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Optical absorption of torus-shaped metal nanoparticles in the visible range
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We theoretically and experimentally investigated the optical response of a thin metal nanotorus in the visible
range. The close formulas describing the extinction cross sections of a torus are obtained in the nonretarded
approximation. We demonstrate a good agreement between numerical simulations and experimental data. Our
findings show that the main resonance is highly sensitive to the external medium and the geometrical param-

eters of the particle.
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I. INTRODUCTION

The importance of localized surface plasmon in the opti-
cal properties of metallic nanoparticles is widely
recognized.! Recent advances in fabrication techniques have
spurred on intense research activities to understand and uti-
lize metal resonances in various applications ranging from
high-resolution near-field microscopy, negative refraction,”
and sensors based on surface-enhanced Raman scattering.’
Localized surface plasmons can be excited optically in a pro-
cess that depends on size and geometry of the particle, as
well as on the nature of the metal and the surrounding me-
dium’s dielectric functions.* Various shapes, such as rods,’
disks,® shells,’ rings,8 and rices,® were investigated for their
resolutely different characteristics. In this context, a recent
study on the localized surface plasmon eigenmodes of me-
tallic nanotorii theoretically demonstrated the existence of a
nonzero magnetic dipole moment and a vanishing electric
dipole moment at optical frequencies.'® Due to the complex-
ity of problem, the extinction cross section of a torus geom-
etry was obtained either by time consuming calculations or
by specifically dedicated numerical methods,'! and close for-
mulas are not available.

In this paper, we present the close formulas of the extinc-
tion cross sections of a small radius thin metal torus at opti-
cal frequencies. The derivation of the formulas is detailed in
Sec. II. The analytical expressions, obtained in the nonre-
tarded approximation, are analyzed and validated against nu-
merical results for different torus thicknesses d and inner
radius sizes R;, and are described in Sec. III. In addition, Sec.
IV presents a comparison between our formulas and experi-
mental extinction spectra obtained on arrays of small gold
torii. A high tunability of the torus’ plasmon resonances as a
function of the ratio d/R;, is reported. We discuss the effects
of the dielectric function of the embedding medium on plas-
mon resonance wavelengths in Sec. V. Finally, a summary is
given in Sec. VL.
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II. ANALYTICAL FORMULAS FOR EXTINCTION CROSS
SECTIONS

The geometry studied in this work consists of an isolated
subwavelength metal torus embedded in a dispersionless ho-
mogeneous external medium characterized by a dielectric
function €. The metal is described by the frequency depen-
dent dielectric function €(w). For the torus’ dimensions con-
sidered here, the nonretarted approximation can be applied
and Maxwell’s equations can be reduced to a Laplace equa-
tion for the electric potential. This quantity can be expressed
in toroidal coordinates, as shown in Fig. 1.!> The relations
between Cartesian coordinates x;,x,,x3 (origin located at the
center of gravity of the torus) and toroidal coordinates
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FIG. 1. Toroidal coordinate system where d defines the thick-
ness and R;, the inner radius of the torus. A point P anywhere in
space can be defined by ¢;,¢5,¢q3. The surface of the torus is de-
fined by ¢!.
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where a is a constant such that R;,+d/2=a coth g;. A con-
stant value of ¢, defines a circle of radius a/sinh(q,) cen-
tered at x,=a coth(g;) and x3=0. The coordinate g5 is the
azimuthal angle around the Cartesian axis x3. A constant
value ¢, =q(1’ defines the surface of a torus so that the volume
of the torus is defined by ¢, >q(1), while ¢, <q(1’ corresponds
to the volume outside the torus. The torus aspect ratio d/R;,
is given by 2 cosh(g)-1).

In the nonretarded approximation, the incident electro-
magnetic field is modeled by a uniform electrostatic field of
strength E,. Two directions of polarization are relevant, ei-
ther along the x; axis (axial polarization) or in the plane of
the torus (for example, planar polarization along the x; axis).
The associated electric potentials are —Eyx; and —FEyx,, re-
spectively. The planar polarization is experimentally impor-
tant because it corresponds to an s- or p-polarized plane
wave at normal incidence (i.e., incoming electric field points
along the nanoparticle substrate). Consequently, we will only
focus on a planar polarization in the following.

