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Realization of the mean-field universality class in spin-crossover materials

Seiji Miyashita,"* Yusuké Konishi,'# Masamichi Nishino,>* Hiroko Tokoro,' and Per Arne Rikvold?
IDepartment of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
2C0mputati0nal Materials Science Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

3Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA
4CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
SPRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332, Japan
(Received 3 October 2007; published 22 January 2008)

In spin-crossover materials, the volume of a molecule changes depending on whether it is in the high-spin
(HS) or low-spin (LS) state. This change causes distortion of the lattice. Elastic interactions among these
distortions play an important role for the cooperative properties of spin-transition phenomena. We find that the
critical behavior caused by this elastic interaction belongs to the mean-field universality class, in which the
critical exponents for the spontaneous magnetization and the susceptibility are S=1/2 and y=1, respectively.
Furthermore, the spin-spin correlation function is a constant at long distances, and it does not show an
exponential decay in contrast to short-range models. The value of the correlation function at long distances
shows different size dependences: O(1/N), O(1/ \W), and constant for temperatures above, at, and below the
critical temperature, respectively. The model does not exhibit clusters, even near the critical point. We also
found that cluster growth is suppressed in the present model and that there is no critical opalescence in the
coexistence region. During the relaxation process from a metastable state at the end of a hysteresis loop,
nucleation phenomena are not observed, and spatially uniform configurations are maintained during the change
of the fraction of HS and LS. These characteristics of the mean-field model are expected to be found not only
in spin-crossover materials, but also generally in systems where elastic distortion mediates the interaction

among local states.
DOI: 10.1103/PhysRevB.77.014105

I. INTRODUCTION

Spin-crossover (SC) materials consist of local units (mol-
ecules), each of which has two different spin states, i.e., the
low-spin (LS) and high-spin (HS) states. The LS state is
energetically favorable and dominates at low temperatures,
while the HS state dominates at high temperatures because it
is entropically favorable. The transition between the LS and
HS states is also induced by changes of the pressure, mag-
netic field, light irradiation, etc.””7 When interactions be-
tween molecules are weak, the HS fraction changes smoothly
with temperature. However, when the interactions become
strong, the system exhibits cooperative phenomena.® The
change in the HS fraction becomes sharper with increasing
interaction. When the strength of the interaction exceeds a
critical value, the change becomes discontinuous. In order to
control electronic and magnetic properties of SC compounds,
it is important to understand the bistable nature of such mo-
lecular solids.

As an important ingredient of the spin-crossover transi-
tion, we need two important characteristics of the system.
One of them is the structure of the intramolecule Hamil-
tonian. At each molecule, we set an energy difference be-
tween the states D(>0) (see Fig. 1) and different degenera-
cies of the states: gyg and g for the HS state and the LS
state, respectively. We express the spin state at the ith site by
s; which takes —1 for LS and +1 for HS. The intramolecule
(on-site) interaction is expressed by

1
H0=EDZ 5. (1)

If we take into account the effect of the degeneracy as a
temperature dependent field, we can use an effective Hamil-
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tonian with nondegenerate variables o;= * 1 as follows:
1
Her= 2 (D= ksT'In g)or, (2)

where g=gys/gLs denotes the degeneracy ratio between the
HS and LS states.

The other important characteristic is the intermolecular
interaction. For the cooperative property in the SC transition,
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FIG. 1. (Color online) Schematic picture of the energy structure
of a molecule. The left (right) minimum corresponds to the LS (HS)
state. In the inset, schematic pictures of a lattice of LS molecules
(left), and the distortion caused by a HS molecule in a lattice of LS
molecules (right), are illustrated.
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until recently a short-range Ising-type interaction has been
adopted in the so-called Wajnflasz-Pick (WP) model as
follows:’

1
H=—JD 0',-0'_]-+52 (D -kyT1n g)o;. (3)
@ i

This type of model has successfully explained various as-
pects of the ordering processes.!*'* However, the origin of
the interactions between the spin states has remained unclear.
There are various plausible origins of the interaction.

