
Crystal structures and mechanical properties of superhard BC2N and BC4N alloys:
First-principles calculations

Shiyou Chen and X. G. Gong
Surface Science Laboratory (National Key) and Physics Department, Fudan University, Shanghai 200433, China

Su-Huai Wei
National Renewable Energy Laboratory, Golden, Colorado 80401, USA

�Received 3 October 2007; published 31 January 2008�

Using first-principles calculation, we have investigated the structural and mechanical properties of the cubic
�c�-BN /C2 alloy systems, which are currently considered as strong candidates for superhard materials. We
show that there is a sublinear dependence of the physical properties of the c-BC2N alloy on the number of C–C
and B–N bonds in the system. Structures that maximize the number of C–C and B–N bonds have low energy,
high density, and high bulk and shear moduli. Structures with unstable B–B and N–N bonds are expected to
have higher energy, lower density, and elastic moduli. Based on the “bond counting rule,” we have identified
a series of low-energy �C2�n / �BN�m �111� superlattices whose structural parameters are similar to the recently
synthesized high-density BC2N and BC4N samples �Y. Zhao et al., J. Mater. Res. 17, 3139 �2002��. The
calculated bulk and shear moduli and ideal shear strengths under normal compression show that these BC2N
and BC4N �111� superlattices are very strong in resistance to elastic distortion at equilibrium and plastic
distortion under nanoindentation. Furthermore, we show that the calculated shear modulus and ideal shear
strength under normal compression also have a sublinear relationship with the measured Vickers hardness for
these high-density BN /C2 alloy systems and could thus be used as a good indicator for the hardness of these
alloys.
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I. INTRODUCTION

The design and synthesis of new superhard materials have
recently drawn significant attention,1–5 which is due to their
wide range of industrial applications from cutting and pol-
ishing to protective coating. In the pursuit of superhard ma-
terials, the alloys of diamond and cubic �c�-BN, such as
c-BC2N and c-BC4N,4–7 have become one of the most prom-
ising candidates because they are expected to be thermally
and chemically more stable than diamond and harder than
c-BN.

Despite extensive studies carried out in the past few years,
there are still many unresolved issues associated with the
C2 /BN alloys, especially the origin of the scattered experi-
mental data. Several groups have successfully synthesized
BC2N samples from a mechanical mixture of hexagonal BN
and graphite �g� or g-BC2N �Table I�.8–12 However, the mea-
sured physical properties of these samples are quite different.
For example, the measured lattice constant of a c-BC2N
sample obtained by Knittle et al. using g-BN/graphite as the
starting material is 3.602�0.003 Å, about 0.3% larger than
the ideal averaged lattice constant of diamond �3.567 Å� and
c-BN �3.616 Å�.8 However, Solozhenko et al. synthesized
c-BC2N from g-BC2N at high pressures and high
temperatures,10,13 and found that the measured lattice con-
stant is 3.642�0.002 Å, which is about 1.48% larger than
the ideal value expected from Vegard’s rule.14 This is signifi-
cantly larger than the values measured by other groups and
even larger than that for c-BN. Their c-BC2N samples
also show some unusual physical properties, such as very
small bulk modulus �259�22 GPa� and shear modulus
�238�8 GPa�, which are much smaller than those of c-BN

and diamond �Table I�, but the measured Vickers hardness
�76 GPa� is higher than that of the c-BN single crystal
�62 GPa�.10,13 More recently, Zhao et al. synthesized
millimeter-sized bulk samples of superhard c-BC2N and
c-BC4N using the mixture of graphite and g-BN as starting
materials.11 The x-ray diffraction peaks showed that BC2N
and BC4N crystallize in the diamond-based cubic structure
with lattice constants of 3.595 and 3.586 Å, respectively,
which is only about 0.1% larger than the ideal average value
and agrees well with the result of Utsumi et al.,12 but much
smaller than the value obtained by Solozhenko et al. for
BC2N.10 The measured Vickers hardness is about 62 GPa for
BC2N and 68 GPa for BC4N, much higher than that of c-BN
�47 GPa� and second only to diamond �85 GPa�.

