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Effect of magnetic breakdown on angle-dependent magnetoresistance in a quasi-two-dimensional
metal: An analytically solvable model
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We have developed an analytical model of angle-dependent magnetoresistance oscillations (AMROs) in a
quasi-two-dimensional metal in which magnetic breakdown occurs. The model takes account of all the con-
tributions from quasiparticles undergoing both magnetic breakdown and Bragg reflection at each junction and
allows extremely efficient simulation of data which can be compared with recent experimental results on the
organic metal k-(BEDT-TTF),Cu(NCS),. AMROs resulting from both closed and open orbits emerge naturally
at low field, and the model enables the transition to breakdown-AMROs with increasing field to be described

in detail.
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The measurement of angle-dependent magnetoresistance
oscillations (AMROS) is a powerful technique in the deter-
mination of details of the Fermi surfaces (FSs) in various
reduced-dimensionality metals.'* In many cases, the angle
dependence originates in correlations in the time-dependent
interplanar velocity of quasiparticles which traverse the FS
under the influence of the magnetic field B and hence can be
efficiently simulated by integrating up such correlations for
all quasiparticle trajectories.’~!! In high B, the additional ef-
fect of magnetic breakdown (MB) can substantially compli-
cate this picture. This effect occurs in the FSs of quasi-two-
dimensional metals such as that illustrated in Fig. 1(a) which
is described by the dispersion E(k)zﬁz(k§+k§)/ 2m”, with
effective mass m*, Fermi wave vector kg, and Brillouin zone
edges at k,=xkpcos & Because of the periodic potential,
small gaps in the dispersion open up at the Brillouin zone
edge, splitting the FS into distinct open and closed sections.
Quasiparticles orbit around the FS with constant k, when B
lies along the interlayer direction. In very low B, because of
Bragg reflection, only open orbits [Fig. 1(b)] and small
closed orbits [Fig. 1(c)] occur around the distinct sections of
the FS. In high B, mixing between the states on the two FS
sections leads to MB at the four filled points, shown in Fig.
1(a), which we termed as MB junctions. At these junctions, a
quasiparticle “tunnels” in k space between the FS sections,'?
resulting in a single large closed orbit [Fig. 1(d)].

In fact, for general values of the magnetic field, there
should be a superposition of all the orbits in Figs. 1(b)-1(d)
as well as many other intermediate possibilities in which MB
occurs at some of the MB junctions and Bragg reflection
occurs at the others. The probability p=exp(-B,/B) of MB
at each MB junction is parametrized by By, the characteristic
breakdown field.'>~!# For all finite, nonzero values of B (for
which 0 <p<1), there is a hierarchy of complex trajectories
that must be summed to account for all possible contribu-
tions to the conductivity in which MB either does or does not
occur at each MB junction. If a quasiparticle crosses N MB
junctions, one has to consider 2V as possible trajectories with
their correct probabilistic weightings, and this complicates a
direct computation of AMROs since one has to sum over
trajectories with arbitrarily long path lengths and hence arbi-
trarily large values of N. In this Brief Report, we describe a
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strategy to efficiently compute AMROs in a model system
exhibiting MB which includes explicitly all these processes,
and we use it to show how different features in real data may
arise. Our results are discussed in the context of recent
experimental work!> on the crystalline organic metal
k-(BEDT-TTF),Cu(NCS), which demonstrated that, at high
field, breakdown angle-dependent magnetoresistance oscilla-
tions (BAMROSs) could be identified in experimental data
resulting from quasiparticles executing MB orbits, although
until now an adequate theoretical description has been lack-
ing.

The Boltzmann equation gives the interlayer conductivity
o..=e*7g(Ep)(v.0.)ps as an integral over the FS, where o,
=7 'e™ v [k(r)]dt and g(Ey) is the density of states at the
Fermi energy. Our model considers the FS shown in Fig. 1(a)

%Z

FIG. 1. (a) The Fermi surface (FS) in the k,-k, plane showing
the points where magnetic breakdown can occur which are at
(ky,k,)=(xkpsin &, kg cos &) (these are called MB junctions). The
azimuthal coordinate of a quasiparticle at the point labeled QP is .
(b) An open orbit (comprising the repeated traversal of the B3; sec-
tion). (c) Closed orbit (comprising the repeated traversal of «; and
a,). (d) Breakdown orbit (comprising a;-B-a,-B,). (¢) The mag-
netic field applied in a general direction leads to orbits which are on
a cross-section perpendicular to B. Bragg reflection sets the quasi-
particle on a different cross section.
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but includes a very weak interlayer warping so that
E(k)=h>(k.+k)/2m" =21, cosk.d ., where d is the inter-
layer spacing and the interlayer hopping ¢, is small
(t, <hkp/d|). For brevity, we will henceforth write wave
vectors in units of d]' and conductivity in units of
P m'd, I*7w so that they are dimensionless. With
B=B(sin A cos ¢,sin §sin ¢,cos ), quasiparticle orbits lie
in a plane perpendicular to B with angular frequency given
by w=w,cos 8=eB cos 6/m”. Neglecting the influence
of 7, on the quasiparticle motion (which is only relevant
for 6=~90°), an orbit can be described by k()
=k?+ ncos(¢—¢+§—§), where ¢ is the azimuthal position
of the quasiparticle, given at time t by ¢=¢y+wt, and
n=kytan 6. For later convenience, we measure the azimuthal
angle ¢ counterclockwise from the a;-8, MB junction [as
shown in Fig. 1(a)]. The interplanar velocity v.(¢), which is
needed to compute o, can be written in our units as
v.(t)=sin[k.(r)].

