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We study Fermi edge singularities in photoabsorption spectra of generic mesoscopic systems such as quan-
tum dots or nanoparticles. We predict deviations from macroscopic-metallic behavior and propose experimen-
tal setups for the observation of these effects. The theory is based on the model of a localized, or rank one,
perturbation caused by the �core� hole left behind after the photoexcitation of an electron into the conduction
band. The photoabsorption spectra result from the competition between two many-body responses, Anderson’s
orthogonality catastrophe and the Mahan-Nozières-DeDominicis contribution. Both mechanisms depend on the
system size through the number of particles and, more importantly, fluctuations produced by the coherence
characteristic of mesoscopic samples. The latter lead to a modification of the dipole matrix element and trigger
one of our key results: a rounded K-edge typically found in metals will turn into a �slightly� peaked edge on
average in the mesoscopic regime. We consider in detail the effect of the “bound state” produced by the core
hole.
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I. INTRODUCTION

Fermi edge singularities �FES� are among the simplest
many-body effects found in condensed matter physics, and
have been studied extensively for bulk systems.1–3 The con-
tinuing progress in the fabrication and experimental investi-
gation of mesoscopic systems makes probable that such sin-
gularities could be observable relatively soon in the
photoabsorption of quantum dots or nanoparticles, for which
interference effects, and thus mesoscopic fluctuations, have
to be taken into account. �For observation of FES in a trans-
port experiment, see Ref. 4.� The study of Fermi edge singu-
larities in this mesoscopic regime is the topic of the present
paper; it extends and deepens our previous results.5,6

For macroscopic systems, the physics we discuss is
known as the “x-ray edge problem” and is well established
and understood.1–3 In an x-ray absorption process, a core
electron is excited into the conduction band. It leaves behind
a positively charged hole that can be considered as a static
impurity. For electronic densities corresponding to an inter-
action parameter rs�1, as realized typically in both semi-
conductors and metals, the screening length is of the order of
the Fermi wavelength. This impurity can therefore be con-
sidered as localized �pointlike� once screening by the con-
duction electrons is taken into account. A similar situation
arises after the excitation of a valence electron in semicon-
ductor photoluminescence studies in which recombination
occurs at an impurity.

The conduction electrons respond to such an abrupt,
nonadiabatic perturbation by slightly adjusting their single
particle energies and wave functions. Although the overlap
of the single particle states before and after the perturbation
is very close to one, the overlap � between the initial and
final many-body ground states tends to zero in the thermo-
dynamic limit as a power of the number M of particles. This
effect is known as the Anderson orthogonality catastrophe
�AOC�.7 As a result of AOC, the photoabsorption cross sec-

tion A��� will be power law suppressed for energies � near
the threshold energy �Fermi edge� �th.

In the x-ray edge problem, AOC competes with a second,
counteracting many-body response, also related to screening
of the impurity potential by the conduction electrons. It is
often referred to as Mahan’s exciton, Mahan’s enhancement,
or the Mahan-Nozières-DeDominicis �MND� contribution.1,2

In contrast to AOC which acts universally, the MND re-
sponse depends on fulfilling dipole selection rules. It there-
fore depends on the symmetry of the conduction and core
states. We will distinguish two symmetries of the core elec-
tron wave function throughout the paper: s-like symmetry
�corresponding to the K shell of the atom� and p-like sym-
metry �L2,3 shell�. The respective thresholds are known as the
K and L edge.

The bulk x-ray edge problem was analyzed in detail using
different techniques. Early approaches by Mahan1 and
Nozières and co-workers2 treated it based on field-theoretical
methods and diagrammatic perturbation theory in analogy to
the Kondo problem.8 Schotte and Schotte9 used a Fermi
golden rule approach and employed bosonization techniques
for the rotationally invariant, effectively one-dimensional,
scattering potential. The x-ray edge problem was also ad-
dressed by, among others, Friedel10 and Hopfield.11 In the
1980s Tanabe and Ohtaka demonstrated in detail the suitabil-
ity of a Fermi golden rule approach.3,12 This method explic-
itly uses the fact that the impurity in the x-ray edge problem
is static rather than dynamic, as in the Kondo problem. The
spirit of the Fermi golden rule approach is illustrated sche-
matically in Fig. 1; it is the approach used here.

