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We derive the functional dependence of the specific Faraday rotation �, optical absorption �, and magneto-
optical figure of merit F���� /� on the dielectric tensor elements of a uniaxial, magneto-optically active
material in a wavelength regime of relative transparency. In addition, we calculate F as a function of
��2.2 eV for the diamagnetic transition of the octahedrally coordinated Fe3+ in bismuth doped yttrium iron
garnet ��0=3.15 eV� and show that F achieves a local maximum value in this frequency regime at
�=1.25 eV. We also discuss the implications of this result in rare-earth iron garnets for bulk magneto-optical
isolators and in orthoferrites for thin film devices. Finally, we discuss the importance of controlling linear
birefringence in thin film isolators and its impact on the usefulness of F.
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I. INTRODUCTION

Over the next ten years, it is predicted that conventional
silicon-based electronics will approach a fundamental band-
width limit caused by physical loss mechanisms in electronic
transmission media.1 A solution to this problem may eventu-
ally be provided by the field of microphotonics, which prom-
ises to extend Moore’s law by utilizing low-loss waveguides
to propagate optical signals in a chip fabricated on a conven-
tional silicon substrate. Ideally, the other components that are
required to make an optical link �e.g., a laser source, filter,
modulator, and detector� could all be integrated seamlessly
as well, resulting in a processing unit with orders of magni-
tude more bandwidth and power efficiency than those cur-
rently available on the market.

An essential component of such a photonic architecture is
the isolator, a one-way valve for light. It protects a laser light
source coupled into an optical circuit from back reflections
that can result in significant injection noise, which can lower
the maximum operational speed of the link and reduce the
lifetime of the laser source.2 A magneto-optical isolator em-
ploys the Faraday effect or Faraday rotation, which arises
due to quantum transitions between orbital angular momen-
tum states of electric dipoles magnetically aligned with the
direction of propagation.3 This results in the rotation of the
electric vector of a linearly polarized beam of light as it
passes through an active medium.

Typical magneto-optical isolator materials at near infrared
telecommunications wavelengths �e.g., 1550 nm� are based
on rare-earth iron garnets �R3Fe5O12, where R is a rare-earth
cation �Ref. 4, p. 163��. Orthoferrites �AFeO3, where A is a
trivalent cation5� have been used in the past for magneto-
optical data storage, but also show great promise for use in
novel thin film isolators, which can be grown epitaxially on
semiconductor substrates and semiconductor-compatible ox-
ides. Both materials have tetrahedrally and/or octahedrally
coordinated Fe3+ cations, which are the main source of Far-
aday rotation at infrared wavelengths. Hence, both can pos-
sess a relatively large specific Faraday rotation �
�100–1000° /cm �Refs. 6 and 7�� and a relatively low near

infrared absorption � �0.03–0.5 cm−1 �Refs. 8 and 9��, giv-
ing each of them a high magneto-optical figure of merit
F���� /�.

Despite the usefulness of F as a material selection crite-
rion, there has been little thought given to it on a theoretical
basis. Although many papers report values of F for different
magneto-optical materials �e.g., 9.1° /dB for yttrium iron
garnet and 25.8° /dB for the same material doped with ytter-
bium and bismuth10�, a concise derivation of its dependence
on the dielectric tensor elements of a material has not been
presented previously. In this report, we therefore derive �,
�, and F each as a function of these dielectric tensor ele-
ments. Such a relationship could enable F to be maximized
with respect to operating wavelength or chemical composi-
tion, in particular. More details on the intermediate steps of
this derivation can be found in Ref. 11.

II. FARADAY ROTATION

A. General assumptions

Certain simplifying assumptions can be made in the case
of many transparent materials. We begin with Maxwell’s
equations for the electric field E, electric displacement H,
magnetic flux density B, and magnetic field H, and assume
no free charge in the material, i.e., � f =0. Additionally, we
assume that the material is a linear dielectric �i.e., D=�E,
B=�H� and that Ohm’s law is true �Jf=�E�, where �, �,
and � are all symmetric, second-rank tensors. Also, we as-
sume that the material is finite in the z direction but extends
infinitely in the x-y plane �i.e., the thin film approximation�
and has a crystal structure with at least uniaxial symmetry
about the z axis. Moreover, we assume that the material is
insulating, so that terms proportional to � are negligible. �
may be trivially set equal to the identity tensor multiplied by
�0, the permeability of free space, in the case of uniaxial
symmetry, according to Ref. 12. Finally, if 	0 is the permit-
tivity of free space, we assume that the dielectric tensor � has
the form
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� = 	0�	d − ig 0

ig 	d 0

0 0 	z
� , �1�

which is its most general form in configurations with
uniaxial symmetry, as demonstrated in Ref. 12.