As a possible interaction mechanism, the importance of
elastic interactions has been pointed out.!>2? The elastic con-
stants may depend on the neighboring spin states. This de-
pendence causes an effective interaction between the spin
states. This effect of the elastic constants was investigated in
a one-dimensional (1D) two-level model?'?* and also in a 1D
vibronic coupling model.?? In these one-dimensional ver-
sions of the model, the elastic interactions can be traced out
locally, leading to an exact mapping onto a 1D Ising ferro-
magnet, so that there is no phase transition at nonzero
temperatures.’>23

In higher spatial dimensions, as depicted in the inset in
Fig. 1, the volume change of a molecule causes a distortion
of the lattice. Elastic interactions mediate the effect of this
distortion over long distances. Therefore, in higher dimen-
sions, the elastic interactions cause intrinsically different ef-
fects than in one dimension. We denote this long-range in-
teraction by Heasic({07}). We do not know the explicit form
of this interaction (but see the discussion in Appendix B).
However, we recently demonstrated that this type of elastic
interaction can induce a phase transition in spin-crossover
systems.?*=26 This elastic interaction model is a kind of com-
pressible Ising model,”’ and similar models have been stud-
ied for binary alloys.?8-3°

Because the interaction originating from the elastic distor-
tions is qualitatively different from that of the nearest-
neighbor Ising model, we are interested in the critical prop-
erties of systems with this type of interaction. We have
previously studied phase transitions and the temperature de-
pendence of ordering of model SC materials with specified
parameters D and g. In those cases, most systems exhibit a
first-order phase transition, and the critical properties of the
models were not studied in detail. In the present study, we
investigate properties near the critical point in the parameter
space. In the case of the WP model, the critical properties are
those of the short-range Ising ferromagnet. However, the
critical properties of the present model, i.e., the critical ex-
ponents which characterize the critical universality, are ex-
pected to be different from those of the short-range Ising
model.

The organization of the rest of this paper is as follows. In
Sec. II we present the model and the computational method;
in Sec. IIT we discuss the finite-size scaling analysis of the
critical properties; in Sec. IV we discuss the spin configura-
tions and correlations; and in Sec. V we present a summary
and discussion. A discussion of the long-range Husimi-
Temperley model is given in Appendix A, and a summary of
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finite-size scaling relations for mean-field phase transitions is
given in Appendix B.

II. MODEL AND METHOD

In this paper, we study the critical phenomena of models
with elastically mediated spin-spin interactions on the simple
square lattice (2D), and also on the simple cubic lattice (3D)
with periodic boundary conditions. Here we use Monte Carlo
(MC) simulations according to the constant-pressure
method.2® In the Monte Carlo simulation, we choose a site i
randomly and update the spin state o;=(*1) and the position
of the molecule (x;,y;,z;) by the standard Metropolis method.
We repeat this update N times, where N is the number of
lattice sites. Then, we update the volume of the total system.
We define this sequence of procedures to be one Monte Carlo
step (MCS).

Instead of the Ising-type interactions of the WP model,
Eq. (3), we adopt the following elastic interactions between
molecules:?®

V=Vt Vanns (4)
k
VN = _12 [Vij - (R;+ Rj)]2s (5)
24
k -
Vinn = 52 2 [rij - V2(R; + Rj)]z’ (6)

(i)

where r;; is the distance between the ith and jth sites. Vyy
expresses elastic interactions between nearest-neighbor (NN)
pairs ((i,j)). Here, R; and R; are the radii of the molecules.
The radius of each molecule is Ryg and Ry g for the HS and
LS states, respectively. In the present work, we set the ratio
of the radii as Ryg/Ryg=1.1. Vynn eXpresses the elastic in-
teraction of next-nearest-neighbor (NNN) pairs ({i,/))),
which is necessary to maintain the lattice structure but not
essential for the critical behavior. We set the ratio of the
elastic constants k;/k,=10. We set k;=40 throughout the
present work. In this study, in order to exclude other effects
than those due to elastic interactions through distortion, we
assume that the stiffness constants k; and k, do not depend
on the spin state. If we were to allow spin dependence of k;
and k,, an effective short-range interaction would appear. In
this sense, the present model treats only elastic interactions.

The order parameter for the present model is the fraction
of HS molecules, fys=N"'=,(2s;,—1). Hereafter, for conve-
nience, we adopt the “magnetization”

N
M=Esi=%/(fHS_1) (7)

as the order parameter. In Fig. 2, we depict the temperature
dependences of (M) for several values of D. Here, we find
the typical D dependences of (M(T)). That is, we find a
smooth dependence for large values of D, and a first-order
phase transition for small D. Between them, we have a
second-order phase transition. This D dependence is under-

014105-2



REALIZATION OF THE MEAN-FIELD UNIVERSALITY...

<M/N> i .
- discontinuous .
critical

¢ o° .ﬁ%h

oy discontinuous
A aitical
L

smooth

FIG. 2. (Color online) The order parameter (M)/N vs tempera-
ture T for D=2, 1.51, and 1. The temperature dependences are
smooth, critical, and discontinuous (hysteresis), respectively. The
inset shows a phase diagram of the model in the (7', H) plane, where
TIC\]DG is the critical temperature of the model H,q;c- The tempera-
ture changes in the model are given by the dotted lines in this phase
diagram. When the dotted line crosses the coexistence line denoted
by the bold line, the system undergoes a first-order phase transition.

stood from the phase diagram of the nondegenerate model
(i.e., g=1).! In the present nondegenerate model a ferro-
magnetic phase transition takes place at TIC\IDG, and we expect
a phase diagram as shown in the inset. In this phase diagram,
H is the symmetry-breaking field.

