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We investigate short range order in liquid and supercooled liquid Fe and Fe-based metallic glass using ab
initio simulation methods. We analyze the data to quantify the degree of local icosahedral and polytetrahedral
order and to understand the role of alloying in controlling the degree of geometric frustration. Comparing
elemental Fe to Cu �P. Ganesh and M. Widom, Phys. Rev. B 74, 134205 �2006�� we find that the degree of
icosahedral order is greater in Fe than in Cu, possibly because icosahedral disclination line defects are more
easily incorporated into bcc environments than fcc. In Fe-based metallic glass-forming alloys �FeB and FeZrB�
we find that introducing small concentrations of small B atoms and large Zr atoms controls the frustration of
local icosahedral order.
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I. INTRODUCTION

As noted by Frank,1 the local icosahedral clustering of 12
atoms about a sphere is energetically preferred because it is
made up entirely of four-atom tetrahedra, the densest-packed
cluster possible. However, local icosahedral order cannot be
propagated throughout space without introducing defects.
Frustration of packing icosahedra is relieved in a curved
space, where a perfect 12-coordinated icosahedral packing
exists.2–4 We adopt this structure as an ideal reference against
which actual configurations will be compared.

Disclination line defects of type ±72° may be introduced
into this icosahedral crystal and thereby control the curva-
ture. In order to “flatten” the structure and embed it in ordi-
nary three dimensional space an excess of −72° disclinations
is needed, and these cause increased coordination numbers of
14, 15 or 16. Large atoms, if present, would naturally assume
high coordination numbers and aid in the formation of a
disclination line network. Similarly, smaller atoms would
naturally assume low coordination numbers of 8, 9, or 10,
and have positive disclinations attached to them, increasing
the frustration. For a particular coordination number, it may
be possible to construct a cluster, known as a Kasper poly-
hedron �see Sec. III C�, made entirely of tetrahedrons.

Honeycutt and Andersen5 introduced a method to count
the number of tetrahedra surrounding an interatomic bond.
This number is 5 for icosahedral order with no disclination, 6
for a −72° disclination and 4 for a +72° disclination. Stein-
hardt, Nelson and Ronchetti6 introduced the orientational or-

der parameter Ŵ6 to demonstrate short range icosahedral or-
der. We employ both methods to analyze icosahedral order in
supercooled metals and metal alloys, in addition to conven-
tional radial distribution functions, structure factors and
Voronoi analysis.

Many simulations have been performed on pure elemental
metals and metal alloys using model potentials,7–10 but do
not necessarily produce reliable structures owing to their im-
perfect description of interatomic interactions. First prin-
ciples �ab initio� calculations achieve the most realistic pos-
sible structures, unhindered by the intrinsic inaccuracy of
phenomenological potentials and with the ability to accu-
rately capture the chemical natures of different elements and

alloys. The tradeoff for increased accuracy is a decrease in
the system sizes one can study, so only local order can be
observed, not long range. Also runs are limited to short time
scales. Early ab initio studies on liquid copper11–13 and iron14

were not analyzed from the perspective of icosahedral order-
ing. Recent ab initio studies on Ni and Zr15,16 find that the
degree of icosahedral ordering increases with supercooling in
Ni, while in Zr bcc is more favored. Studies on binary metal
alloys by Jakse et al.17,18 and by Sheng et al.19 quantify local
icosahedral order in the alloys. We previously20 investigated
icosahedral order in liquid and supercooled Cu.

Elemental metals crystallize so easily that they can hardly
be made amorphous at any quench rate. Alloying can im-
prove the ease of glass formation. For some special alloys, a
bulk amorphous state can be reached by slow cooling. Pure
elemental Fe is a poor glass former, but Fe-based compounds
like FeB and especially FeZrB, show improved glass form-
ability. We augment our molecular-dynamics simulation with
another algorithm called “tempering” or “replica exchange
method” �REM�21,22 for fast equilibration at low tempera-
tures.

In comparison to liquid and supercooled liquid copper20

which show only weak icosahedral order and very little tem-
perature variation, Fe showed a monotonic increase in icosa-
hedral order, which became very pronounced when super-
cooled. Analysis of quenched Fe revealed a natural way of
introducing fivefold coordinated bonds plus a single −72°
disclination line segment into an otherwise perfect bcc envi-
ronment, without disturbing the surrounding structure. Addi-
tion of B to Fe decreased the icosahedral order, due to the
positive disclinations centered on the smaller B atom which
increased frustration. Further inclusion of larger Zr atoms to
form FeZrB found an enhanced icosahedral order compared
to FeB. This could possibly be explained by formation of
negative disclination line defects23 anchored on the larger Zr
atoms, which eases the frustration of icosahedral order on the
Fe atoms.

At high temperatures all of our measured structural prop-
erties of liquid Cu20 and liquid Fe resembled each other, and
also resembled a maximally random jammed24 hard sphere
configuration. This suggests that a nearly universal structure
exists for systems whose energetics are dominated by repul-
sive central forces.
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Section II describes our combined method of Monte-
Carlo and first principles MD, that we refer to as “tempering
MD” and discusses other simulation details. Section III pre-
sents our results on pure Fe while �Sec. IV� compares this
with FeB and FeZrB alloys.