Theoretically, various BC2N structure models6,7,15–18 have
been proposed to understand the experimentally observed re-
sults. Sun et al.18 searched all possible configurations of
c-BC2N within an eight-atom cubic diamond-based unit cell
and identified seven topologically different structures of
BC2N-m �m=1–7�. By calculating the lattice parameters and
elastic constants using local density approximation �LDA� to
the density functional theory, they showed that these struc-
tures could have either high density with high bulk and shear
moduli or low density with low bulk and shear moduli, de-
pending on the atomic configuration of C, B, and N. Re-
cently, Kim et al.19 performed calculations for some of the
BC2N-m structures using the general gradient approximation
�GGA� to the density functional theory. Comparing to the
LDA results, the GGA calculation gives large lattice con-
stants and smaller bulk moduli.20 Based on their calculated
results, they argued that the two high-density structures,
BC2N-1 and BC2N-2, correspond to the observed high-
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density structures by Utsumi et al.12 and Zhao et al.,11

whereas the relatively low-density BC2N-3 structure corre-
sponds to the low-density structure observed by Solozhenko
et al.10 because their calculated GGA lattice constants and
bulk moduli are now closer to experimental values. They
also suggested that BC2N-m �m=4–7�, which contain the
high-energy B–B and N–N bonds, do not exist in the experi-
mental samples and that the high-density phases are charac-
terized by the existence of the C–C bonds, whereas the low-
density phase is characterized by the absence of the C–C
bond. A similar study was carried out by Zhou et al.,22 who
identified a tetragonal 16-atom structure with lower energy
and higher density relative to BC2N-1, and considered it as
the most likely phase of the sample produced by Solozhenko
et al.10 However, due to the uncertainty in the LDA and
GGA calculations,20,21 it is not clear whether a direct com-
parison between the calculated structural parameters and the
experimental data is a valid approach to distinguish experi-
mental structures.

Recently, Zhang et al.23 found that the calculated ideal
strengths �the minimum stress that causes the breakdown of
the crystal� of the seven BC2N-m structures are all lower
than that of c-BN; thus, they claimed that the hardness of the
optimal BC2N structure is lower than that of c-BN. They
further claimed that the measured extreme hardness10,11 of
BC2N nanocomposites is due to the nanocrystalline size ef-
fect and the bonding to the surrounding amorphous carbon
matrix. Later, Pan et al.24 modified their conclusion and pro-
posed that the high-energy, low-density structure, BC2N-5,
with broken N–N bonds and very low ideal strength23 can
explain the extreme hardness of c-BC2N observed in Ref. 10
because the shear strength can increase drastically if a com-
pressive stress is applied along the N–N bond direction to
cause a rebonding of the N–N bond. In this case, they used
strength in a particular direction to infer the hardness. How-
ever, it is difficult to understand why all the nanocomposites
can line up in an amorphous carbon matrix and behave as a
single crystal.10,23

In a previous study, we have pointed out that a cubic
BC2N structure just means that the underlying lattice has the
diamond Fd3̄m space group.25–27 Because the alloys are usu-
ally synthesized under high temperature and high pressure
conditions,8–12 different ordered or disordered superstruc-
tures can form during growth, depending on the different
methods and starting materials used in the synthesis. There-
fore, limiting the theoretical study to certain cells such as the
seven BC2N-m structures18,19 is not justified. By performing
an unconstrained search, we have identified a series of low-
energy, small-cell c-BN /C2 alloys, which are c-BN /C2 �111�
superlattices �denoted as BC2Nn�n, with n=1, 2, 3, etc.�.25

These superlattices are energetically much more stable than
any of the BC2N-m superstructures.18,23 They are also
slightly more stable �about 2 meV per atom� than the pro-
posed wurtzite �n�n� BC2N superlattices,28,29 which is con-
sistent with the fact that c-BN and diamond are more stable
than wurtzite BN and lonsdaleite.21 By calculating the ideal
strength,23,25 we found that these low-energy structures have
higher ideal strength compared to c-BN; therefore, it is con-
sistent with experimental observations11 that c-BC2N is
harder than c-BN. We further point out that the �200� x-ray
diffraction line is always weak for all the BN /C2 alloys,
which is due to the small differences among the atomic num-
bers of B, C, and N.25

To clarify the situation and understand the general chemi-
cal trend of the structural and mechanical properties of the
c-BN /C2 alloy systems, in this paper, we calculate the alloy
formation energies, lattice constants, and bulk and shear
moduli for a series of c-BC2N structures with different bond
components. We find that there is a sublinear dependence of
physical properties of c-BC2N on the bond components.
Structures with more C–C and B–N bonds have low energy,
high density, and high bulk and shear moduli, whereas those
with B–B and N–N bonds have higher energy, lower density,
and elastic moduli. These results validates the “bond count-
ing rule,” which is used to do the structural search. The sys-
tematic LDA errors for the lattice constants and bulk moduli

TABLE I. The lattice constants a, bulk moduli B, and shear moduli G of diamond, c-BN, BC2N, and
BC4N samples synthesized by different groups using different starting materials. Vickers hardnesses of
diamond, c-BN, BC2N, and BC4N measured by two groups are also listed. Note that the values measured in
Ref. 10 are systematically larger than the one obtained in Ref. 11.