The temperature dependences of the state of the present
model with degeneracy g > 1 (in this work we use g=20) are
given by the dotted lines in the phase diagram,

H(T) = %(D —k;TIn g). (8)

When D is larger than D.=kgT, In g, the temperature depen-
dence of (M) is smooth, while it shows a first-order phase
transition when D<<D.. If we consider a specific material,
the parameters D and g are given, and the temperature de-
pendence of the state is given by one of these dotted lines. In
most cases, the ordering is either smooth or discontinuous,
and the critical properties have therefore not yet been seri-
ously considered.

III. CRITICAL PROPERTIES

We study the critical properties of the elastically interact-
ing model along the coexistence line given by T=D/In g,
i.e., H=0.3! For the WP model, the critical properties are
those of the Ising model.

We next study the temperature (i.e., T=D/kgT In g) de-
pendence of (M?). The spontaneous magnetization m, and
the susceptibility per spin y are obtained from the relation
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FIG. 3. (Color online) Temperature dependences of (M?%)/N?
and the inverse susceptibility X '=NkzT/(M?). (a) A two-
dimensional system (square lattice): (M?)/N? for the linear sizes
L=10, 20, 30, and 50 are plotted by closed symbols of circles,
squares, diamonds, and triangles, respectively; and y~! are plotted
by the corresponding open symbols (multiplied by 20 for improved
visibility). (b) A three-dimensional system (simple cubic lattice):
(M?)/N? for L=8, 12, 16, and 20 are plotted by closed symbols of
circles, squares, diamonds, and triangles, respectively; and y~! are
plotted by the corresponding open symbols (multiplied by 5 for
improved visibility). The dotted straight lines show the expected
behaviors for a mean-field phase transition in an infinite system.

(M?)
A

X
=m’+ kBTﬁ, 9)

where N=L? is the total number of spins, and

_(M?)
XZ Nk T

(10)

which is the susceptibility per spin above the critical point.
Here (---) denotes the thermal average, i.e.,

Tr M2e P
(M?) = T (11)

In Fig. 3, we depict the temperature dependences of
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(M?)/N?* and x~'. We find a clear linear dependence of
(M?)/N? below T=0.20 for the 2D model, and 7=0.51 for
the 3D model. This linear dependence indicates that m?
«T.—T and thus the critical exponent S=1/2.

In Fig. 3, we also find that x~' vanishes linearly at T,
which indicates y=1. This set of critical exponents agrees
with those of the mean-field universality class. The size de-
pendence of the inverse susceptibility in Fig. 3 is rather
large, but we found similar size dependences of (M?)/N?,
and x! in the long-range Husimi-Temperley model dis-
cussed in Appendix A. This indicates that the properties
shown in Fig. 3 are inherent to models in the mean-field
universality class.?’-30-32-37

A. Binder plot

We estimated the critical temperature by analysis of the

Binder cumulant,’®

(M*)

—W. (12)

Plotted for different system sizes, this quantity has a crossing
at the critical point. It has been extensively studied for the
mean-field universality class.>> We depict the Binder plot in
Fig. 4. The crossings are consistent with the values obtained
from (M?)/N?: T.=0.20 for d=2 and 0.51 for d=3. The
value of U, at the crossing is universal and independent of
the spatial dimension. It is in excellent agreement with the
theoretical result,32-3

I'(1/4)
U4 =1
2477
where I' is the gamma function. In Appendix A, we show the

Binder plot for the long-range Husimi-Temperley model,
which gives the same fixed-point value.

=027..., (13)

B. Finite-size scaling

Finite-size scaling is one of the most useful methods to
extract critical properties for infinite systems from numerical
data for finite systems.*>*! However, special caution must be
used when considering transitions in the mean-field univer-
sality class, which do not obey the hyperscaling relation
23+ y=dv that relates the critical correlation-length expo-
nent v with the spatial dimensionality d for transitions with
nonclassical exponents.*? Essentially, lengths are not well de-
fined in systems with mean-field phase transitions, and the
linear system size L is replaced by the number of sites N as
the fundamental finite-size scaling variable. A particularly
clear example is the long-range Husimi-Temperley model
discussed in Appendix A, in which every spin interacts with
every other with a strength proportional to 1/N. The finite-
size scaling variable that replaces the standard L' i
tN 123334 This corresponds to an effective exponent

