for the
electric current density is then given by

�j�	 = −
�

2�e�V
��↑ − �↓���
 dx

���x,t�
�t

· ����x,t�

+
�

�t

 dxÃ�����x,t����	���x,t�� . �10�

The above equation is essentially the result of a linear-
response calculation in �� /�t and is the central result of this
paper. We emphasize that the way in which the transport
coefficients �↑ and �↓ and the � parameter enter does not
rely on the specific details of the underlying microscopic
model. Note that the above result reduces to that of Barnes
and Maekawa �Eq. �9� of Ref. 40� if we take �=0.

III. FIELD-DRIVEN DOMAIN-WALL MOTION

To bring out the qualitative physics, we evaluate the result
in Eq. �10� using a simple model for field-driven domain-
wall motion in a magnetic wire of length L. In polar coordi-
nates � and 
, defined by �= �sin � cos 
 , sin � sin 
 ,
cos ��, we choose the micromagnetic energy functional

EMM��,
� = �s
 dx� J

2
�����2 + sin2 ���
�2�

+
K�

2
sin2 � sin2 
 −

Kz

2
cos2 � + gB cos �� ,

�11�

where J is the spin stiffness and K� and Kz are anisotropy
constants larger than zero. The external field in the negative
z direction leads to an energy splitting 2gB�0. We solve the
equation of motion in Eq. �1� within the variational
ansatz18,49

��x,t� = �0�x,t� 
 2 tan−1�e−�rdw�t�−x�/�� , �12�

together with 
�x , t�=
0�t�, that describes a rigid domain
wall with width �=�J /Kz at position rdw�t�. The chirality of
the domain wall is determined by the angle 
0�t� and the
magnetization direction is assumed to depend only on x,
which is taken in the long direction of the wire.

The equations of motion for the variational parameters are
given by18,29,49


̇0�t� + �G� ṙdw�t�
�

� =
gB

�
,

� ṙdw�t�
�

� − �G
̇0�t� =
K�

2�
sin 2
0�t� . �13�

Note that the velocity vs is absent from these equations since
we consider the generation of electric current by a field-
driven domain wall. The above equations provide a descrip-
tion of the field-driven domain wall and, in particular, of
Walker breakdown.49 That is, for an external field smaller
than the Walker breakdown field BW
�GK� / �2g�, the do-
main wall moves with a constant velocity. For fields
B�BW, the domain wall undergoes oscillatory motion,
which initially makes the average velocity smaller.

Solving the equations of motion results in


̄̇0 =
1

�1 + �G
2 �

Re���gB

�
�2

− ��GK�

2�
�2� ,

ṙdw

�
=

gB

�G�
−


̇
¯

0

�G
, �14�

where the ¯ indicates taking the time-averaged value. In-
serting the variational ansatz into Eq. �10� leads in first in-
stance to

�jx	 = −
�

�e�L
��↑ − �↓���ṙdw�t�

�
+ 
̇0�t�� , �15�

which, using Eq. �14�, becomes
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�jx	 = −
�

�e�L
��↑ − �↓���gB

�G�
+ �1 −

�

�G

1 + �G
2 �

�Re���gB

�
�2

− ��GK�

2�
�2�� . �16�

As shown in Fig. 1, this result depends strongly on the ratio
� /�G. In particular, for ���G, a local maximum appears in
the current as a function of magnetic field. Since �G is de-
termined independently from ferromagnetic resonance ex-
periments, measurement of the slope of the current for small
magnetic fields enables experimental determination of �. We
note that within the present approximation, the current does
not depend on the domain-wall width �. Furthermore, in the
limit of zero Gilbert damping and �, the dissipationless
limit, we have that the current density is equal to �jx	
= ��↓−�↑�gB / ��e�L�. This is the result of Barnes and
Maekawa40 that corresponds to the situation that �G=�=0,
as discussed in the Introduction. We point out that, within
our approximation for the description of domain-wall mo-
tion, setting �=�G in Eq. �16� gives the same result as using
Eqs. �13� and �15� with �G=�=0. That the situation
discussed by Barnes and Maekawa40 is indeed that of
�G=�=0 is seen by comparing their result �Eqs. �8� and �9�
of Ref. 40 and the paragraph following Eq. �9�� with our
results in Eqs. �10� and �13�.

IV. DISCUSSION AND CONCLUSIONS

Our result in Eq. �16� is a simple expression for the
pumped current as a function of magnetic field for a field-

driven domain wall. A possible disadvantage in using Eq.
�16�, however, is that in deriving this result, we assumed a
specific model to describe the motion of the domain wall.
This model does, in first instance, not include extrinsic pin-
ning and nonzero temperature. Both extrinsic pinning18 and
nonzero temperature29 can be included in the rigid-domain-
wall description. However, it is in some circumstances per-
haps more convenient to directly use the result in Eq. �15�
together with the experimental determination of ṙdw�t�. Since
the only way in which the parameter � enters this equation is
as a prefactor of ṙdw�t�, this should be sufficient to determine
its value from the experiment. We note, however, that the
precision with which the ratio � /�G can be determined de-
pends on how accurately the magnetization dynamics and, in
particular, the motion of the domain wall are imaged experi-
mentally. With respect to this, we note that the various curves
in Fig. 1 are qualitatively different for different values of
� /�G. In particular, the results for � /�G�1 and � /�G�1
differ substantially and could most likely be experimentally
distinguished. In view of this discussion, future research will
in part be directed toward evaluating Eq. �10� for more com-
plicated models of field-driven domain-wall motion, which
will benefit the experimental determination of � /�G.

A typical current density is estimated as follows. For the
experiments of Beach et al.,50 we have that L�20 �m and
��20 nm. The domain velocities measured in this experi-
ment are ṙdw�40–100 m /s. Taking as a typical conductivity
�↑�106 	−1 m−1, we find, using Eq. �15� with ��0.01,
typical electric current densities of the order of �jx	
�103–104 A m−2. This result depends somewhat on the po-
larization of the electric current in the ferromagnetic metal,
which we have taken equal to 50%–100% in this rough es-
timate. Although much smaller than typical current densities
required to move the domain wall via spin transfer torques,
electrical current densities of this order appear to be detect-
able experimentally.

In conclusion, we have presented a theory of spin pump-
ing without spin conservation and, in particular, proposed a
way to gain experimental access to the parameter � /�G that
is of great importance for the physics of current-driven
domain-wall motion. We note that the mechanism for current
generation discussed in this paper is quite distinct from the
generation of eddy currents by a moving magnetic domain.51

In addition to improving upon the model used for describing
domain-wall motion, we intend to investigate in future work
whether the damping terms in Eq. �1� or possible higher-
order terms in frequency and momentum52 have a natural
interpretation in terms of spin pumping, similar to the spin-
pumping-enhanced Gilbert damping in single-domain
ferromagnets.8
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