Experiment Structure Starting material
a

�Å�
B

�GPa�
G

�GPa�
H

�GPa� HDiamond

Hc-BN

�GPa�

Diamond 3.567a,b 443a,c 536d

c-BN 3.616a,b 369�14e 414f

Knittle et al.a BC2N g-BN/graphite 3.602�3�
Utsumi et al.g BC2N 3.595

Solozhenko et al.h BC2N g-BC2N 3.642�2� 259�22i 238�8i 76 115 62

Zhao et al.b BC2N g-BN/graphite 3.595�7� 62 85 47

Zhao et al.b BC4N g-BN/graphite 3.586�9� 68 85 47

aReference 8.
bReference 11.
cReference 18.
dReference 30.
eReference 31.

fReference 32.
gReference 12.
hReference 10.
iReference 33.
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are corrected in a way that the calculated results can now be
directly compared with available experimental data. Among
the investigated structures, the low-energy BC2Nn�n �111�
superlattices have lattice constants closest to the values of
the high-density sample measured by Zhao et al.,11 indicat-
ing the possible existence of these superlattices in the syn-
thesized samples. By calculating the shear moduli and ideal
shear strength under normal compression for the BC2N and
BC4N �111� superlattices, we find that these superlattices are
strong in resistance to elastic distortion at equilibrium and
plastic distortion under nanoindentation. Furthermore, we
find that both the calculated shear moduli and ideal shear
strength under normal compression have an almost linear
relationship with the measured Vickers hardness11 for dia-
mond, c-BN, and the high-density BC4N and BC2N struc-
tures; thus, they could be used as an indicator for the hard-
ness of these alloys.

II. CALCULATION METHODS

The total-energy and stress calculations for this study are
carried out using density functional theory as implemented in
the ABINIT code34,35 that is based on pseudopotential and
plane wave basis functions. The norm-conserving Troullier-
Martins pseudopotential36 is used with the cutoff radii of
1.59, 1.49, and 1.50 a.u. for B, C, and N, respectively. We
use the LDA and the exchange-correlation functional of
Perdew-Wang as parametrized by Goedecher et al.37 For the
Brillouin-zone integration, we used an 8�8�8 Monkhorst-
Pack k-point grid for an eight-atom cubic unit cell and
equivalent k points for other structures.38 The cutoff energy
for the basis function is 80 Ry. Our convergence test of k
points and energy cutoff shows that the uncertainty in the
calculated stress values is less than 0.1 GPa.

The ideal tensile and shear strength is calculated using the
standard approach as described in the literature.39–41 To cal-
culate the tensile stress, e.g., along the �111� direction of
diamond, we construct a unit cell with one lattice vector
along the �111� direction and the other two basis vectors
perpendicular to the �111� direction. Then, we apply a small
strain in the �111� direction and conduct the structural opti-
mization for the lattice vectors perpendicular to the �111�
direction and all the internal atomic positions.42 The minimi-
zation is done until all the orthogonal components of the
stress tensor are less than 0.1 GPa. For large stresses, the
strain is increased step by step; at each step, the relaxed
structure from the previous step is used as the starting point.
We have compared the Hellmann-Feynman stress directly
calculated in the ABINIT code and the one calculated by tak-
ing a derivative of the energy with respect to the strain39–41

and have found that they agree. The shear stress and shear
stress under normal compression24 are computed in a similar
way. Here, we first set the desired component of the target
stress to be a certain value and all the other components to be
zero. After finding the relaxed structure with the given stress,
we increase the desired stress step by step. If a 0.5 GPa
increase in the shear stress makes the structure collapse, we
take that maximum shear stress as the shear strength along
that direction.

III. RESULTS AND DISCUSSION

A. Crystal structures, bond-type parameter,
and bond counting rule

Unlike for an isovalent semiconductor alloy in which the
bond type is uniquely determined by its concentration, for
nonisovalent alloys such as BC2N, the type of bonds in the
alloy is not determined by the alloy concentration �x=0.5�.
Depending on the occupation of B, N, and C atoms on the
underlying diamond lattice sites, different c-BC2N structures
can be constructed with a cubic or noncubic shape of unit
cells. Because of this, more parameters are needed to classify
the crystal structures. We separate the BC2N alloy into two
categories, one without the high-energy B–B or N–N bonds
and the other containing B–B, N–N, or both bonds. Consis-
tent with previous calculations,17,18 we find that structures
with B–B or N–N bonds are highly unstable and have large
volume relative to the structures without these bonds. In
some cases, the N–N and B–B bonds break, which makes the
structure seriously deformed from the diamond structure, so
they are less likely to exist in the synthesized samples with
high density.8,9,11,12 In this study, we will focus mainly on the
systems that do not have the unstable B–B and N–N bonds.
In this case, we introduce a bond-type parameter � to de-
scribe the fraction of the ideal C–C and B–N bonds relative
to the total number of the bonds, that is