=2/d,>*3% different from the value of v=1/2, obtained
from the Gaussian approximation.*? An effective exponent
for the correlation function on the large scales that are
relevant for finite-size scaling is obtained from v by the

PHYSICAL REVIEW B 77, 014105 (2008)

U,
8o 8 geam,
o DO
Onlj>
O A
oy
O A
o,
0.2707 i
8o
& o
o]
o o o
AR
0 # ) T
0.1 0.2
(a) Te
Uy
o §
061
041
0.2707 |-
021
0 LT
0.4 ) 0.6
(b) Tc

FIG. 4. (Color online) Temperature dependence of the Binder
cumulant. (a) A two-dimensional system (square lattice). Data for
L=10, 20, 30, and 50 are plotted as circles, squares, diamonds, and
triangles, respectively. (b) A three-dimensional system (simple cu-
bic lattice). Data for L=38, 12, 16, and 20 are plotted as circles,
squares, diamonds, and triangles, respectively.

standard exponent relation 7 =2—y/v =(4— d)/2. Thus one
expects the scaling expression (M?)=L™>7 "ML v )
=L M2(tL??), where M? is a scaling function. A sum-
mary of the mechanisms that lead to these results is given in
Appendix B.

In Fig. 5 we demonstrate that the Binder cumulants for
different L collapse onto a single scaling function when plot-
ted vs tL%?, and in Fig. 6 we plot the finite-size scaling
functions for (M?). In both cases we find good data collapse,
both for d=2 and d=3. These finite-size scaling relationships
are also seen in the long-range Husimi-Temperley model dis-
cussed in Appendix A.

C. Phenomenological scaling analysis

In order to determlne the critical temperature and the ex-
ponent 7] =2—vy/ ", the so-called phenomenological Monte
Carlo renormahzatlon plot is often useful.*’ That is, we plot

In((M?) /(M%)
DLOG = —————+~ _{ (14)
In(L/L")
as a function of 7. The data for different sets of L and L’* are
expected to cross at a point which gives 7, and y/v =2
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FIG. 5. (Color online) Finite-size scaling plots of the Binder
cumulant Uy vs (T— TC)Ld/Z. (a) The two-dimensional system. Data
for L=10, 20, 30, and 50 are plotted as circles, squares, diamonds,
and triangles, respectively. (b) The three-dimensional system. Data
for L=8, 12, 16, and 20 are plotted as circles, squares, diamonds,
and triangles, respectively.

- 77*. In Fig. 7, we plot the temperature dependence of this
quantity for two- and three-dimensional systems. We find a
crossing in each figure at the position estimated by the values
obtained in previous subsections: in the two-dimensional
case,

T,~020 and 7 =1, (15)
and in the three-dimensional case,
T.=051 and 7 =0.5. (16)
We find a similar dependence in the Husimi-Temperley
model given in Appendix A.
IV. SPIN CONFIGURATION

A. Spin correlation function

Here, we concentrate on the characteristics of the spin
correlation function. In Fig. 8, we depict the size and dis-
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FIG. 6. (Color online) Finite-size scaling plots of (M?). (a) A
two-dimensional system (square lattice). Data for L=10, 20, 30, and
50 are plotted as circles, squares, diamonds, and triangles, respec-
tively. (b) A three-dimensional system (simple cubic lattice). Data
for L=8, 12, 16, and 20 are plotted as circles, squares, diamonds,
and triangles, respectively.

tance dependences of the correlation functions for various
values of T: T=0.7/In(g), which is in the paramagnetic
phase, T=0.6/In(g) =T, and T=0.5/In(g) <T,. We plot the
correlation function along the diagonal direction, i.e., C,(r)
=(0(xg,y0)0(xg+7r,yo+7)).** We find unusual spin correla-
tion functions in the disordered phase. In short-range inter-
action models the correlation function decays exponentially.
In contrast, we here find the correlation to be nonzero and
almost constant at long distances in the disordered phase at
T=0.7/In(g). This observation indicates that the spins are
strongly correlated, even at high temperatures. In the disor-
dered phase, the susceptibility is an extensive quantity, and
thus the total sum of the spin correlation function must be
proportional to N as follows:

N N
NxT = 2 2 (070, = N. (17)

In order to satisfy this property, the constant value of the
correlation function at long distances, c¢,, must depend on the
system size as
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FIG. 7. (Color online) Phenomenological Monte Carlo renor-
malization plots of (M?)/N, as defined in Eq. (14). (a) A two-
dimensional system (square lattice). Data for (L,L’)=(10,20),
(10,30), (10,50), (20,30), (20,50), and (30,50) are plotted as crosses,
circles, squares, diamonds, triangles, and pluses, respectively. (b) A
three-dimensional system (simple cubic lattice). Data for (L,L’)
=(8,12), (8,16), (8,20), (12,16), (12,20), and (16,20) are plotted as

crosses, circles, squares, diamonds, triangles, and pluses,
respectively.
: (18)
Co‘x .
N

This is in stark contrast to the result for Ising models with
short-range interactions, c0~e'1‘/2§, with a correlation length
& of order unity.