II. TEMPERING MOLECULAR DYNAMICS (TMD)
AND OTHER SIMULATION DETAILS

One reason alloys form glass more easily is that chemical
identity introduces a new configurational degree of freedom
that evolves slowly.25,26 Unfortunately, this makes simulation
more difficult. It is especially difficult to equilibrate the sys-
tem at very low temperatures, because the probability to
cross an energy barrier drops, trapping it in particular con-
figurations. For this reason we use a Monte Carlo method,
known as tempering or replica exchange21,22 to augment our
first-principles MD, allowing us to sample the configura-
tional space more efficiently than conventional MD.

In the canonical ensemble, energy fluctuates at fixed tem-
perature. A given configuration C with energy E can occur at
any temperature T with probability proportional to e−�E, ��
=1 /kT�. Now consider a pair of configurations, C1 and C2 of
energy E1 and E2 occurring in simulations at temperatures T1
and T2. We can take C1 as a member of the ensemble at T2,
and C2 as a member of the ensemble at T1, with a probability

P = e−��2−�1��E1−E2� �1�

without disturbing the temperature-dependent probability
distributions of energy �or any other equilibrium property�.
Because each run remains in equilibrium at all times even
though its temperature changes, we effectively simulate a
vanishingly low quench rate.

In practice we perform several MD simulations at tem-
peratures separated by 100 K. We use ultrasoft
pseudopotentials,27 using GGA exchange-correlation func-
tionals, as provided with VASP28 to perform the MD simu-
lation. A “medium” precision setting as described in VASP
has been used. This sets the plane-wave cutoff energy to
237.510 eV. All calculations are “�” point calculations �a
single “k” point�. All runs use an MD time step of 2 fs, and
reach total simulated time of order 1.5–1.8 ps �see Table I�
with a total of N=100 atoms. A larger time step of 2 fs does
not affect the simulated liquid structure as is evident from
our resulting liquid radial distribution function �Sec. III A�.
Every 10 MD steps we compare the energies of configura-
tions at adjacent temperatures and swap them with the above
probability. Eventually, configurations initially frozen at low
temperature reach a higher temperature. The simulations then
can carry the structure over energy barriers, after which the

temperature can again drop. This comparison and swapping
is done using a Perl script. The average swap rate is 0.43 for
liquid Fe, 0.37 for FeB and 0.42 for FeZrB, indicating that
parallel tempering is more efficient in sampling the phase
space than simulated annealing. The convergence of the elec-
tronic steps is affected due to the frequent swapping. Every
10 MD steps when the ab initio simulation is restarted at all
the temperatures, the convergence of the electronic degrees
of freedom is longer for at least the first ionic step. This
makes frequent swapping slightly inefficient in comparison
to a single long first-principles MD. We suspect that this
slow convergence may be due to the tightly bound d-shell
electrons of Fe, since such slowing down of the electronic
convergence was not observed in simulations of Cu or Al,
but was observed in those of W.

In an effort to explore the structures of compounds with
differing glass-forming ability we compare pure elemental
Iron and two Iron-based glass-forming alloys. Tempering
MD requires that we perform simulations at a constant den-
sity for all the temperatures, but we have no rigorous means
of predicting the density at high temperature. For pure liquid
Iron, the density is known experimentally,29 and we use this
value. For FeB and FeZrB, we took a high temperature liquid
structure and quenched it, relaxing positions and cell lattice
parameters, to predict a low temperature density. We then
decreased the density of the relaxed structure by 6% to ac-
count for volume expansion, to arrive at the densities used in
our liquid simulations.

The initial configurations at the twelve temperatures of
FeZrB came from a previous tempering run at nine tempera-
tures �700–1500 K� of 2 ps duration, which in turn came
from a previous tempering run at six temperatures
�1000–1500 K� of 2 ps duration. Short preliminary anneal-
ing was done at each newly introduced temperature before
the beginning of a new tempering run. For FeB tempering,
the starting configurations came from independent configu-
rations of a long FeB MD run of about 3.3 ps at 1500 K with
short preliminary annealing at the nine different tempera-
tures.

Because of the efficient sampling of our tempering MD
method, the structure of pure Fe partially crystallizes at low
temperatures after about 1 ps. In the following discussion of
our T=800 K sample we will refer to different structural
features before and after crystallization. We also performed
several long �2.0 ps� conventional first-principles MD at T
=800 K yielding results similar to the results of tempering
MD prior to crystallization.

For all runs we employed spin polarization, reasoning that
local magnetic moments exist even above the Curie point.
These local moments have a significant influence on the
short-range order because ferromagnetic iron prefers a longer
bond length than paramagnetic iron.30 Of course, the ferro-
magnetic state of the liquid implies improper long-range cor-
relations. Unfortunately, since our forces are calculated for
electronic ground states, we cannot rigorously model the true
paramagnetic state of liquid iron and iron-based alloys with
these methods.

TABLE I. Details of tempering MD runs.

Chemical species Temperatures �K� Density �Å−3� Time �ps�

Fe100 800–1900 0.0756 1.5

Fe80B20 700–1500 0.0814 1.8

Fe70Zr10B20 700–1800 0.0787 1.8
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III. PURE FE

A. Radial distribution function g„r…

The radial distribution function, g�r�, is proportional to
the density of atoms at a distance r from another atom and is
calculated here by forming a histogram of bond lengths. We
use the repeated image method to obtain the bond lengths
greater than half the box size and anticipate g�r� in this range
may be influenced by finite size effects. Further, we smooth
out the histogram with a gaussian of standard deviation
0.05 Å.