� =
nC–C + nB–N

nC–C + nB–N + nC–B + nC–N
, �1�

where n stands for the number of a specific bond in the
structure. For the three BC2N1�1 �Fig. 1�a��, BC2N2�2, and
BC2N3�3 �111� superlattices, the bond number ratio of
C–C:B–N:C–B:C–N are 3:3:1:1, 7:7:1:1, and 11:11:1:1, re-
spectively, so � equals 0.75, 0.875, and 0.967, respectively.
For the extensively studied BC2N-m systems,18,19,23,43 both
BC2N-1 and BC2N-2 have �=0.5, whereas for BC2N-3,
�=0. Another structure studied here is the chalcopyrite struc-

FIG. 1. �Color online� Crystal structures of �a� BC2N1�1,
�C2� / �BN� 1�1 �111� superlattice, �b� r-BC2N, a 16-atom unit cell
structure with eight C–C and B–N bonds per cell, and �c� BC4N2�1,
�C2� / �BN� 2�1 �111� superlattice.
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ture ch-BC2N,44 where the B and N atoms form a �201�
superlattice in one of the fcc sublattices and C occupies the
other sublattice. Similar to the BC2N-3 structure, which is a
�100� superlattice, it has no C–C and B–N bonds; thus, �
=0. We have also included the r-BC2N structure, which has
�=0.25 and is randomly selected out of the 16-atom unit cell
structures shown in Fig. 1�b�. We also extend the
�C2�n / �BN�n �111� superlattice model to the case of BC4N,
which can be taken as an alternative two-layer of the C2 and
one-layer of the BN superlattice along the �111� direction,
denoted as BC4N2�1 in Fig. 1�c�.

Intuitively, one would expect that structures with large �
should be more stable. This is the basis of the bond counting
rule, which was proposed in the past to search for the low-
energy BC2N structures.6,7,17,25 Using this bond counting
rule, we have performed an unconstrained search �i.e., not
limited by the shape of the primitive cell� for the low-energy
BC2N structure and identified BC2N1�1 �Fig. 1�a�� as the
lowest-energy structure with a 4-atom unit cell, BC2N2�2 as
the lowest-energy structure with an 8-atom unit cell, and
BC2N3�3 as the lowest-energy structure with a 12-atom unit
cell. It will be shown subsequently in this paper that the
intuition and the bond counting rule is correct.

B. Formation energy, lattice constant, and bulk modulus

For the alloy �C2�x�BN�1−x �x=0.5 for BC2N, and x= 2
3 for

BC4N�, the formation energy is given by

�E = E��C2�x�BN�1−x� − xE�C2� − �1 − x�E�BN� , �2�

where E�C2�, E�BN�, and E��C2�x�BN�1−x� stand for the cal-
culated total energies per formula for diamond, c-BN, and
�C2�x�BN�1−x. The formation energies �E of a series of
BC2N structures are listed in Table II, from which we can

see clearly that the formation energy decreases as � in-
creases. If we plot the formation energy as a function of �,
we can see that the dependence is almost linear �Fig. 2�a��,
indicating that the formation energy decreases when the C–C
and B–N bond numbers increase. The linear relation also
indicates that the formation energy depends mainly on the
bond type and is not sensitive to the specific atomic configu-

TABLE II. Calculated alloy formation energy �E, lattice constants a0, LDA-corrected lattice constants ath, bulk moduli B0, LDA-
corrected bulk moduli Bth, the pressure derivative of bulk modulus B�, and isotropic shear moduli G for diamond, c-BN, BC2N structures
studied in this paper, and BC4N2�1 as function of alloy concentration x and bond-type parameter �. The LDA-corrected lattice constant
results ath can be compared with experimental values for BC2N and BC4N listed in Table I. The isotropic shear moduli G are also calculated
using Eq. �4� from the calculated elastic constants reported in Ref. 18 for diamond, c-BN, BC2N-1, BC2N-2, and BC2N-3, and in Ref. 44
for ch-BC2N.