At the critical point (T=0.6/In(g) ~
dence of ¢ is given by

T.), the size depen-

e = (19)
\N
This constant component at the critical point was pointed out
by Luijten and Blote.*® These observations are qualitatively
different from those of the short-range Ising model. In the
ordered state [7=0.5/In(g)], ¢, is independent of N, which
corresponds to spontaneous order.

B. Spin configuration in equilibrium

Next, let us discuss the characteristics of the spin configu-
rations in the model. In Fig. 9, we depict three snapshots of
spin configurations (a) at a high temperature, (b) near the
critical point, and (c) at a low temperature. We find that there
are no large domain structures, even near the critical point.
For comparison, we depict a configuration at the critical
point of the two-dimensional nearest-neighbor Ising model
(d). The difference is striking. We also found the structure
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FIG. 8. (Color online) The size and distance dependences of the
spin correlation function in the two-dimensional model at several
temperatures. (a) 7=0.7/In(g), which is in the paramagnetic phase.
(b) T=0.6/1In(g) ~T.. (c) T=0.5/In(g) <T. in the ordered phase. In
these figures, the system sizes are L=10 (X), 20 (@), 30 (O), and
50 (x).

factor to be almost wave-number independent (not shown).
From these observations, we expect that the usual critical
behavior associated with two-phase coexistence will be sup-
pressed in the present model.
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FIG. 9. (Color online) Snapshots of equilibrium configurations
of the two-dimensional model at (a) T=1.2T,, (b) T=T,, and (c)
T=0.8T.,. (d) A snapshot of the nearest-neighbor Ising ferromagnet
near the critical point, 7=2.3J.

C. Spin configuration at the end of the hysteresis loop

We also studied the change of the configuration at the end
of a hysteresis loop, i.e., near the (pseudo)spinodal that
marks the limit of the metastable HS phase. For this purpose,
we decreased the temperature gradually from the HS phase
in the two-dimensional model with D=0.4 (<D,=0.6). The
HS state remains as a metastable state beyond the coexist-
ence curve. However, at a certain point, it relaxes quickly to
the LS state, marking the end of the hysteresis loop near the
(pseudo)spinodal.*® In Fig. 10, we plot the time dependence
of the magnetization as we decrease the temperature in steps
by AT=0.008 every 40 000 MCS. In the figure, the tempera-
ture is kept fixed at 7=0.1040, 0.1032, 0.1024, and 0.1016.
A rapid change of phase takes place at 7=0.1024. In Fig. 11,
we show configurations during this rapid change (denoted by
circles in Fig. 10).

In contrast to short-range interaction models, in which the
phase change occurs through nucleation and growth of com-
pact critical droplets of the bulk equilibrium phase,*® the
present system remains macroscopically uniform during the
whole transformation process. This is consistent with the ac-
cepted picture of spinodal nucleation in systems with long-
range interactions,**7-! where the critical droplet is known
to be extended and highly ramified with a density close to
that of the metastable phase. It is thus extremely difficult to
distinguish from the metastable background. Growth of this
critical droplet occurs by a filling in of its “interior,” which is
seen as the uniform change in the order parameter in Fig. 10.
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1 1
T=0.1040, T=0.1032, T=0.1024, T=0.1016

10* MCS

FIG. 10. (Color online) Time dependence of the magnetization
at the end of a hysteresis loop.

D. Spin configuration after quench into the
low-temperature phase

In short-range models with nonconserved order param-
eter, the cluster size increases proportionally to the square
root of the elapsed time after a sudden quench from a disor-
dered phase to a low-temperature phase.’” In contrast, the
present model does not show such clustering configurations.
In Fig. 12, we show a typical configuration after quenching.
Here we again find no large cluster growth, which indicates
that there is no critical opalescence in the present model.

These processes keeping uniformity can be understood in
the following way. If a large domain exists, it causes a large
distortion of the lattice, which is energetically unfavorable.
Thus the system tends to be uniform on large length scales.
This mechanism would be a characteristic of the present
elastically induced mean-field phase transition. Beside the
present SC system, there are various systems in which elastic
interactions play an important role. For example, for the mar-
tensite transition in metals,> the elastic interaction is impor-
tant, and we expect similar critical behavior there.