To evaluate the role of magnetism, Fig. 1 illustrates the
radial distribution functions for liquid Fe simulated at T
=1800 K, just below melting �Tm=1833 K�. Evidently, the
simulation with magnetism yields good agreement in the
position and height of the first peak in g�r� with experimental
x-ray g�r�,29 while neglect of magnetic moments results in
near neighbor bonds that are too short and too weak. How-
ever, magnetism overestimates the strength of long-range
correlations beyond the nearest-neighbor peak, while ne-
glecting magnetism yields reasonably accurate long-range
g�r�. Nevertheless, for the present study of local order, it is
necessary to make spin polarized calculations to get the short
range correlations and hence the local order correct.
Strangely, a recent experimental neutron g�r�31 has a shorter
and broader first peak compared to both our magnetic g�r�
and to the g�r� from the prior x-ray diffraction experiment.29

The positions of the different maxima and minima in our
simulated magnetic g�r� compare well with both the experi-
ments. The position of the first peak in our magnetic g�r� is
shifted by 0.05 Å to the left of the neutron first peak. The
x-ray experiment doesn’t have enough data points around the
first maximum to determine the peak position accurately.

We calculate the coordination number by counting the
number of atoms within a cutoff distance from a central
atom. We choose the cutoff distance �Rcut� at the first mini-
mum of g�r�. For pure Fe the minimum is at Rcut=3.5 Å. The
precise location of the minimum is difficult to locate, and its
variation with temperature is smaller than the error in locat-
ing its position, so that we do not change the value of Rcut
with temperature. With this value of Rcut we find an average

coordination number �Nc� of 13.2 which is nearly indepen-
dent of temperature �Nc changes from 13.1 at high tempera-
ture to 13.3 with supercooling�.

B. Liquid structure factor S„q…

The liquid structure factor S�q� is related to the radial
distribution function g�r� of a liquid with density � by

S�q� = 1 + 4���
0

�

�g�r� − 1�
sin�qr�

qr
r2dr . �2�

One needs the radial distribution function up to large values
of r to get a good S�q�. In our first principles simulation, we
are restricted to small values of r, due to our small system
sizes, so we need a method to get S�q� from our limited g�r�
function. Baxter developed a method32,33 to extend g�r� be-
yond the size of the simulation cell. The method exploits the
short range nature of the direct correlation function c�r�,
which has a range similar to the interatomic interactions,34 as
opposed to g�r� which is long ranged.

Assuming that c�r� vanishes beyond a certain cutoff dis-
tance rc, we solve the Baxter’s equations iteratively to obtain
the full direct correlation function for 0�r�rc. From c�r�
we calculate the structure factor S�q� by a standard Fourier
transform. The S�q� showed good convergence with different
choices of rc. A choice of rc=5 Å seemed appropriate be-
cause it was one half of our smallest simulation cell edge
length. Even though in metals there are long range oscilla-
tory Friedel oscillations, our ability to truncate c�r� at rc

=5 Å shows that these are weak compared with short range
interactions. An application of this method to obtain S�q� of
Cu20 showed excellent agreement with the experimental
S�q�.

The simulated S�q� for pure Fe at T=1800 K �see Fig. 2�
is compared to recent neutron scattering experiments at T
=1830 K. Even though the positions of the different peaks
compare very well, there is serious discrepancy in their
heights. Especially, the height of the first peak of our simu-
lated S�q� is higher than that of the experiments. This dis-
crepancy is expected because we include magnetism, which
gives accurate short-range correlations while overestimating
the long-range ones �see Fig. 1�. But the cause of the dis-
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FIG. 1. �Color online� Radial distribution function of pure el-
emental liquid Fe. Simulations �magnetic and nonmagnetic� are run
at T=1800 K, compared with x-ray experiments at T=1833 K �Ref.
29� and neutron scattering experiments at 1830 K �Ref. 31�.
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FIG. 2. �Color online� Comparison of simulated and experimen-
tal S�q� near the melting temperature of Fe.
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crepancy is not entirely clear since a comparison of the simu-
lated structure factor of Ni15 �done without including mag-
netism� with neutron scattering experiments31 shows similar
discrepancies between their S�q�’s.

A sum rule can be obtained for S�q�.35,36 By inverting the
Fourier transform of Eq. �2� and then taking the r→0 limit,
one gets

I�Q� � �
0

Q

q2�S�q� − 1�dq → − 2�2� �3�

in the limit Q→�. Further, the integral is supposed to oscil-
late with Q about the limiting value as Q→�. Using our
S�q� we observed that the integral is consistent with the sum
rule and oscillates nicely about the limiting value for Q
�3 Å−1, while using the S�q� from the neutron scattering
experiments,31 we observe a positive drift in the mean value
about which the integral oscillates. Such a drift could indi-
cate the presence of spurious background corrections. The
S�q� from the x-ray experiment29 seems to be in good agree-
ment with the ideal sum rule.

As we lower the temperature, the peak heights in S�q�
grow, indicating an increase in short range order with super-
cooling. We also observe a slight shoulder in the second peak
of the S�q� �Fig. 2�, which grows with supercooling. The
split second peak positions are in the ratios of 20:12 and
24:12 with respect to the first peak positions, just what one
would ideally observe if there was icosahedral order.23,37

C. Bond orientation order parameter Ŵ6

Steinhardt et al.6 introduced the Ŵl parameters as a mea-
sure of the local orientational order in liquids and under-

cooled liquids. To calculate Ŵl, the orientations of bonds
from an atom to its neighboring atoms are projected onto a
basis of spherical harmonics. Rotationally invariant combi-
nations of coefficients are then averaged over many atoms in
an ensemble of configurations. The resulting measures of
local orientational order can be used as order parameters to
characterize the liquid structures. For an ideal icosahedral

cluster, l=6 is the minimum value of l for which Ŵ6�0.