Structure x �
�E

�eV/four atoms�
a0

�Å�
ath

�Å�
B0

�GPa�
Bth

�GPa� B�
G

�GPa�

Diamond 1 1 3.542 3.567 454 421 3.56 539�547a�
c-BN 0 1 3.593 3.616 392 364 3.81 405�407a�
BC2N3�3 0.5 0.967 0.39 3.573 3.597 422 393 3.53 449

BC2N2�2 0.5 0.875 0.52 3.575 3.599 420 393 3.33 458

BC2N1�1 0.5 0.750 0.76 3.579 3.603 420 390 3.70 458

BC2N-1 0.5 0.500 1.78 3.586 3.610 398 374 3.15 431a

BC2N-2 0.5 0.500 1.80 3.586 3.610 400 371 3.71 422a

r-BC2N 0.5 0.250 2.62 3.602 3.626 382 358 3.20

ch-BC2N 0.5 0.000 3.41 3.607 3.631 377 348 4.06 436b

BC2N-3 0.5 0.000 3.66 3.609 3.633 370 343 3.77 420a

BC4N2�1 0.667 0.833 0.57 3.567 3.591 428 400 3.39 481

aReference 18.
bReference 44.
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FIG. 2. Plot of calculated formation energy, LDA-corrected lat-
tice constant, and bulk modulus as functions of the bond-type pa-
rameter �. The solid lines in each subfigure are linear fits of the
calculated points, and the dashed line and dot-dashed line in �b�
show the experimental lattice constants of BC2N obtained by Zhao
et al. �Ref. 11� for the high-density phase and by Solozhenko et al.
�Ref. 10� for the low-density phase, respectively.
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ration. This validates the bond counting rule used in the
structure search.

The calculated lattice constants a0 and LDA-corrected lat-
tice constants ath for the structures studied in this paper are
listed in Table II. ath is obtained in the following two steps:
First, we use the relation a0

3=VLDA, where VLDA is the LDA-
calculated equilibrium volume per eight atoms. Second, be-
cause LDA underestimates the calculated lattice constant for
diamond and c-BN by 0.025 and 0.023 Å, respectively, to
facilitate a direct comparison with experimental data, we
have corrected the LDA error in the lattice constant by using
the formula ath�x�=a0+0.025x+0.023�1−x�. The LDA-
corrected lattice constants of different BC2N structures are
plotted as a function of � in Fig. 2�b�. The experimental
value of Zhao et al.11 for high-density BC2N is shown as a
dashed line, whereas the value of low density BC2N pro-
duced by Solozhenko et al.10 is shown as a dot-dashed line.

We find that the calculated lattice constants of BC2N
structures also decrease as � increases. The reason for the
decrease in lattice constant caused by more C–C and B–N
bonds is that the stable C–C and B–N bonds are shorter than
the less stable C–B and C–N bonds as a whole. Once the
number of B–N and C–C bonds increases while that of C–B
and C–N bonds decreases, the average bond length and thus
the lattice constant become smaller.

Comparing with experimental data, we see that the lattice
constant measured by Zhao et al.11 for the BC2N structure is
close to that for �=1; i.e., the BC2Nn�n superlattices have
lattice constants that are the closest to the experimental value
with the deviation of less than 0.01 Å. According to this
linear relationship between the lattice constant and �, the
high-density sample obtained by Zhao et al.11 should contain
much more C–C and B–N bonds than C–B and C–N bonds.
Therefore, the BC2N-1, BC2N-2, and other structures, which
contain only 50% or less C–C and B–N bonds, may not be a
good representation of the experimentally observed
structures.11 The calculated lattice constant of the BC4N2�1
superlattice is also quite close to the experimental value,
with a deviation of only 0.006 Å. Considering the good
agreement between the lattice constants of �111� superlattices
and the experimental values for BC2N and BC4N by Zhao et
al., we believe that the synthesized high-density sample may
contain a large amount of �111� superlattices.

On the other hand, the calculated lattice constants for
BC2N structures without B–B and N–N bonds are all smaller
than the experimental value of samples obtained by Soloz-
henko et al.,10 even for �=0 �Fig. 2�b��. Therefore, we sus-
pect that the samples grown by Solozhenko et al. at very
high temperature may contain significant amounts of un-
stable N–N and B–B bonds.