As mentioned previously, as far as a specific material is
concerned, D is given, and the temperature dependence of
ordering is given by the dotted lines in Fig. 2. Thus, in most
cases the phase transition is of first order. In such cases, the
D dependence of the ordering studied in this paper is difficult
to observe. However, the fact that the system is always uni-
form and no clustering occurs should be observable, even in
a specific material. Moreover, by making use of the pressure
dependence,’® we may also observe the critical properties
and confirm the mean-field universality class.

V. SUMMARY AND DISCUSSION

We studied the critical properties of the elastically in-
duced spin-crossover phase transition, finding it to belong to
the mean-field universality class. The temperature depen-
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FIG. 11. (Color online) Time dependence of the spin configura-
tion at the end of a hysteresis loop. (a) Configuration just before the
end point, at 7=0.1040. Here no change occurs after 40 000 MCS.
(b) At T=0.1024. At this temperature, a sudden change of the mag-
netization occurs at 22 000 MCS. (c) Configuration at 23 000 MCS.
(d) Configuration at 24 000 MCS. (e) Configuration at 25 000 MCS.
(f) Configuration at 26 000 MCS.

dences of the long-range order and the susceptibility were
obtained in two- and three-dimensional models, and the cor-
responding critical exponents 8 and y were found to be 1/2
and 1, respectively, in agreement with the mean-field univer-
sality class. The size and temperature dependence of (M?)
converged onto a scaling function. In the analysis of the
finite-size scaling, we need critical exponents for the spin
correlations, i.e., 7 and v. We found that the effective values,
7 =(4—=d)/2 and v"=2/d, are good for the scaling plots, as
has been pointed out in various studies of the mean-field
universality class. We also found that the critical properties
of our model agree well with the long-range interaction
model (Husimi-Temperley model), in which the spin corre-
lation function is constant at large distances.

We also studied characteristics of the spin configurations
of the present model with effective long-range interactions.
We found that the system does not show configurations with
large clusters, even following sudden temperature quenches,

PHYSICAL REVIEW B 77, 014105 (2008)

000000800 80000080000eeC00000000e8.
8:%8395%8%.ooo%ooogoooooooogoosaoo00000000088889 2
e e e e
e o s s s e Cneises e

00000 883003008830 tH

g 80330 oooo.oooogooo..085"3@%?.85:90%09
o 3 Jetelot it e

es 80220

® 2205 e8e 00 e

coooCececs e

0celo0ecsss

0000883300

CO0O000CS030

2800008608050

000000000860

(o lelwielel et tuis]

SRR

090800000800

80000008000

Ce0008050002030

0000030008850
ielelerelel Teiolesieloe]
850000000850

$98C2Cec00 0eg

S saamssiel eseiosls oeel]
3860008000038
S el st
goseonoones Soese Soess 83%8 o2e Cels Go5083%0
2850335355080880000ec e 88Ce .%oém 0c0%e00
elase Joesl melsisiseicialsoisl Siusel ls lelaln 190" eer et ele

foslesislel jeieleisivieisne Jol 1 osier Siotelel ot

§8838880c>oooo: Secaitiee s secaie s et 088‘3985'8888.
e S ees Jeislelels 080 008.00000900988 282506060
000 0000800008000CCCSCeCe08000000e 9% 1o telel

fote! 18} O8000000 000089089.0800 O 0000000805000

I elejelolele] 6000.0.().00 [slele/e] ‘o] loje! 1 1 lele! lolele’ 9000

Pleisletsr siet 1 Salelsele elelet s | futst
600000 8e0% e 03 9008 Cesece® 0080 o e
$3853363500000050 BlessIoisiutsleicsl eteteteiernt ]
e i
o tete: fote! tewiela! Jeiajolel | 1 lole! igiuleielee] o>
s s tle st Hele " eie e St L ioiet ateieietater Pl e tsi ot ]

FIG. 12. (Color online) A spin configuration at 200 MCS after a
sudden change of T (T=10T, to T=0.8T,) along the symmetry line,
D=TIng.

or at the edge of the hysteresis loop near the (pseudo)spin-
odal. Thus critical opalescence and conventional nucleation
phenomena do not appear in the present model. In materials,
it is difficult to change D or g, but the pressure dependence
of these parameters?® will enable them to be controlled, and
we hope that the characteristic behaviors uncovered in this
study will be found in real experiments in the future.
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APPENDIX A: FINITE-SIZE PROPERTIES OF THE
HUSIMI-TEMPERLEY MODEL

We study the finite-size dependence of the magnetization
of the Husimi-Temperley model as a reference of the mean-
field-type behavior. The Hamiltonian is given by