When Bragg reflection occurs for a tilted orbit [see Fig.
1(e)], the value of k? jumps by Ak,=27sin ¢ cos &, since
only the k, value of the quasiparticle momentum changes
and hence the quasiparticle continues its orbit on a different
“slice” of the Fermi surface. We can therefore write o,
=L [T dk’[37dey sin[k,(0)] f:od(pe_(‘*’_“"’)/“” sin[k,(7)], where

kz(t)=k2+n(<p)Akz+ ncos(¢—¢+g—§), (1)

where the term n(¢)Ak, accounts for jumps in the value of kg
which occur during Bragg reflection, and we set n(¢,)=0.
The kg dependence can be easily integrated out, and we ob-
tain

27’1’ o0
0,.= f deoE, (@) f d@E_(@)e MO8k (2)
0 @

where the functions E,(x) are defined by

Ei(x) — eiin cos[x—(,b+(77/2)—§]ix/wr' (3)

Equation (2) yields a real expression for o, (one can show
straightforwardly that Im o,,=0). However, what makes Eq.
(2) challenging to evaluate is that the integrand changes de-
pending on the path taken by the quasiparticle which, at each
MB junction of the orbit, can either undergo MB tunneling
(with probability p=e 808 s 9) or Bragg reflection (with
probability g=1-p); this information is encoded in the func-
tion n(¢p) which remains constant for MB but changes by +1
for Bragg reflection.

A fruitful strategy is to follow separately the motion of
particles starting in the four different segments of the orbit,
only finally summing their contributions. We therefore write
Eq. (2) as a scalar product of vectors,

=N (Mg + Xg— L), 4)

where A, takes care of summing up all the initial positions,
X, handles the MB junctions, A;,;; describes the initial stage
of the motion up to a MB junction, and A_ describes contri-
butions between MB junctions. In Eq. (4), we define
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and X is a special case of the vector,

n
a

X, = b ; (6)

@&
B

representing the contribution at the MB junctions on the nth
slice of the FS, where n is one of the integer values taken by
the function n(e).

Each component of the vectors A, and A;,;; contributes for
a specific segment of the orbit, and the exponential factors
multiplying some of the components are present in order to
cancel the initial exponential damping of the integrand. This
damping does not depend on a specific segment, but it de-
pends on the length of trajectory before reaching this specific
segment. This exponential damping is taken into account in
the vector x,. This vector dictates the evolution of the qua-
siparticle’s path and includes all the processes at the MB
junctions. The components of the vector x,, are as follows:

o} =\ ap B+ agay! (7)

Bl =Nre 8k bpaly + ba B, (8)
n_y @ —inAk, n n—1

ay =N+ ap B+ aga, )

Ba=NPremSk: 4 ppat + bRt (10)

where a=exp(-2¢&/ w7) and b=exp[—(7-2£)/ w7] are the in-
crements in the damping exponential after traversing an « or
B segment, respectively. These recursive equations encode
all the information about the behavior at the MB junctions.
Because x,,,; =x,¢ " 2%, we can write them as a single vector
equation,
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FIG. 2. (Color online) Calculated dimensionless resistivity as a function of ¢ and @ for different values of B/Bj,. In these simulations, the
parameters are chosen to conform approximately to those appropriate for experiments on &-(BEDT-TTF),Cu(NCS), (m"=5m,, B=45 T,
and 7=3 ps) (see Refs. 15 and 16). The lines in (a) show the expected minima for Lebed oscillations (plotted in the region of
180< ¢»<360) and the expected maxima for Yamaji oscillations (plotted in the region of 0 < <<180).

x,=A_e k4 T'x,, (11)

where x,=(af,B],a3.5;), and the matrix I is given by a
product of two matrices, one describing damping and the
other taking into account the connection between orbit seg-
ments,

a 000 0 p g™ 0
= 05 00 0 gek P 0
= lo0ao0 ge™= 0 0 p

000D p 0 0 ge itk

(12)

Equation (11) is readily solved by assigning n=0 to the FS
slice initially occupied by the quasiparticle. Thus, with
xo=(I-L)'A_, where I is the 4X4 identity matrix, we
obtain

O-zz:A+' Ainit"'x+' I;(!_l:)_l ' )\—, (13)

which is the main result of this Brief Report. The expression
for the T(I-T)~" matrix is