Table II enumerates Ŵ6 values for different ideal clusters.
The ideal icosahedral value of Ŵ6 is far from other clusters,
making it a good icosahedral order indicator.

Kasper polyhedra3,38,39 are polyhedra which minimize the
number of disclinations for a particular coordination number.
The series Z8-Z16 in Table II are such Kasper polyhedra but
with the added constraint that the surface atoms be triangu-
lated with equilateral triangles. The icosahedron with a coor-
dination of 12 is one such Kasper polyhedron with no discli-
nations. Adding disclinations to the icosahedron, one finds
that each disclination increases the Ŵ6 value by a similar
amount irrespective of its sign.

As before, we choose the cutoff distance to specify near
neighbors as Rcut=3.5 Å. For pure Fe at high temperatures,
Ŵ6 resembles that of high temperature liquid Cu,20 which in
turn resembles the maximally random jammed configuration
of hard spheres24 �Fig. 3�. On this basis we suggest that the
MRJ configuration represents an idealized structure that is
universal for strongly repulsive interactions. All pure metal-
lic systems might approach this ideal structure at sufficiently
high temperature.

However, as temperature drops the Ŵ6 distribution shifts

strongly to the left, with a pronounced increase in Ŵ6
	−0.1 �Fig. 4�. This indicates a rather high concentration of
nearly icosahedral clusters in supercooled liquid Fe. Even at
very low percentages of supercooling of Cu ��3%20� and Fe
��2%, not shown�, Fe shows a clear enhancement in the

negative Ŵ6 distribution as compared to Cu.

TABLE II. Ŵ6 values for a few clusters. The Z8-Z16 series are
Kasper polyhedra including the perfect icosahedron �Z12�.

Cluster No. of atoms Voronoi type Ŵ6

hcp 12 �0,12,0� −0.012

fcc 12 �0,12,0� −0.013

bcc 14 �0,6,0,8� +0.013

Z8 8 �0,4,4� +0.010

Z9 9 �0,3,6� −0.038

Z10 10 �0,2,8� −0.093

Z12 12 �0,0,12� −0.169

Z14 14 �0,0,12,2� −0.093

Z15 15 �0,0,12,3� −0.037

Z16 16 �0,0,12,4� +0.013
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FIG. 3. �Color online� Distribution of Ŵ6 in liquid and super-
cooled liquid Fe and Cu. Fe shows more pronounced icosahedral
order than Cu with supercooling.
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FIG. 4. �Color online� Distribution of Ŵ6 around Fe atoms, in
supercooled Fe, FeB, and FeZrB at T=800 K.

P. GANESH AND M. WIDOM PHYSICAL REVIEW B 77, 014205 �2008�

014205-4



We checked the Ŵ6 distribution of a nonmagnetic simula-
tion to see if it is strongly influenced by magnetism, and
found a nearly identical result. In particular, we still found a
strong enhancement of the nearly icosahedral clusters rela-
tive to liquid Cu or pure Fe at high temperature.

D. Voronoi analysis

To explain the origin of this low Ŵ6 peak in pure Fe, we
performed a Voronoi analysis40 of the liquid before and dur-
ing crystallization. A Voronoi polyhedron is described by in-
dices �F3 ,F4 ,F5 , . . . � where Fi denotes the number of faces
with i edges. For example �0,0 ,12� denotes an icosahedron,
while �0,0 ,12,2� denotes a 14-coordinated �Z14� atom, with
12 fivefold bonds and 2 sixfold bonds. The �0,0 ,12,2� is a
characteristic tcp �tetragonal close-packed� structure of the
Frank-Kasper type, with a −72° disclination line running
through an otherwise perfect icosahedron. In a body-centered
cubic crystal all atoms are of Voronoi type �0,6 ,0 ,8�, which
is an alternate 14-coordinated structure.

Supercooled liquid Fe at T=800 K �Table III� contains a
high fraction of icosahedral atoms of type �0,0 ,12� and
�0,0 ,12,2�. Those with Voronoi type �0,2 ,10, �0,1	� and

�0,1 ,10,2� also have very negative Ŵ6, so that they can be
thought of as related to the icosahedron. Together, they ex-

plain the enhanced negative Ŵ6 distribution. Supercooled Cu
�which shows weak icosahedral order� and high temperature
Fe �T=1900 K�, in contrast contain about 1.2% of �0,0 ,12�
and no �0,0 ,12,2�. The MRJ configuration contains 1.2%
�0,0 ,12� but no �0,0 ,12,2�.