N 2
J J
H:_]T/,'Ej Uioj:_]?l(g 0',-) . (A1)

Following the standard method, we obtain the partition func-
tion as follows:
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Z=Tr e P = (BINEY, 0)

]
—Tr f /d_i o~ (2P +x DBINEY, o
w \N21T

_f dx ~(1/2)x%+N In[2 cosh(x\2BJ/N)]
= ¢
o 27T

= (A2)

o0 ’/_

J NNGZ _(nj2)224 (2 cosh(z 3]

— .
—» N2

—
* \Ndz
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If we estimate this integral by the saddle-point method, we
obtain the mean-field (MF) free energy

Ja 1
~ BNMF =— EZZ +1In[2 cosh(z\287)].

(A3)

Here, we obtain the physical quantities of the model for finite
values of N. The average of the square of the magnetization
is given by

Z tanh(z\ 2,8])6_(N/2)Z2+N In[2 cosh(z\287)]
N2BJ

(M%) =N—1InZ=

Tr e PH apJ

where
(A5)

The temperature dependence of (M?)/N? corresponds to the
square of the spontaneous magnetization g,
(M»

Jim TN = (48)
and kzTN/(M?) corresponds to the inverse susceptibility !
above the critical temperature. We plot the data in Fig. 13. In
the present model, the critical temperature is 2J/kp. Hereaf-

FIG. 13. (Color online) Temperature dependence of (M?)/N>
and the inverse susceptibility x '=TN/(M?) for the Husimi-
Temperley model. The circles, squares, diamonds, triangles, and
inverse triangles denote N=100, 400, 900, 1600, and 2500, respec-
tively. The open and closed symbols denote (M?)/N and y!,
respectively.

Tr M?e P Jd f —oo V/ET

o0 ’/_
J VNdz —(N/2)22+N In[2 cosh(z\27)]
— e

: (A4)

w N2

ter we put J=1 and kz=1. The Binder plot of this model is
depicted in Fig. 14. We find that the data for large N show a
good crossing at T..

The following size dependences are easily obtained:

N> T<T,
(M?y<{N*? T=T,, (A7)
N T>T..

The size and temperature dependence of (M?) is found to
converge in the standard finite-size scaling plot as depicted
in Fig. 15. The values of the correlation functions at large
separations in Egs. (18) and (19) correspond to the above
size dependences. These figures qualitatively agree well with

FIG. 14. (Color online) The Binder plot for the Husimi-
Temperley model. The circles, squares, diamonds, triangles, and
inverse triangles denote N=100, 400, 900, 1600, and 2500,
respectively.
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a2
)

4 — In(<M?>/N

FIG. 15. (Color online) The scaling plot of (M?) for the Husimi-
Temperley model. The circles, squares, diamonds, triangles, and
inverse triangles denote N=100, 400, 900, 1600, and 2500,
respectively.

those for the model of the elastic interaction mediated spin-
crossover materials.

In Fig. 16 we plot the phenomenological scaling plot of
the present data

In(M?), (M%)}

DLOG =
In L/L'

, (A8)

for various sets of (L,L’). Here, we define L=N"2. In gen-
eral, if we use a definition L=N"?, DLOG becomes DLOG
X (d/2).

APPENDIX B: FINITE-SIZE SCALING OF THE
MEAN-FIELD MODEL

In this appendix we summarize the finite-size scaling
properties expected in a spatially extended system with

DLOG (2D: L°N)

Akt
W+

FIG. 16. (Color online) The phenomenological renormalization
plot for the Husimi-Temperley model. Data for (L,L')=(10,20),
(10,30), (10,50), (20,30), (20,50), and (30,50) are plotted by
crosses, circles, squares, diamonds, triangles, and pluses,
respectively.
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mean-field behavior, which agree with those observed nu-
merically in this paper.

A d-dimensional ¢* lattice field theory with interaction
range R can be defined by the Ginzburg-Landau Hamil-
tonian in reciprocal space,

7Tf(d’k) 1 "
kT 5% [(Rk)7 - ]y,
- N
+ mkIEkS i, P, P, P- (i, vk ky) — 1 \/g¢k=o»
(B1)

where N=L¢ is the number of lattice points, t=(T-T,)/T.,
and £ is an applied magnetic field. For =2 and constant R,
this model has local interactions and upper critical dimension
d,=4. For d>4 it has classical mean-field critical exponents,
for d=4 it has mean-field exponents with logarithmic correc-
tions, and for d<<4 it has nontrivial critical exponents corre-
sponding to the d-dimensional Ising universality class.3¢
For d below four there are several ways the model can be
modified to show mean-field critical behavior. One is to keep
o=2 fixed and let R —o while using a scaling ansatz
equivalent to a Ginzburg criterion,* as is often done in stud-
ies of crossover scaling.’* In this limit of infinitely weak,
infinitely long-ranged interactions, the model reduces to the
Husimi-Temperley model discussed in Appendix A. How-
ever, the method most relevant to elastic systems>> % is
probably to increase the interaction range by modifying o3¢
For 0= 0<<d/2, this lowers the upper critical dimension to

d(0) =20 (B2)

and leads to classical mean-field critical behavior for d
>d,(0). [As for o=2, classical exponents with logarithmic
corrections are found for d=d,(o).]