ES ko 2 ES

t apr ars awps

1| abps w bpr-  abp?
ra-pyt=—f T PP P )

== = N\ ars a’ps t apr

ES

bpr abp? abps* w

where N=1+b2¢>-a*[g*+b*(p*—¢*)*]-2bg[ 1 +a*(p?
—g*)]cos Ak, and

r=1-betq, (15)

s=e% g+ b(p? - ¢?), (16)

t=1+b’q*—2bg cos Ak, - N, (17)

w=blge™r” + a?(p? - ¢)s). (18)

The integrals in Eq. (5) can be evaluated using the
Jacobi-Anger expansion e =3 _i*J,(z)e’*?, where
Ji(z) is a kth order Bessel function of the first kind, and
hence  [E(0)dO==]_ "] (£n)ze®* 1D where 7}
= M ~(m2+8/ (jk+ 1/ w7). This implies that

Jk(i 7]) (e2ik§e¢2§/wr _ 1)
- T (£ [(= 1)ket(m2800r _ 2ike
A= 2 iz { 7])[—( )2ik§ 2¢or ] )
ja— J(F p)(e¥keer?dom_ 1)
Jk(I 7])[(_ l)kei(ﬂ'—Zf)/a)'r_ 62ik§]
(19)

and similar techniques can be used to evaluate A;,;. Our
results reduce to the expressions given by Yagi et al.® when
p—1 or é—7%, while we can extract the expressions for
Lebed magic angles® and Yamaji maxima’ when p—0. To
study the general case, we have encoded the solution in a
computer program, separating each term contributing to Eq.
(13) into real and imaginary parts, and have summed up the
Bessel functions in Eq. (19), truncating the series at small
enough J;; this involves typically about 200 Bessel functions
in the sum.

In Fig. 2, we show the calculated resistivity as a function
of ¢ and 6 for different values of B/B, using parameters
chosen to conform approximately to those appropriate for
experiments on «x-(BEDT-TTF),Cu(NCS),. In these calcula-
tions, B, 7, and hence w7 are fixed, and only By, is varied.
When By, is very large (small B/B), no MB occurs and the
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calculated p.. shown in Figs. 2(a) and 2(b) display a rich
structure comprising features originating from both open and
closed orbits. Some of the minima are due to Lebed
oscillations® resulting from the open orbits [see Fig. 1(b)],
and their expected angular dependence is shown in the lines
in the upper part of Fig. 2(a) and is given by tan 6
=nm/ kg cos £sin ¢ for integer n=1.°> Some of the maxima
are due to Yamaji oscillations”®!7 resulting from the lenslike
closed orbits [see Fig. 1(c)], as shown in the lines in the
lower part of Fig. 2(a). The angular positions of these are
known to be given by a “caliper” measurement of the FS,'8
which a simple calculation can translate into the present
geometry as

W(n—};) (1 —sin ¢cos &' ’¢—7—T <&
tan 0 = k— 2
F (cos ¢psin &)7! otherwise.

(20)

The values of ¢ at which either the Lebed or Yamaji
oscillations dominate the calculated resistivities in
Fig. 2 are similar to those found experimentally in
k-(BEDT-TTF),Cu(NCS),.'¢

As B, decreases this structure begins to break up as MB
starts to occur, and in the limit of low B [see Figs. 2(i) and
2(j)], the only dominant orbits are breakdown orbits [see Fig.
1(d)], leading to the observation of ¢-independent Yamaji
oscillations with maxima at tan 6= W(n—i)/kp. Because the
breakdown probability is =208 <o ¢ it is noticeable [particu-
larly in Figs. 2(h) and 2(j)] that p,. is more ¢ independent at
low @ than at high 6, since MB becomes less likely as 6
increases. We note that at low fields, it is also possible to
observe Danner-Kang-Chaikin-like oscillations® from the
open sections close to ¢=0 and 6=’2—T.

The transition between the low-field and high-field behav-
ior can be studied by fixing ¢ and varying B/B,, and this is

PHYSICAL REVIEW B 77, 012402 (2008)

$=90

Pzz

B/By=0.01

- B/By=1
B/By=10
B/By=100

FIG. 3. (Color online) Calculated dimensionless resistivity as a
function of B/B for ¢=90° for the same parameters as in Fig. 2.

shown in Fig. 3. The series of Yamaji maxima (starting at
#=~55°), which dominates the response at low B/B, due to
the small lenslike orbit in Fig. 1(c), give way at high B/ B to
a different series of Yamaji maxima (starting at 6=~ 23°) due
to BAMRO:s resulting from the breakdown orbit in Fig. 1(d).
The crossover between the two regimes begins above
B/By=1 which is when the probability of MB becomes sig-
nificant.

There is a remarkable similarity between the predictions
of this model and the data of Refs. 15 and 16. It is expected
that this approach to summing all the contributions to the
MB network model will open up avenues in research on
low-dimensional metals.
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