The effect of a local perturbation such as the one induced
by the core hole is characterized by the partial-wave phase
shifts �l �at the Fermi energy� for each orbital channel. The
phase shifts have to obey the Friedel sum rule Z=�l2�2l
+1��l /� with the screening charge Z=−1 in our case. The
factor of two accounts for spin.

The result of all the bulk techniques is that the photoab-
sorption cross section A��� near threshold �th has the form

PHYSICAL REVIEW B 76, 245419 �2007�

1098-0121/2007/76�24�/245419�16� ©2007 The American Physical Society245419-1

http://dx.doi.org/10.1103/PhysRevB.76.245419


A��� � �� − �th�−2���lo
�/��+�l2�2l+1���l/��2

. �1�

The first term in the exponent involves only the optically
active channel �labeled l0� and is the MND contribution,
whereas the second term sums over all channels and corre-
sponds to AOC. Note the different functional dependence on
the phase shifts, linear and quadratic, respectively.

We will, throughout this paper, assume that �i� the local
part of the conduction electron’s wave function—at the lat-
tice level—is featureless �i.e., of s-type� and �ii� the pertur-
bation created by the core hole is spherically symmetric. In
the bulk, it follows from the first assumption that the opti-
cally active channel, for which core and conduction electrons
are linked by the dipole operator, is l0=1 for K-shell core
electrons and l0=0 for the L shell. As a consequence, for the
K shell, the perturbation acts on a channel which is not op-
tically active. Therefore, the absorption spectrum is only af-
fected by AOC in the l=0 channel, yielding a suppression, or
rounding, of the edge of the photoabsorption spectra
�“rounded edge”�. On the other hand, for L-shell core elec-
trons, the optically active channel is the one affected by the
perturbation, and the corresponding materials typically show
an enhancement of the photoabsorption at the threshold fre-
quency �“peaked edge”�. For a detailed analysis of the x-ray
spectra of bulk Li, Na, Mg, and Al, we refer the reader to
Ref. 13, where in addition effects due to phonon excitations,
the finite lifetime of the hole, and the deviation from spheri-

cal symmetry of both the local part of the conduction elec-
tron state and the perturbing potential are considered, all of
which we will neglect here in order to focus on the essential
mesoscopic physics.

In semiconductors, typically only s-like conduction elec-
trons exist which, consequently, have to provide all the
screening of the core hole. From the Friedel sum rule we
then find �0=−� /2. This implies that we are in the strong
perturbation regime which is typically not realized in bulk
metals or related nanoscale structures like metallic nanopar-
ticles. We shall see below that this has significant physical
consequences related to the formation of a bound state.

In contrast, in metals, electrons of all channels �l typically
contribute to Friedel screening. Thus the magnitude of the
phase shift in the optically active channel is not � /2. How-
ever, the x-ray edge physics can be successfully captured
based on �0 alone, i.e., by assuming a spherically symmetric
core hole potential.2,3,13,14 This remains true in the meso-
scopic regime. For this situation, then, one considers ��0 �
�� /2 even though there is only one phase shift in the
model. Thus, to address both the semiconductor and metal
situations, we include results for the full range ��0 � �� /2.

The above description applies to clean bulk systems. The
question we would like to address in this paper is whether
the results found for the edge behavior in metals also hold, or
have to be modified, when considering smaller, fully coher-
ent, mesoscopic or even nanoscopic samples. Here, we study
the universal class of chaotic ballistic systems, to which a
random matrix model of the energy levels and wave func-
tions applies.