Strikingly, the icosahedral clusters tend to join in pairs
and strings of three atoms in length. An instantaneous
quench of a particular liquid structure at 800 K which had a
high fraction of icosahedral units, using conjugate gradient
relaxation of the atomic coordinates and lattice parameters,
shows a clear enhancement of the icosahedral and other
closely related units. The strings of icosahedral units found

in the supercooled liquid connected to form networks. A
quench starting from a different instantaneous supercooled
liquid structure at 800 K containing fewer icosahedral struc-
tures resulted in rapid crystallization. This indicates that the
presence of icosahedrons may inhibit crystallization. Similar
quenches, starting from instantaneous liquid structures at
higher temperatures, also resulted in relaxed structures with

some of them showing a high negative Ŵ6 distribution com-
parable to the distribution at 800 K. The quenches that par-
tially crystallized showed a high fraction of bcc �0,6 ,0 ,8�’s
��40% � and were always accompanied by a high fraction of
�0,5 ,4 ,4�’s ��25% �, which are otherwise absent or very
low in the liquid.

Under TMD the supercooled liquid at T=800 K eventu-

ally crystallizes, with the Ŵ6 distribution peaked strongly
around zero consistent with the value for ordinary crystalline
clusters, but retaining a subset of atoms with nearly icosahe-

dral Ŵ6�−0.14. Not surprisingly, these were precisely the
atoms that had Voronoi type �0,0 ,12� prior to crystallization.

The Z14 �0,0 ,12,2� atoms �with Ŵ6�−0.093� were mutual
near neighbors, linked along their sixfold �−72° � bonds, and
also were neighbors of the nearly icosahedral atoms.

We quenched this sample by conjugate gradient relaxation
of atomic coordinates and lattice parameters. After relaxation
we found 56 atoms had bcc Voronoi type �0,6 ,0 ,8�. Six
icosahedral atoms became 12-coordinated �0,4 ,8� structures
surrounding the bond connecting the two �0,0 ,12,2� discli-
nated icosahedral atoms, which retained their type. The re-
maining atoms served to link the cluster of icosahedron-
related atoms to the surrounding defect-free bcc crystal.

The icosahedron-related structure thus forms a point de-
fect in an otherwise perfect bcc crystal. A simple way to
create this defect is to take two consecutive triangles sur-
rounding a near-neighbor bond along the bcc �1,1 ,1� direc-
tion �see Fig. 5�, displace them into the perpendicular bisect-
ing plane and rotate by 30°. The atoms along the �1,1 ,1�
bond are now connected to each other by a sixfold bond

TABLE III. Voronoi statistics �% of Fe atoms� for typical Fe-centered clusters in Fe, FeB, and FeZrB.
Edges smaller than 0.33 Å and faces smaller than 0.3 Å2 have been treated as a single vertex.

Fe FeB FeZrB

Supercooled
liquid

Defective
crystal

Supercooled
liquid

Supercooled
liquid

Voronoi type 800 K Relaxed 800 K Relaxed 800 K 800 K

�0,0 ,12� 8.3 11.0 5.0 0.0 0.6 1.4

�0,0 ,12,2� 2.1 3.6 2.0 2.0 0.5 0.3

�0,2 ,10, �0,1	� 6.2 6.8 2.0 0.0 4.4 7.1

�0,1 ,10,2� 3.6 5.4 3.0 0.0 2.1 3.1

�0,4 ,8 , �0,1 ,2 ,3	� 7.9 4.8 10.0 6.0 8.6 9.4

�0,3 ,8 , �0,1 ,2 ,3	� 6.8 6.0 12.0 0.0 4.3 8.3

�0,2 ,8 , �1,2 ,3 ,4	� 3.0 3.0 3.0 0.0 0.0 0.0

�0,3 ,6 ,4� 2.1 2.2 2.0 6.0 0.0 0.0

�0,5 ,4 ,4� 1.5 1.2 3.0 18.0 0.0 0.0

�0,6 ,0 ,8� 0.0 0.4 0.0 56.0 0.0 0.0
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�−72° disclination� and are connected to the six displaced
atoms by fivefold bonds. This scheme to transform a bcc
rhombic dodecahedron into a Frank-Kasper Z14 polyhedron
was described in Refs. 41 and 42 in an attempt to explain
certain diffraction anamolies in iron and vanadium-based al-
loys under ion irradiation.

Manually removing the defect, by reversing the above
procedure then relaxing, yields a perfect bcc crystal with all
atoms in a �0,6 ,0 ,8� Voronoi environment. We also embed-
ded the point defect in an otherwise perfect bcc crystal with
128 atoms in a cubic box. Relaxation showed that the defect
was stable. The energy of the defect was 6.18 eV and the
fractional volume increase was 0.013.

Since tungsten, like iron, crystallizes in bcc, we per-
formed a separate first-principles simulation of liquid tung-
sten. After supercooling by 13% to T=3200 K, we found the

Ŵ6 histogram resembled that of Fe at 1600 K �which is 15%
supercooled�. A Voronoi analysis revealed a similar percent-
age of �0,0 ,12�’s and �0,0 ,12,2�’s in both these elemental
bcc-forming metals. Hence we believe the relationship be-
tween bcc and icosahedral structures may be linked to our
observed high fraction of icosahedra in liquid Fe as com-
pared to Cu. This may also explain the reason why we are
able to supercool bcc Fe more deeply than fcc Cu in our
simulations.

We also included an icosahedron point defect inside an
otherwise perfect fcc crystal of Cu, with 256 atoms in a cubic
box. Relaxation showed that the defect was stable. The en-
ergy cost of the defect was 4.69 eV and the fractional vol-
ume increase was 0.012. Even though this fcc defect cost less
energy than the point defect in bcc, and also needs little
rearrangement of atoms as reflected by the slightly lower
fractional density change, we do not see a significant icosa-
hedral order in liquid Cu, when compared to liquid Fe. This
could be because the number of icosahedrons that a single
Z14 disclination can stabilize �up to six� is greater than one.
So even an equal number of the two different defects in bcc
and fcc would result in more icosahedral order in bcc than in
fcc.