By fitting the total energy as a function of the volume near
the equilibrium state to Murnaghan’s equation of state
�EOS�, we calculate the bulk moduli for the structures listed
in Table I. Because the LDA slightly underestimated the
equilibrium volume, the calculated bulk moduli B0 are sys-
tematically overestimated. To correct this error, we have used
the definition of Murnaghan’s EOS, i.e.,

B�V� = B0 + B�P�V� , �3�

and calculated the bulk moduli at the LDA-corrected lattice
constants. The results are shown in Table II and plotted in

Fig. 2�c�. We see that for all BC2N structures studied here,
the bulk moduli increase monotonically with �. This is con-
sistent with the fact that the volume decreases monotonically
with �. This is because when there are more C–C and B–N
bonds in the BC2N structure, it becomes denser and the
strong bonds give a relatively high resistance to the volume
change and, therefore, a larger bulk modulus. The predicted
bulk moduli are all larger than the small bulk moduli ob-
served in the samples grown by Solozhenko et al., which is
another strong indication that their sample may contain sig-
nificant amounts of N–N and B–B bonds. However, previous
studies18,23 have shown that structures containing the un-
stable N–N and B–B bonds are usually weak with small
elastic moduli and ideal strength; therefore, it is not clear if
the measured high hardness of the low-density BC2N
sample10 is its intrinsic property or not.

C. Isotropic shear modulus

Because the shear modulus is considered a better predic-
tor of hardness than bulk modulus,4 we also calculated the
isotropic shear modulus of BC2Nn�n superlattices. The iso-
tropic shear modulus can be expressed by means of elastic
constants in Voigt notation,28,45

G =
1

15
��C11 + C22 + C33� − �C23 + C31 + C12� + 3�C44 + C55

+ C66�� , �4�

where Cij are elastic constants and can be estimated from
first-principles calculation through fitting the total energy un-
der small strains to a second-order Taylor expansion of the
total energy as a function of strain.7,46,47 If we take a hex-
agonal supercell for the rhombohedral or trigonal BC2Nn�n
�111� superlattices, setting the c axis along the �111� direc-
tion, then the number of independent elastic constants in-
cluded in Eq. �4� reduces to 5, i.e., C11, C12, C13, C33, and
C44.

47 The isotropic shear modulus for a hexagonal cell is
then expressed as

G =
1

15
�7

2
C11 + C33 + 6C44 −

5

2
C12 − 2C13� . �5�

Similar to the isotropic shear modulus, the bulk modulus can
also be expressed as a function of elastic constants,47

B =
2

9
�C11 + C12 + 2C13 +

1

2
C33� . �6�

To compare with the results of the BC2Nn�n superlattices,
we also calculate the elastic constants of diamond and c-BN
using the hexagonal supercells with the c axis along the
�111� direction. The calculated B from elastic constants
�Table III� are slightly smaller than the one B0 obtained by
the directly fitting to Murnaghan’s EOS �Table II�. As Table
III shows, the obtained isotropic shear moduli of diamond
and c-BN agree quite well with the experimental values
�Table I�, indicating a high accuracy of our elastic constant
calculation. The isotropic shear moduli of BC2Nn�n all lie in
between the values of c-BN and diamond, indicating that
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BC2Nn�n superlattices have a large resistance to various
kinds of small elastic strains, above that of c-BN while be-
low that of diamond.

Elastic constants of BC2N-1, BC2N-2, BC2N-3, and chal-
copyrite ch-BC2N have previously been calculated,18,44 from
which we can deduce the isotropic shear moduli of these
structures according to Eq. �4� �also shown in Table II�.
Since the bulk moduli B0 calculated by us are close to the
ones in these references, we believe that the isotropic shear
moduli calculated from their elastic constants are comparable
to our results, and actually the values of diamond and c-BN
calculated from the elastic constants of Sun et al.18 are 547
and 407 GPa, respectively, quite close to our results of 539
and 405 GPa. Comparing the isotropic shear modulus of
BC2Nn�n, BC2N-1, BC2N-2, BC2N-3, and ch-BC2N, we
find that BC2Nn�n shows a higher resistance to elastic dis-
tortions among all proposed BC2N structures.

Figure 3 plots the Vickers hardness of diamond, c-BN,
BC2N, and BC4N samples measured by Zhao et al.11 as a
function of the calculated isotropic shear moduli. The points
�solid circle� of diamond, c-BN, BC2Nn�n, and BC4N2�1
�111� superlattices fall almost on a straight line, showing that

these superlattices should dominate the synthesized BC2N
and BC4N samples if we accept that Vickers hardness relates
linearly to the isotropic shear modulus, as Teter proposed.4

What is more, this linear relationship also gives a reasonable
explanation for the measured extreme hardness since these
superlattices have a strong resistance to elastic deformation.
We also show in Fig. 3 the points �hollow diamond points�
corresponding to BC2N-1, BC2N-2, and ch-BC2N that have
fewer C–C and B–N bonds, and thus higher formation en-
ergy and larger volume. These three points significantly de-
viate from the hardness-G line, showing that if these high-
energy structures dominate the BC2N sample, then the
measured hardness should be smaller according to Teter’s
correlation.