B. Boundary conditions and normal modes

With the above assumptions, Maxwell’s equations reduce
to the familiar wave equation for E,

�2E − �0�
�2E

�t2 = 0. �2�

We assume the ansatz of a plane wave of magnitude E0
propagating in the z direction with angular frequency �, i.e.,
E=E0 exp	−i��t−nz /c�
. n is the complex index of refrac-
tion of the material and will be the eigenvalue when this
ansatz is substituted into Eq. �2�. Doing so reveals the
eigenvalues n


2 =	d
g and the orthonormal eigenmodes
C
= �1 /�2��x̂
 iŷ�exp	−i��t−n
z /c�
, which represent
right- and left-handed circularly polarized light,
respectively.21 Because these are the eigenmodes, any E field
in the material may be represented as a linear combination of
C+ and C−. The boundary condition that E is linearly polar-
ized in the x direction when it enters the material at z=0
implies that the equation for E is

E�z,t� = E0� cos���nz/c�
− sin���nz/c�


e−i��t−n0z/c�, �3�

where �n��n+−n−� /2 and n0��n++n−� /2 are defined thus
for convenience.

C. Transparent approximation

When �n in Eq. �3� is real, the Faraday rotation angle
between E and the x axis is simply �=tan−1�Ey /Ex�. The
specific Faraday rotation ��� /z is then −��n /c. When �n
and n0 are complex, however, the equation for � becomes
far more complicated. To simplify matters, we make the so-
called “transparent approximation,”

�	d�� 
 max��	d��, �g��, �g��� , �4�

where the above variables are defined as real quantities in the
relations 	d=	d�+ i	d� and g=g�+ ig�. Essentially, this approxi-
mation implies that the material is weakly absorbing and that
magneto-optic effects are small compared to the normal di-
electric response of the material. As long as � is far from an
electronic transition that causes Faraday rotation �see Appen-
dix�, as is the case in the near infrared with iron garnets or
orthoferrites �Ref. 4, p. 35�, this approximation is valid.

D. Derivation

We seek to solve for the components of E�z , t� for com-
plex �n and n0, from which we will calculate the specific
Faraday rotation �. It is useful, therefore, to solve for �n

and n0 in terms of the real and imaginary parts of the dielec-
tric tensor elements. It is easy to show that

n0 =
�	d

2
��1 + Q + �1 − Q� , �5�

�n =
�	d

2
��1 + Q − �1 − Q� , �6�

where Q�g /	d�1 according to the transparent approxima-
tion in Eq. �4�. Using a Taylor series expansion to first order
in Q, we find that n0��	d and �n���	d /2�Q. With some
algebraic manipulation and repeated use of the Taylor series
to leading order in b /	d�—where b can be 	d�, g�, or g�—it
can be shown that

n0 = n0� + in0� = �	d� + i
	d�

2�	d�
, �7�

�n = �n� + i�n� =
g�

2�	d�
+ i

g�

2�	d�
. �8�

E can be expressed with these complex coefficients as
E=E0v exp	−i�t+ i��n0�+ in0��
, where ���z /c and

v � � cos ��n� cosh ��n� − i sin ��n� sinh ��n�

− sin ��n� cosh ��n� − i cos ��n� sinh ��n�

 .

�9�

Using the notation of and the relationships derived in �Ref. 4,
p. 29�, ��Ey /Ex=vy /vx, so that the Faraday rotation angle �
may be written as

tan 2� =
2

1 − ���2
Re	�
 . �10�

After substituting the components of v given in Eq. �9� into
the definition of � and substituting � itself into Eq. �10�, we
arrive at the result �=−��n�, from which we can quickly
recognize that

� �
�

z
= −

�

2c

g�

�	d�
. �11�

III. ABSORPTION

In general, the two normal modes of propagation in the
material C
 will have two different absorption coefficients
�
. Because �
z is defined as twice the overall exponential
prefactor in the equation for E �since �
 refers to the decay
of the intensity of the light, which is proportional to �E�2�, we
find �
 by rearranging terms in the equation for E and dou-
bling the evanescent exponent. Writing E as a linear combi-
nation of its normal modes, we have
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E�z,t� = �E0/�2��C+ + C−� =
E0

2�2
e−��n0�+�n���1

i

e−i�t+i��n0�+�n��

+
E0

2�2
e−��n0�−�n��� 1

− i

e−i�t+i��n0�−�n��. �12�

In Eq. �12�, the first term on the right-hand side corresponds
to the right ��� mode, while the second corresponds to the
left ��� mode. Thus, by inspection, �
z /2=��n0�
�n��, or

�
 =
�

c
�	n�� 	d�

	d�



g�

	d�

 . �13�

IV. FIGURE OF MERIT

The magneto-optical figure of merit is F���� /�m, where
�m=max��
�. The reason we take the maximum of �
 to be
the characteristic absorption is both to make our figure of
merit conservative and to recognize that if the two differently
attenuated normal modes, which are transmitted through the
material, are added back together at a polarizer, the more
attenuated mode �i.e., �m� will limit the amplitude of any
linearly polarized light that can be constructed by adding
them back together. According to Eq. �13�, if we assume
g��0, �m=�+��−, so, using Eqs. �11� and �13� for � and
�+, respectively, we can write

F =
���
�+

=
�g��

2�	d� + g��
. �14�

It should be noted that, although Eq. �14� seems to show a
dependence of F on three independent variables, this is not
the case. Because the Kramers-Kronig dispersion relations
allow us to numerically calculate g� from g�, if we know the
latter as a function of frequency �, or vica versa, Eq. �14�
really only contains two independent variables.