E. Honeycutt and Andersen analysis

Honeycutt and Andersen5 introduced a useful assessment
of local structure surrounding interatomic bonds. We employ

a simplified form of their analysis, counting the number of
common neighbors shared by a pair of near-neighbor atoms.
This identifies the number of atoms surrounding the near-
neighbor bond and usually equals the number of edge-
sharing tetrahedra whose common edge is the near-neighbor
bond. We assign a set of three indices to each bond. The first
index is 1 if the root pair is bonded �separation less than or
equal to Rcut�. The second index is the number of near-
neighbor atoms common to the root pair, and the third index
gives the number of near-neighbor bonds between these
common neighbors. We take the same value of Rcut=3.5 Å as
mentioned before. Note that the Honeycutt and Andersen
fractions depend sensitively on Rcut, making precise quanti-
tative comparisons difficult.

In general, 142’s are characteristic of close packed struc-
tures �fcc and hcp� and 143’s are characteristic of distorted
icosahedra.43 They can also be considered as +72°
disclinations.2–4 Likewise, 15’s are characteristic of icosahe-
dra, with 155’s characterizing perfect icosahedra while 154’s
and 143’s characterize distorted ones. 16’s indicate −72° dis-
clinations. 166’s and 144’s are also characteristic of bcc.

A Honeycutt and Andersen analysis for pure Fe, with an
Rcut=3.5 Å �Fig. 6�, showed that with supercooling the frac-
tion of 15 bonds rises from 0.46 at T=1900 K to 0.59 at T
=800 K in the liquid before crystallization. The fraction of
155’s �characteristic of perfect icosahedra� was always larger
than 154’s �characteristic of distorted icosahedra�, and
seemed to be steeply increasing with supercooling as op-
posed to 154’s, which were relatively flat. The fraction of 14
bonds drop from 0.32 to 0.30, with the icosahedral 143’s
being always higher than the cubic 142’s. The 144’s, which
are characteristic of bcc remain nearly flat, even though the
166’s show a slight increase. The ease of embedding a Z14
disclination in bcc Fe �see Sec. III D� might explain the
slight increase in the 166’s.

IV. Fe-B AND Fe-Zr-B

A. Radial distribution function g„r…

Figure 7 shows the pair correlation functions of super-
cooled FeZrB at T=800 K. From the heights of the first
peaks, we see that the strongest bonds form between the
metalloid �B� and the metal �Fe or Zr�. The relative bond
lengths reveal, as expected, that B behaves as a small atom,

FIG. 5. �Color online� Fragment of BCC crystal illustrating a
central bond in the �1,1 ,1� �vertical� direction, surrounded by two
equilateral triangles rotated 60° from each other and displaced on
either side of the midplane. Balls and sticks follow ZomeTool con-
vention: Balls are icosahedral, yellow sticks are threefold, and blue
sticks are twofold bonds.
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FIG. 6. �Color online� Honeycutt-Andersen analysis for pure Fe
shows a clear increase in fivefold bonds with supercooling.
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Fe is medium sized and Zr is large. Comparing simulations
of FeZrB to pure Fe, we find that gFeFe is reduced by alloying
with B or ZrB, because Fe prefers to associate with B or Zr
rather than with Fe.

To calculate the coordination number, define N
� as the
average number of atoms of type � around an atom of type

. We set Rcut at the first minima of the partial radial distri-
bution functions �Fig. 7�. We list the partial coordination
numbers of FeB in Table. IV and FeZrB in Table V �aver-
aged over all the temperatures since the temperature depen-
dence is very weak and nonmonotonic�. The average value of
NFeFe decreases with alloying, due to decrease in the concen-
tration of Fe and the preference to bind with B and Zr. Zr,
being a large atom, has a larger coordination number. Also
note that B and Zr favor each other more than themselves.
We do find some B-B pairs in the liquid state.

B. Liquid structure factor S„q…

Figure 8 shows the Faber-Ziman44 partial structure factors
of FeB at T=800 K, defined as

S
��q� = 1 + 4���
0

�

�g
��r� − 1�
sin�qr�

qr
dr . �4�

The positions of the first and second peaks in partial SFeFe�q�
is in very good agreement with the experimental results for
amorphous FeB.45 Also, at the position of the splitting of the
second peak in SFeFe�q�, as observed in the experiments, we
observe a slight shoulder. Similarly, the positions of the dif-
ferent peaks in SFeB�q� and SBB�q� are in agreement with the
experiments.

For FeB, the q→0 limit of SFeFe�q� is comparable to the
experimental value. The q→0 limit in the other two partials
differ from the experiment, SBB�q� more seriously than
SFeB�q�. We think that this discrepancy in the long wave-
length regime is due to the very low density of B in our
system which requires long times for equilibration of the
alloys, and also leads to poor statistics. Nevertheless, the
excellent agreement in the positions of the different peaks in
the partial structure factors shows that we have reasonably
good representative structures of FeB at T=800 K. Partial
structure factors or partial pair distribution functions are not
available experimentally to compare with FeZrB simulations.