The coordinate x; is expanded in terms of toroidal har-
monics (associated Legendre functions of the second kind)

Qi1 5(cosh gy),'°
+00

X =—f> A, 000 5 (cosh g)cos(ng,)cos g3, (4)
n=0

where f=+cosh g;—cos ¢, and An0—2\2a(2 b,.0)/ m. For
the sake of clarity and convenience, the abbreviation
O »(cosh g;)=0Q)" will be used. This derivation relies on
the thin torus assumption (d <R;,). The functions Q:, appear-
ing in Eq. (4) can then be neglected for n=2.%!5 On the
basis of the underlying symmetries of this approximation, the
solutions of the Laplace equation inside and outside the torus
are expanded as follows:

1

"(r) =2 D, 0, cos(ng,)cos g3, (5)
n=0

P (r) = £ [A,P)+ B,0h]cos(ngy)cos g3, (6)
n=0

where P;' | ,(cosh g;)=P, is the associated Legendre func-
tions of the first kind'® and A,, B,, and D, are constants fixed
by boundary conditions. The condition for a uniform field far
away of the torus combined with the asymptotic behavior of
the functions P, and Q) imposes a constant value for all
B ——4\2naEO/ 7. From the continuity of the tangential
components of the electric field at ql—ql, we find D,

=A,P""(q,=¢")~B,. Rewriting in term of potential, the
continuity of the normal component of the electric field dis-
placement on the surface of the torus leads to a system of
equations involving A; and A,. The potential outside the
torus can written as the sum of the applied potential and the
potential of an electric dipole centered on the torus and
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aligned along x;. This opens the possibility to derive a for-
mula for the polarizability «; of the torus,

[elw) — € ]m W,

: 7
CyCl - 2G)G, @)

)= 4rv
where v is the volume of the particle and 7, is a dimension-
less function of ¢). Its value is deduced from the matching of
the electric dipole and the torus potentials. The functions G,
C)', and W, are defined by

m " de
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where the abbreviations Q™ ,(cosh ¢))=0"(¢}) and
P™, ,(cosh ¢0)=P"(¢)) are applied.

As the torus response is assimilated to the response of a

dipole, the expression for the extinction cross section C,,, is
obtained by the following relation:

k4
Cow=—|a|* + kIm{a}. (11)
61

Resonances in the extinction cross section are expected when
the denominator in the expression of «; verifies,

CyC1—2GyG, =0. (12)

This relation corresponds to the dispersion relation of an
even surface plasmon eigenmode characterized by M=1,
N=0. The quantum numbers M and N are related to the
eigenmode symmetries over g3 and ¢, axes, respectively. A
comprehensive description of torus eigenmodes can be found
in Ref. 10 and shows that the roots of Eq. (12) define two
frequencies w~ and ™.

Following a similar derivation, an analytical expression
for the polarizability for an incident axial field is found,

[e(w) - 61]773W3

ay =47 , 13
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where Wj is defined as
42| _aod
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The expression of polarizability reveals that the M=0,
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FIG. 2. Real part (solid line) and imaginary part (dashed line) of
the dielectric function of gold compiled form Ref. 12.

N=1 odd eigenmode is excited when the corresponding dis-
persion relation is satisfied,

) -GG =o0. (15)

III. ANALYTICAL AND NUMERICAL RESULTS

Having in mind the stringent requirements for fabricating
nanostructures, we will focus our analysis on gold torii. The
complex dielectric function e(w) of gold was compiled form
experimental data'?> and is plotted in Fig. 2 for reference.
Using the values of €(w), we can now plot the extinction
cross sections for three decreasing aspect ratios d/R;, labeled
te 1, and 7., as shown in Fig. 3(a). For this calculation, the
dielectric constant of the external medium is constant to 1.
The Legendre functions are calculated numerically by using
the algorithm developed by Segura and Gil.'®

The graph demonstrates that for an in-plane excitation
field, the torus exhibits size-dependent surface plasmon reso-
nances situated in the visible and near infrared region. Such
behavior was also reported for gold nanorings® and
nanoshells.” Using the expression of «;, these resonance
peaks can be attributed to the lower frequency w™ of the M
=1, N=0 torus surface plasmon eigenmode. Resonance
peaks due to w* are not visible due to the absorption inside
metal. For the 7, spectrum, a second peak is visible at
580 nm. We attribute this feature to Au interband electronic
transitions located between 550 and 620 nm (see Fig. 2).
Figure 3(b) shows the 7, ,, and 7, extinction cross sections
calculated for an axial excitation. To the difference with an
in-plane excitation field, the resonance positions are only
weak depending on the aspect ratio d/R;, of the torus.

To verify these analytical results, we performed numerical
simulations of the extinction cross section. Maxwell’s equa-
tions were solved by using the fully retarded Green’s dyadic
method in which the torus is discretized in small unit cells.
The large number of unit cell is necessary to obtain conver-
gent spectra. Extinction cross sections obtained by this nu-
merical method are plotted in red in Fig. 3(a), and in Fig.
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FIG. 3. (Color online) Extinction cross sections calculated by
Eq. (11) (black curves) and by the dyadic Green method (red/gray
curves) (a) for planar applied field and (b) for an axial applied field.
Three different form ratios are considered: torus 7,, d=21 nm and
R;,=21 nm (d/R;,=1); t, d=15 nm and R;,=27 nm (d/R;,=0.55);
and 7., d=12 nm and R;,=30 nm (d/R;,=0.4). The external me-
dium is air.