Reducing the size of the system will affect the Fermi edge
singularity in various ways. First of all, the number of par-
ticles �electrons� M in the system will be finite—we are not
in the thermodynamic limit any longer—and for instance the
power law dependence of ��M� causes, in fact, a huge dif-
ference in the efficiency of AOC in systems with M �1023

from those with, say, M �100 electrons. Secondly, as the
system becomes fully coherent, a plane wave �Bloch wave�
description of the conduction electrons does not apply any
longer. Rather, we need the actual wave function of the spe-
cific mesoscopic systems to be described. One consequence
is that, since the confining potential will in general destroy
spherical symmetry, angular momentum is lost as a quantum
number, and the dipole selections rules need to be modified.
Furthermore, interference effects, and therefore mesoscopic
fluctuations, need to be taken into account. All of these affect
both the Anderson orthogonality catastrophe and the Mahan-
Nozières-DeDominicis contribution.

Aspects of AOC in disordered mesoscopic systems have
been addressed in Refs. 15 and 16. AOC and x-ray photo-
emission spectra �where the excited core electron leaves the
metal and the edge behavior is determined by the AOC re-
sponse alone� were studied in Ref. 17 for impure simple
metals. AOC in ballistic chaotic systems was the subject of
the first paper6 in this series. Our main findings—in line with
the results in Refs. 15 and 16—are �i� incompleteness of
AOC due to the finite number of particles, and �ii� a broad
distribution of AOC overlaps as a result of mesoscopic fluc-
tuations which �iii� are dominated by the levels around the
Fermi energy.
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FIG. 1. �Color online� Schematic illustrating processes contrib-
uting to the photoabsorption cross section in a Fermi golden rule
approach. Conduction electrons �mean level spacing d� in a generic
chaotic system initially occupy levels 	0 . . .	M−1 �filled� and
	M . . .	N−1 �empty�, that lower to 
0 . . .
N−1 when the core electron
c is excited. Optically active electrons contribute via the coherent
superposition of �a� direct and �b� replacement processes. In addi-
tion, one �or more� electron-hole pairs can be generated in shakeup
processes, �c� for optically active channel and �d� for spectator
channel, which are especially important away from threshold. Their
presence reflects the suddenness of the perturbation. The vertical
arrow in �a� is the bare process which represents the photoabsorp-
tion cross section in the naive picture without many-body effects. It
depends only on the dipole matrix element wcj between the core
electron c and the single particle state j, Ab���� �wcj�2. The effect of
AOC is accounted for in the direct process by the additional factor
���2�1, Ad���� �wc��2 ���2.
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For �mesoscopic� x-ray absorption or photoluminescence
spectra both the AOC and MND effects are of importance.
The MND response will, of course, also depend on the sys-
tem size. However, the relative strength of the two compet-
ing many-body responses might change as the system
shrinks. Optical FES in one-dimensional quantum wire sys-
tems have been studied both in experiment18 and theory.19 In
contrast, FES in the photoabsorption spectra of two- or three-
dimensional mesoscopic system have, to the best of our
knowledge, not been addressed in literature.

The present paper aims at filling this gap. It is organized
as follows. In Sec. II we introduce our model for the �rank
one� perturbation of chaotic conduction electrons described
by random matrix theory, the dipole matrix element, and how
spin is taken into account. In Sec. III we consider in more
detail the formation and role of the bound state appearing for
strong perturbations. In Sec. IV we explain our �Fermi
golden rule� approach to the photoabsorption cross section.
The results are presented in Sec. VI for the average photo-
absorption cross sections at the K and L edges, and in Sec.
VII for the mesoscopic fluctuations. We devote Sec. VIII to
the discussion of feasible experimental setups that would al-
low probing of our results, and close with a summary in Sec.
IX.