C. Bond orientation order parameter Ŵ6

To define the Ŵ6 distribution in an alloy, we concentrate
on central atoms of some particular species �e.g., Fe� but
consider the neighboring atoms of all species. We chose the
near-neighbor cutoff distances as before. Compare the Fe-

based Ŵ6 distributions at their supercooled temperatures in

Fig. 4. The origin of high negative Ŵ6 values for pure Fe was
previously explained in Sec. III D. Replacing a few medium
sized Fe atoms with smaller B atoms causes negative discli-
nation lines to concentrate on Fe, leading to a drop in the

TABLE IV. Average coordination number in FeB. Rcut values
are in angstrom units.

FeFe FeB BFe BB

Rcut 3.4 3.0 3.0 2.3

N
� 12.0 2.2 8.9 0.4

TABLE V. Average coordination number in FeZrB. Rcut values
are in angstrom units.

FeFe FeZr FeB ZrFe ZrZr ZrB BFe BZr BB

Rcut 3.4 3.8 3.0 3.8 4.0 3.3 3.0 3.3 2.4

N
� 9.5 2.0 2.0 14.0 0.9 2.8 6.8 1.4 0.4
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FIG. 7. �Color online� Partial radial distribution functions in
FeZrB at T=800 K.
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ideal icosahedral clustering on these Fe atoms and strongly

reducing the extreme negative values of Ŵ6 in FeB. On the
contrary, inclusion of Zr in FeZrB causes negative disclina-
tions to attach to Zr, easing frustration, leading to more Fe
centered clusters with icosahedral ordering and increasing

the negative region of Ŵ6, as compared to FeB. Inclusion of
the big Zr atom enhances icosahedral order on the Fe atoms.

Figure 9 shows the Ŵ6 distributions for FeZrB with cen-
ters at Fe, Zr, and B. The histogram with the center at Zr is
almost symmetric about the value of zero. This suggests that
the local environment about Zr atoms is nearly spherical, as

is expected given its large size. The B centered Ŵ6 histogram

is also asymmetric towards negative Ŵ6 values due to Kasper
polyhedra and slightly distorted versions of them �see Table
II and Sec. III C�.

D. Voronoi analysis

A Voronoi analysis was performed for FeB in the super-
cooled liquid at T=800 K �Table III�. The Fe environments
were mostly �0,4 ,8 ,x� or �0,3 ,8 ,x� types, where x
= �0,1 ,2 ,3 ,4	, with the higher coordination polyhedron be-
ing more favored. This was followed by the very negative

Ŵ6 valued �0,0 ,12�, �0,2 ,10,x�’s and �0,1 ,10,2�’s Voronoi
types occurring at lower frequency than in pure Fe. Boron
mainly had environments of type �0,3 ,6�’s ��15% of B at-
oms� �Kasper polyhedron for Z=9 containing a +72° discli-
nation� and �0,5 ,4�’s ��20% �. These types are typical of
the tricapped trigonal prism �TTP� and the monocapped
square archimedean prism �a slightly distorted variant of
TTP�, respectively. The TTP is found in the crystal structures
of Fe3B with Pearson symbols oP16 and tI32. The distorted
�0,5 ,4� version is found in the structure Fe23B6 of Pearson
type cF116. These structures have been identified as the lead-
ing competitors for B-Fe glass.46 Boron also took environ-
ments of the Kasper polyhedron �0,4 ,4� ��3% � corre-
sponding to Z=8 and �0,2 ,8� ��10% � corresponding to Z
=10. The association of B with +72° disclinations explains
how it increases the frustration of icosahedral order on the Fe
atoms. Clearly the improved glass-formability of FeB com-
pared with elemental Fe cannot be due to icosahedral order.
Rather, it is presumed to be caused by the deep eutectic at
Fe83B17.

A Voronoi analysis of supercooled FeZrB at T=800 K

shows a clear increase in the very negative Ŵ6 polyhedra,
and also a decrease in the number of Z14 �0,0 ,12,2� types
on Fe atoms indicating a decrease in frustration in the ternary
as compared to the binary. Environments around B atoms
were roughly similar in the binary and the ternary, with a
slight increase in the lower coordinated �Z=8� Kasper poly-
hedra at the cost of higher coordinated �Z=10� ones. Zirco-
nium took a variety of polyhedra, with an average coordina-
tion of 17.6 and a minimal coordination of 15, owing to its
large size compared to the other constituents.

E. Honeycutt and Andersen analysis

We made a HA analysis of the ternary glassy alloy, by
looking at root pairs of chemical species 
 and �, choosing

Rcut in the manner of the Ŵ6 analysis. The frequency is nor-
malized to sum to one for each species pair 
�. Table VI
lists the fraction of different 1x pairs in supercooled FeZrB.

Among the 1x pairs with Fe as one of the root pairs, the
15’s are most abundant at all temperatures. The 15’s are
mainly comprised of 155’s and the 154’s, with the 155’s
being always higher than the 154’s. The percentage of 15’s is
similar for FeZrB, FeB as well as pure Fe. Note that the 15’s
are largest for the Fe-Fe pairs. They also show a steady en-
hancement with supercooling, unlike the 14’s which decrease
with supercooling. Among the 14’s, the icosahedron-related
143’s for all root pairs are always higher than the close-
packed 142’s, and remain fairly constant with supercooling.
The 14’s are maximal for FeB root pairs and minimal for
FeZr.