3(b), for a planar and axial excitation field, respectively. For
both excitations, a good agreement is found between analyti-
cal and numerical extinction cross sections. In particular, the
resonances centered around 498 nm for an axial illumination
are independent of the aspect ratio. For an electric field po-
larized along the x; axis, the numerical simulations also ex-
hibit the size-dependent plasmon resonance observed with
the analytical derivation. For all the aspect ratios considered
here, the peak positions and the absolute weights of the reso-
nances are well reproduced by our analytical model. The
heights of the peaks are lower in Green dyadic method,
mainly due to the fact that torus is not ideally discretized.
Nevertheless, these numerical calculations confirm the valid-
ity of our different approximations notably in the nonre-
tarded case.

IV. EXPERIMENTAL RESULTS

In order to compare our theoretical results with experi-
mental data, arrays of Au nanorings were fabricated by
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FIG. 4. Measured extinction spectra for different ratios of d/R;,;:
torus 7;, d=31 nm and R;,=32 nm (d/R;,=0.97); t,, d=28 nm and
R;,=33nm (d/R;,=0.85); 3, d=25nm and R;,=35nm
(d/R;,=0.71); and 14, d=20 nm and R;,=40 nm (d/R;,=0.5). The
external medium is air. Inset: electron micrograph of gold nanorings
prepared by electron-beam lithography. The period of the array is
fixed to I'=500 nm.

electron-beam lithography.'® An electron micrograph of a
typical sample is shown in the inset of Fig. 4. The period of
the arrays (I'=500 nm) is large enough to neglect near-field
interactions between particles. The nanorings have external
diameters ranging from 80 to 130 nm and a height of 50 nm.
Optical properties of the Au nanorings were investigated by
extinction spectroscopy [ext=log(T,/T)]. The samples are il-
luminated by an incident plane wave with its E-field vector
oriented in the plane of particles. Measured spectra for dif-
ferent ratios of d/R,, are plotted in Fig. 4.

Optical spectra were measured for many samples present-
ing a large range of aspect ratio. The effect of the glass
substrate is qualitatively incorporated in our analytical theory
by considering that the torii are surrounded by a material
with dielectric constant €, =2.12. These theoretical results are
compared to our experimental findings summarized in Fig. 5.
The plot shows the position of the resonance wavelengths as
a function of d/R;,. A good agreement is found for aspect
ratios ranging between 0.4 and 1.2. In particular, the redshift
of resonance wavelengths observed for increasing d/R;, is
well reproduced by the M =1, N=0 eigenmode of the torus.
We note that this particular eigenmode has the same proper-
ties as the symmetric M =1 mode of the ring reported in Ref.
8.

V. TUNABILITY OF THE TORUS PLASMON
RESONANCES AS A FUNCTION OF THE EMBEDDING
MEDIUM

Finally, we would like to address the question of the de-
pendence of the resonance wavelength to the surrounding
medium. Figure 6 shows the spectral position of the reso-
nance versus the refractive index of the environment n;
= y/e_l for an in-plane electric field. We found a high sensitiv-
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FIG. 5. Experimental (square dots) and analytical (solid line)
resonance wavelengths versus d/R;, for an in-plane excitation field.

ity of the resonance to changes of the surrounding refractive
index with a pronounced redshift of the peak for increasing
values of n;. This shift drastically depends on the aspect ratio
of the torus with the largest shift observed for small d/R;,. A
sensitivity of 444 nm and/or refractive index unit (RIU) is
calculated for d/R;,=1. The sensitivity increases from
880 nm/RIU for d/R;,=0.5 to 1660 nm/RIU for d/R;,=0.2,
the smallest aspect ratio considered here. This sensitivity is
in agreement with experimental results obtained with Au
nanorings.!” We have also performed calculations for an
axial excitation field (data not shown). Resonance wave-
lengths obtained in this case present a very low sensitivity to
the nature of the surrounding medium (7 nm/RIU) which is
independent on the aspect ratio.

VI. SUMMARY

In conclusion, we derived analytical expressions for the
extinction cross sections of thin metal nanotorii, and we

(um)

Resonance Wavelength

1 1.5 2

Refractive index n;

FIG. 6. Resonance wavelength for planar excitation field versus
refractive index n;. Three values of d/R;, are considered: 1, 0.5,
and 0.2.
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found a good agreement with Green’s dyadic numerical cal-
culations. Our numerical derivations are also in agreement
with experimental data indicating the validity of our ap-
proach. The physical origin of the resonances is very similar
to previously reported spectral response of ringlike particles.
By changing the refractive index of the environment of the
particles, we have shown a high sensitivity of the plasmon
peaks to the external medium. The sensitivity can be modu-
lated by changing the aspect ratio of the inner to outer diam-
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eters of the torus. The high sensitivity reported here suggests
the potential utilization of gold nanotorus for ultrasensitive
refractive index sensor applications.
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