V. DISCUSSION

The result in Eq. �14� is both intuitive and useful. It pro-
vides us with confirmation that in order to make a good
magneto-optical isolator �or other device based on Faraday
rotation�, one must pick a material which, at a given wave-
length, has a large value of g� and small values of 	d� and g�.
Furthermore, within g are encoded the quantum mechanical
origins of Faraday rotation in the material, described in detail
in the Appendix. g is tunable by choice of operating wave-
length and compositional variation �e.g., bismuth substitution
into yttrium iron garnet13�.

To illustrate the concept of maximizing F with respect to
wavelength, or the equivalent optical frequency � �given
here in units of eV, implicitly multiplied by ��, we show in
Fig. 1 the results of a calculation of g����, g����, and F���
for the diamagnetic electric dipole transition of the octahe-
dral Fe3+ in the garnet Y2.75Bi0.25Fe5O12, as described in Ref.
14. In our analysis, we make the simplifying assumption that
	d��g� in order to more clearly illustrate the behavior of F,
and, as in Ref. 14, we assume that 	d��2.32=5.29. We define
the region of the transparent approximation to be that in

which both g� /	d� and g� /	d� are less than 1 /25; this corre-
sponds to values of g� and g� less than 0.212, or
��2.20 eV, which is the region shown in Fig. 1. A maxi-
mum in F of 1665° /dB occurs within the transparent region
at �=1.25 eV �992 nm�, and at �=0.80 eV �1550 nm�,
F=1434° /dB.

These values of F are unrealistically high because we
have only considered a single transition; in garnets, tetrahe-
dral Fe3+ transitions execute Faraday rotation in the opposite
direction, leading to values of F 2 orders of magnitude lower.
Orthoferrites, however, have only this single octahedral tran-
sition; so, given the same strong internal magnetic field, sig-
nificantly higher figures of merit should be achievable. Al-
though bismuth orthoferrite, for instance, is an
antiferromagnet with a low net moment due to spin
canting,15 the partial substitution of various transition metal
cations on the Fe site may induce a large enough internal
field to lead to significant values of F.11,16

If we relax the assumption of a uniaxial material and al-
low the two nontrivial diagonal components to differ �i.e.,
	xx�	yy�, however, the material quickly becomes birefrin-
gent and F becomes less useful by itself. As discussed in Ref.
17 and, more recently, in Ref. 18, linearly birefringent mate-
rials such as orthoferrites, despite a large intrinsic �, only
admit a few degrees of Faraday rotation for any length of
material. Unlike garnets, which have a cubic structure in
bulk, the deviation of most orthoferrites from uniaxial sym-
metry at room temperature leads to significant birefringence
and therefore limits the Faraday rotation that can be achieved
in these materials. The bulk birefringence of orthoferrites
may be modified in thin films by making use of shape or
strain effects, as has been demonstrated in garnet films,19 and
such techniques may enable them to be used in thin film
magneto-optical devices.

FIG. 1. F, g�, and g� each as a function of � for the octahedral
Fe3+ diamagnetic electric dipole transition in Y2.75Bi0.25Fe5O12.
This transition exists at �0=3.15 eV, with �=0.54 eV,
�=0.27 eV, and �p

2 f =8 eV2 �Ref. 14�. Shown here is the energy
regime for which g� /	d� and g� /	d� are both less than 1 /25, so that
the transparent approximation holds true throughout.
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APPENDIX

The permittivity tensor elements of Eq. �1� are derived
from electric dipole transitions between an orbital angular
momentum singlet S term �Lz=0� and a triplet P term
�Lz=0, 
1�, subject to the selection rule �Lz= 
1.3 For the
effects to be cooperative, the orbital magnetic moments must
be aligned with the z axis. In the Faraday rotation case pre-
sented in Fig. 1, P is the excited state that is split by 2�,
creating separate transitions at �0
=�0
�. Since the am-
plitudes of the two circular polarization modes designated as

C
 vary spatially according to �1 /�2��x
 iy�, a relation for
the off-diagonal element g can be obtained from the subtrac-
tion of the two Lorentzian-shaped resonance lines of half-
width � and magnitude characterized by the product of the
squared plasma frequency �p

2 =Ne2 /me and the quantum os-
cillator strengths f
=me�0
��z�Lx
 iLy��1 /�2��x
 iy���2. In
the present example,13,20

g� + ig� � �p
2 f� �

2�0

� ��0 − ��2 − �2 + 2i��0 − ���

���0 − ��2 + �2�2 � ,

�A.1�

where f �2f
 and ���. A corresponding relation for the
diagonal element is expressed as

	d� + i	d� � 1 + �p
2 f

2
� �0

2 − �2 + �2 + 2i��

��0
2 − �2 + �2�2 + 4�2�2� . �A.2�
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