II. MODEL

A. Initial and final Hamiltonian

In our model of a quantum dot or nanoparticle, the elec-
trons are confined in a coherent, irregularly shaped system.
We describe the unperturbed system �the conduction elec-
trons before a core electron is excited� by the Hamiltonian

Ĥ0 = �
k,�

	kck,�
† ck,� �2�

with discrete eigenenergies 	k �k=0, . . . ,N−1�. The operator
ck,�

† creates a particle with spin �= ↑ ,↓ in the orbital k�r��.
The energy levels of the unperturbed system follow the sta-
tistics of random matrix theory20,21 �RMT� and are character-
ized by a mean level spacing d; cf. Fig. 1. As we want to
maintain this mean level spacing constant across the entire
spectra, we shall furthermore make use of Dyson’s circular
ensembles20,22 rather than Wigner Gaussian ensembles. We
will distinguish situations where time-reversal symmetry is
present �circular orthogonal ensemble, COE� from those
where it is broken by, e.g., the presence of a magnetic field
�circular unitary ensemble, CUE�.20,21 As the number of elec-
trons does not change in the processes that we consider, we
drop the charging energy term normally present in isolated
mesoscopic systems. Furthermore, we neglect any change in
the residual electron-electron interactions.23

This initial situation is perturbed by a rank one or contact

potential V̂c acting at the location r�c of the core electron.1–3

Models for perturbations which are more general than rank
one can also be considered.24 It is necessary to consider
them, for instance, for high density electron gas �rs�1� for
which the screening length is significantly larger than the
Fermi wavelength. For the density range corresponding to

rs�1 which we consider here �as realized typically in both
semiconductors and metals�, the screening length is of the
order of the Fermi wavelength, implying that, on the scale
that can be probed quantum mechanically, the perturbing po-
tential can be considered as local. As a consequence the rank
one approximation is appropriate. The strength of the inter-
action between the core hole and the conduction electrons is
quantified by the parameter vc�0, which in turn is related to
the phase shift in the band center, �0, by6,25

�0 = arctan
�vc

d
. �3�

In addition to vc, the effectiveness of the perturbation de-
pends also on the wave functions’ amplitude k�r�c� at the
position of the perturbation, which, in a mesoscopic system,
will vary from state to state. In terms of uk�	�k�r�c� so
that 
�uk�2�=1 �with � denoting the volume in which the
electrons are confined�, the perturbation can be expressed as

V̂c = vc�
kk�

uk
*uk�ck

†ck�. �4�

For reasons of comparison, we also define the bulklike
situation: Equidistant unperturbed energy levels a distance d
apart and constant uk�1 throughout the sample. More de-
tails concerning this model are given in Sec. II of Ref. 6 �the
first paper of the series�.

Introducing c̃�,�
† as creator of a particle in the perturbed

orbital ���r��, we obtain the diagonal form of the perturbed
Hamiltonian

Ĥ = Ĥ0 + V̂c = �
�,�


�c̃�,�
† c̃�,�. �5�

�Note that we will use Greek letters to refer to the perturbed
system.� In analogy to uk, we refer to the perturbed ampli-
tudes by ũ��	����r�c�. Finally, we define the transforma-
tion matrix a= �a�k�,

�� = �
k=0

N−1

a�kk, �6�

for later use. For relations between uk, ũ�, ak�, and the 	k ,
�

see Eqs. �15�–�19� in Ref. 6.
We denote the M-particle, Slater-determinant ground

states of the unperturbed and the perturbed system by ��0�
and ��0�, respectively. Their overlap is the Anderson overlap
� which we considered in detail in Ref. 6; see also Ref. 26.
In the case of a rank one perturbation, it can be expressed as
a function of the unperturbed and perturbed energy levels
alone,3

���2 = �
�0��0��2 = �
i=0

M−1

�
j=M

N−1
�
 j − 	i��	 j − 
i�
�
 j − 
i��	 j − 	i�

. �7�

Note that, whenever possible, we use the index j for levels
above EF �� for perturbed levels�, and i ��� for levels below
EF. Furthermore the index k ��� is reserved for reference to
all unperturbed �perturbed� levels.
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B. Dipole matrix element