From the terms corresponding to k=0 in Eq. (B1), one
gets the standard mean-field critical exponents for a spatially
uniform system,

B=1/2 (B3)

for the temperature dependence of the order parameter, ¢
o |t| for t=<0,

5=3 (B4)

for its field dependence, ¢ |h|"? for t=0, and

y=7=1 (B5)

for the corresponding susceptibility, x=dp/ dh|t|=.
Spatial fluctuations are governed by the k” term. In the
Gaussian approximation this yields

v=1/o (B6)

for the correlation length, o ¢|7%, and
n=2-0 (B7)
(d-2+7) 42

for the spin correlation function, c(r) <exp[—r/&]r™
However, renormalization of the “dangerous irrelevant vari-

014105-10
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able” u that multiplies the fourth-order term in Eq. (B1)33%?
causes the fluctuations on large length scales comparable to
the linear system size L instead to be governed by the

o-independent effective exponents,*36
v =2/d, (B8)
and
7 =2-d?2. (B9)

Using these effective exponents in standard finite-size
scaling relations,**>*! one obtains the following scaling rela-
tion:

(M) de[L—zﬁ/u* +L2—77*]M2(IL1/V*) = L2 N2 2),
(B10)

where the scaling relation 7/ V*=2—7]* has been used, and
M?(x) is a scaling function.?* The Binder cumulant U, also
becomes a scaling function of x=¢L%?, ranging from 2/3 for
x<<0 to 0 for x>0 with the fixed-point value of Eq. (13) at
x=0. Similarly, the phenomenological renormalization plot
obtained from Eq. (14) will go from 2d for t<<0 through d
+2-7"=2(d-B/v")=3d/2 at t=0, to —d for t>0. The spin
correlation function at r~ L takes the value cqocL™@2+7)
=192 For r<L, on the other hand, the behavior is expected
to be governed by the Gaussian exponent 7. However, much
larger systems than the ones studied here would be needed to
detect this behavior, which would enable one to measure the
value of ¢.3°

We finally note two interesting aspects of these mean-field
finite-size scaling relations. First, by making the replacement
LY=N, it is easy to see that they all become independent of d,
as long as d>d, (o). Second, we note that the Gaussian ex-
ponents can be used as in ordinary finite-size scaling theory,

PHYSICAL REVIEW B 77, 014105 (2008)

provided that L is replaced by the modified system size
Ld/du("').37

The details of the effective long-range interactions intro-
duced by the elastic degrees of freedom in the present system
are not known, except for d=1. In this case it has been
shown rigorously that the model can be mapped onto an
Ising chain  with  nearest-neighbor  ferromagnetic
interactions,?® and thus it exhibits no phase transition at non-
zero temperatures. Much work has been devoted over the
years to the interactions between defects in three-
dimensional elastic solids, and it is generally argued that the
dominant long-range interactions are dipole-dipole interac-
tions ~1/73 that can be attractive or repulsive depending on
the relative orientations of the dipoles.> The case of d=2 has
been much less studied, and relevant works are much more
recent. Dimensional analysis indicates that dipole-dipole in-
teractions ~1/7> should be present unless forbidden by
symmetry.’®8 Although the effects of distortions in the
present model are not identical to those in the classic elastic
media for which these results were obtained, we do not think
it is unreasonable to assume that the elastically mediated
interactions in our model are of such long-range type. This
then would lead to =0 and consequently d>d,=0 for both
cases, so that classical mean-field critical behavior would
indeed be expected. However, a weaker condition on o,
which still would lead to mean-field critical behavior, is ob-
tained by simply requiring d>d, (o), leading to 0<o
<d/?2 or, equivalently, interactions ~1/r7 with d<d+o
<3d/2. We also note that the mechanism involving =2 and
R — o leads to the same effective exponents as the variable-
o mechanism,>>**7 and so it would also be consistent with our
numerical data. Which (if any) of these mechanisms best
describes the long-range interactions that cause the mean-
field critical behavior observed in the model studied here,
remains an interesting question for future research.
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