D. Ideal strength and ideal shear strength
under normal compression

The bulk modulus and isotropic shear modulus show the
resistance to small volume deformation and elastic distor-
tion. However, the material is seriously deformed in hardness
measurement, so the ideal strength, the stress at which a
perfect crystal becomes mechanically unstable,23,41,48 was re-
cently proposed by Zhang et al. to better reflect how the
material responds under the large deformation.23 Following
their approach, we calculate the ideal tensile and shear
strength for the short-period �111� superlattices BC2N1�1 and
BC4N2�1, as well as diamond and c-BN �Figs. 4�a� and
4�b��. Our calculations show that for both BC2N1�1 and
BC4N2�1, the �111� direction is the weakest direction along
which the minimum tensile stress can be sustained, and in
the �111� plane the minimum shear stress can be sustained

along the �112̄� direction, which is the same as in diamond
and c-BN. This is also why the diamond structure is ame-
nable to the �111� cleavage.49 Our calculated ideal tensile
strength and ideal shear strength of diamond is 90.8 and
94.4 GPa, respectively, which is in good agreement with pre-
vious calculations.23,41,49,50 The ideal tensile strengths for
BC4N2�1, BC2N1�1, and c-BN are 79.3, 68.4, and 65.2 GPa,
respectively, and ideal shear strengths are 64.9, 65.6, and
62.0 GPa �Ref. 25� �Table IV�. Compared to the measured
Vickers hardness for diamond, BC4N, BC2N, and c-BN of
85, 68, 62, and 47 GPa, respectively, the ideal tensile
strengths are in the same trend as Vickers hardness, but the

TABLE III. Hexagonal elastic constants, the bulk moduli B, and the isotropic shear moduli G �in GPa�
calculated from elastic constants of c-BN, diamond, BC2Nn�n, and BC4N2�1. For direct comparison with
BC2Nn�n and BC4N2�1, we calculate the elastic constants of diamond and c-BN in a hexagonal supercell
with the c axis along the �111� direction.

Structure C11 C12 C13 C33 C44 B G

Diamond 1176.92 87.66 60.62 1203.96 517.59 441.73 539.22

c-BN 942.09 117.16 78.69 980.56 373.99 379.31 404.77

BC2N1�1 1054.61 97.16 62.57 1041.40 417.70 399.47 458.05

BC2N2�2 1042.87 95.63 68.29 1081.08 419.78 403.16 458.28

BC2N3�3 1023.26 112.46 69.06 1098.78 412.59 405.16 449.10

BC4N2�1 1088.30 90.77 64.19 1103.00 444.20 413.10 481.46
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FIG. 3. Plot of the Vickers hardness measured by Zhao et al. for
their synthesized diamond, c-BN, BC2N, and BC4N samples �Ref.
11� as a function of the calculated isotropic shear modulus for dia-
mond, c-BN, different BC2N, and BC4N structures. We show that
the data of diamond, c-BN, BC2Nn�n, and BC4N2�1 �solid circles�
almost fall on a straight line, whereas BC2N-1, BC2N-2, and
ch-BC2N �hollow diamond points� do not fall on the same line.
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ideal shear strengths do not change monotonically with the
Vickers hardness. Therefore, one should be cautious about
using the ideal strength to infer the hardness, because the
ideal strength reflects how well the material can sustain the
strain along a single direction, whereas in hardness measure-
ments, large strains along several directions are applied si-
multaneously under the indenter.

Recently, Pan et al. proposed to infer hardness from the
shear strength under normal compression.24 They think that
the stress under the indenter contains a pure shear component
and a normal compressive stress component that can reach
tens or even thousands of gigapascals,51–53 and the shear
component �yz and normal compressive component �zz are
related by �zz /�yz=tan �, where � is the centerline-to-face
angle of the indenter. Since the Vickers, Knoop, and Berk-
ovich indenters used in the hardness measurement all have
similarly large centerline-to-face angles, they proposed to
use the Vickers indenter value of �=68°. Following their
approach, we calculate the ideal shear strength under normal
compression for BC2N1�1 and BC4N2�1 �Figs. 4�c� and
4�d�� to compare with Vickers hardness measurement of
high-density BC2N and BC4N from Zhao et al.