Supercooled pure Fe has a high percentage of “16” ’s
�13%� compared to pure Cu �7%�. The high number of
“16” ’s in Fe is related to the occurrence of Z14 �0,0 ,12,2�
environments in which the sixfold bond carries a −72° dis-
clination, rather than the BCC 14 atom arrangement which
would also show a high degree of fourfold and sixfold bonds
�Sec. III D�. Adding B to Fe, shows an increase of “16” ’s for
Fe-Fe pairs to 21% in FeB �not shown�. Adding large Zr
atoms to FeB decreases the occurrence of 16’s on the Fe-Fe

TABLE VI. HA analysis for supercooled FeZrB at T=800 K.

Root pair

Fe-Fe Fe-Zr Fe-B Zr-Zr Zr-B B-B

14 pairs 0.30 0.19 0.54 0.11 0.55 0.75

142 pairs 0.08 0.06 0.03 0.06 0.03 0.02

143 pairs 0.17 0.11 0.35 0.04 0.33 0.33

144 pairs 0.05 0.02 0.17 0.01 0.19 0.41

15 pairs 0.56 0.53 0.39 0.48 0.41 0.18

154 pairs 0.22 0.27 0.03 0.36 0.04 0.0

155 pairs 0.33 0.22 0.37 0.08 0.36 0.17

16 pairs 0.10 0.24 0.01 0.36 0.01 0.01

166 pairs 0.09 0.20 0.0 0.26 0.00 0.00
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FIG. 9. �Color online� Distribution of Ŵ6 for different chemical
species in supercooled FeZrB at T=800 K.

P. GANESH AND M. WIDOM PHYSICAL REVIEW B 77, 014205 �2008�

014205-8



pairs, putting them on Fe-Zr pairs and easing the frustration
of Fe centers. This causes the geometry about Fe centers to

be more icosahedral, and hence the shift of the Ŵ6 towards
negative values.

Among the root pairs not containing Fe, note that the B-B
pair has the maximum 14’s �+72° disclinations�, especially
144’s, while the Zr-Zr pair has the maximum 16’s �−72°
disclinations�, especially the 166’s, emphasizing the role of
size in controlling the frustration in alloys.

F. Electronic density of states of FeZrB

Since Fe and FeB density of states are available and their
main features are also evident in FeZrB �Fig. 10�, we focus
our attention on the density of states �DOS� of the ternary,
calculated using VASP. A 2�2�2 k-point mesh was used to
perform the calculations. A 3�3�3 mesh preserves the low
energy peaks in the DOS, indicating that they are not arti-
facts. The reported DOS is an average over the DOS of the
final configurations of seven independent quenches.

The minority spin-down states are shifted from the major-
ity spin-up states due to exchange splitting creating a
pseudogap at the fermi level. Both the majority and the mi-
nority spin DOS show a further splitting reminiscent of the
splitting between the T2g and Eg-symmetry states in bcc
iron,47 but is also seen in other environments such as amor-
phous FeB.48 The Fermi level falls in the T2g /Eg-like
pseudogap of the minority-spin density of states, a character-
istic of strong magnetism.49

The Fe partial DOS �Fig. 10 shows combined spin up and
down contributions� is similar to that of pure liquid Fe,50

except that the features are broadened with alloying, since in
the alloy there is also a compositional disorder in addition to

structural disorder. The low energy Fe d states show some
hybridization with the B p states. The Fe s states extend to
very low energies and hybridize with the B s states. We
observe this in FeB as well. The local DOS on neighboring
B-B pairs shows a peak at �−7 eV and at either of the two
subpeaks just below �−10 eV �see inset Fig. 10�. The lower
of these two subpeaks arise from B-B pairs of Honeycutt-
Anderson type “15.” Chains of B atoms, when present, oc-
cupy even lower levels around −11 eV. Other B atoms which
do not have a B near neighbor are responsible for the remain-
ing peaks between −8 eV and −10 eV. The Zr s states show
weak correlation with the B s states. The Zr d states are
largely unoccupied.

V. CONCLUSION

This study quantifies icosahedral and polytetrahedral or-
der in supercooled liquid metals and alloys. This is the first
such analysis of glass-forming Fe compounds using configu-
rations from first-principles simulations. While the structural
properties of Fe and Cu strongly resemble each other at high
temperature, and indeed are close to a maximally random
jammed structure,20,24 their behavior evolves substantially,
and in different manners, as the liquid is supercooled. Proper
modeling of atomic interactions is essential to capture the
differing behavior of each element, and use of a first-
principles simulation is the most reliable means of achieving
this.

For pure elements we find the degree of local icosahedral
order in the supercooled liquid depends on the low tempera-
ture crystal structure, with bcc metals such as Fe and W
accommodating icosahedra more readily than the fcc element
Cu. Alloying with large or small atoms can further influence
the degree of icosahedral order, with small atoms �e.g., B in
Fe� aggravating the frustration by introducing positive discli-
nation line defects, while large atoms �e.g., Zr in Fe� natu-
rally stabilize negative disclination line defects, relieving
frustration on the medium-sized Fe atoms. The enhanced
glass-forming ability of FeB compared to Fe cannot be re-
lated to icosahedral order, even though, based on our find-
ings, the possibility of relating it to other polytetrahedral
order still remains open. But the enhanced glass formability
of FeZrB compared to FeB can be explained by the forma-
tion of icosahedral order in addition to the expected slow
dynamics of chemical ordering. Both of these factors possi-
bly help in the destabilization of competing crystal phases in
FeZrB.46
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