As we mentioned above, the diamond structure is easy to

slip in the �111� plane along the �112̄� direction, and there are
two nonequivalent �111� planes for BC2N1�1 and BC4N2�1:

�111� and �1̄11� planes; so, differing from the calculation of
Pan et al. in which the shear strength was considered only in
one of the �111� planes,24 we consider here the shear strength
in all nonequivalent �111� planes under normal compression.
When there’s no normal compression, the weakest direction
for the shear stress of BC2N1�1 is the �112̄� direction in the

�111� plane, named �111��112̄�, and the value is 65.6 GPa,

lower than 70.0 GPa along the nonequivalent �1̄11��211� di-
rection �Table IV�. When there is a normal compression, the
shear strength along the �111��112̄� direction increases to
95.6 GPa, slightly higher than the value 94.4 GPa along
�1̄11��211�; therefore, �1̄11��211� becomes the weakest di-
rection and the ideal shear strength under compression is
94.4 GPa. Similarly, for BC4N2�1, the �1̄11��211� becomes
the weakest direction under normal compression, with the
shear strength equal to 101.5 GPa.

The calculated ideal shear strengths under normal com-
pression are listed in Table IV, together with the values with-
out compression for diamond, BC4N2�1, BC2N1�1, and
c-BN. From these data, we can find that all calculated ideal
shear strengths under normal compression have a significant
enhancement relative to the corresponding values without
compression, especially for diamond, BC4N2�1, and
BC2N1�1, with the enhancement of more than 20 GPa. It is

TABLE IV. Calculated shear strength �in GPa� without and with normal compression in different �111�
planes for diamond, c-BN, BC2N1�1, and BC4N2�1. When the normal compression is applied, it equals to
tan�68°� times the shear stress.

Structure Diamond BC4N2�1 BC4N2�1 BC2N1�1 BC2N1�1 c-BN

Plane �111� �111� �1̄11� �111� �1̄11� �111�

Without normal compression 94.4 64.9 76.2 65.6 70.0 62.0�70.4a�
Under normal compression 118.9 104.4 101.5 95.6 94.4 72.7�64.3a�
aReference 24.
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FIG. 4. �Color online� Plot of the calculated

�111��112̄� and �1̄11��211� shear stress without
and with a normal compression as a function of
shear strain for diamond, c-BN, BC2N1�1, and
BC4N2�1. When the normal compression is ap-
plied, it equals to tan�68°� times the shear stress.
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important to note that in the calculation of Pan et al.,24 the
ideal strength decreases from 70.4 to 64.3 GPa for c-BN
when a normal compression is applied, but from our calcu-
lation, it increases from 62.0 to 72.7 GPa. We also per-

formed a test calculation on the �111��112̄� shear strength of
diamond under a fixed 50 GPa normal compression. The re-
sult is 104.7 GPa, close to 108 GPa obtained by Chacham
and Kleinman.50 We think that the different trends for c-BN
between the calculation of Pan et al. and our calculation
should be due to the different relaxation processes for the
structure with specific shear and compression stress targets.
In our calculation, the structure is relaxed simultaneously in
both normal and shear directions, whereas in the calculation
of Pan et al., a shear strain is applied first, and after deter-
mining the shear stress, the structure is relaxed to a target
normal compression stress by fixing the shear strain and as-
suming the shear stress is also fixed. This could introduce
error because under large deformation, the stresses along or-
thogonal directions are not independent of each other.

When the measured Vickers hardness11 of diamond,
c-BN, BC2N, and BC4N are plotted as a function of the
calculated ideal shear strength under normal compression of
diamond, c-BN, BC2N1�1, and BC4N2�1 �Fig. 5�, we find
that the ideal shear strength under normal compression also
changes almost linearly with the Vickers hardness, like the
isotropic shear modulus, indicating that the ideal shear
strength under normal compression is a better predictor of
hardness relative to the one without normal compression.
The large ideal shear strengths under normal compression of
BC2N and BC4N also explain the high hardness of the syn-
thesized sample because these low-energy BC2N1�1 and
BC4N2�1 superlattices can sustain a very large plastic distor-
tion under indentation, together with a high resistance to
small elastic distortion.

IV. CONCLUSION

In summary, using first-principles calculations, we have
studied the structural and elastic properties of the c-BN /C2
alloy systems. We show that there is a sublinear dependence
of the physical properties of c-BC2N alloys on the number of
C–C and B–N bonds in the structure. Structures that maxi-
mize the number of C–C and B–N bonds have low energy,

high density, and high bulk and shear moduli. We also show
that the low-energy �C2�n / �BN�m �111� superlattices have
structural parameters similar to the recently synthesized
high-density BC2N and BC4N samples. The calculated bulk
and shear moduli and ideal shear strength under normal com-
pression indicate that these �111� superlattices are very
strong in resistance to elastic distortion at equilibrium and
plastic distortion under nanoindentation. Furthermore, we
find that the calculated shear moduli and ideal shear strength
under normal compression relate linearly with the measured
hardness and could thus be used as good indicators to predict
the hardness of these alloys.
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