The dipole operator is D̂= �eE0 /cm��e� · p� +H.c.� where E0

is the magnitude of the electric field and e� is its polarization.
The dipole matrix element

wc� =
def


c�D̂���� �8�

is therefore proportional to the overlap of the perturbed wave
function �� with the derivative along e� of the core electron
wave function �c�. For K-shell core electrons �spherically
symmetric�, c is, on the scale of the Fermi wavelength of
the conduction electrons, essentially a � function. In that
case, wc� is proportional to the derivative of �� along e�. For
L-shell core electrons on the other hand, the derivative of
�c� is approximately a � function, and therefore wc� is in
this case proportional to �� itself rather than to its derivative.
As a consequence, one has

wc� � ��� �r�c� � ũ�� , K edge,

���r�c� � ũ�, L edge.
�9�

In the bulk, this implies precisely the selection rules men-
tioned in the Introduction, namely that the optically active
channel �with nonzero wc�� is l=1 for K-shell core electrons
and l=0 for L-shell core electrons. Since only the l=0 chan-
nel is affected by the rank-one perturbation in Eq. �4�, there
is no MND enhancement for the K shell, and thus it has a
rounded Fermi edge due to AOC.

In the mesoscopic case, however, angular symmetry is
usually broken by the confining potential. Assuming chaotic
classical dynamics, the magnitude of the unperturbed wave
functions, ����2, and the corresponding derivatives, ���� �2, at
a given position are statistically independent and both obey
the Porter-Thomas distribution.21,27 The perturbed wave
functions and their derivatives can then be found from the
transformation Eq. �6�. Thus, in a mesoscopic situation, the
MND response does not vanish even at the K edge. We shall
see below that this indeed leads to qualitative differences in
comparison with the bulk behavior: We predict a slightly
peaked, rather than rounded, K edge in generic nanosystems.
At the L edge, there is a strong MND response, similar to
that in the bulk metallic case, because the dipole matrix ele-
ment is directly proportional to the amplitude of the per-
turbed wave function at the position of the perturbation.

III. BOUND STATE

When the perturbation strength exceeds a certain value,
approximately vc /d�−1, the lowest perturbed energy level

0 will have an energy significantly below all the other levels
�Fig. 1�. As shown in Ref. 6 the average position 
0 is given
in this regime by


0 − 	0 = −
Nd

ed/�vc� − 1
, �10�

and its fluctuations are negligible.
As discussed by Friedel28 and others,3,29,30 the existence

of this low energy level is associated with the formation of a

bound state, which completely screens the core hole pertur-
bation potential. To illustrate this we employ the Berry-Voros
conjecture31,32 to model the unperturbed wave functions of
the chaotic mesoscopic system as a random superposition of
plane waves. Figure 2�a� shows wave-function intensities for
both the low-lying eigenstates and those at the Fermi level.
The final wave function intensities are then shown upon ap-
plication of a weak �Fig. 2�b�� or strong �Fig. 2�c�� rank one
perturbation. Whereas the small perturbation has little effect
on the wave-function probabilities, the situation changes
strikingly when a strong perturbation is applied: The lowest
perturbed eigenstate �0 concentrates at the position of the
perturbation. The extension of the peak in ��0�2 is of order
the Fermi wavelength 
F, which for systems with electronic
densities corresponding to rs�1, to which our rank one per-
turbation model applies, is of order the screening length

screen.
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FIG. 2. �Color online� Chaotic single-particle wave functions
subject to a rank one perturbation. �a� Unperturbed and �b�, �c�
perturbed wave-function probabilities for i=0,1 ,2 and M, i.e., for
the lowest three eigenstates and the state at the Fermi energy EF.
We assume a two-dimensional chaotic system �N=100, M =50�
with unperturbed energies at their mean �bulklike� values and model
the unperturbed wave functions as random superpositions of 100
plane waves. The intensities along a line that contains the perturba-
tion, located at r�c=0, are shown. The normalization volume of the
wave function is �=N. In �b�, a weak perturbation causes only
slight changes in the intensities. In contrast, a strong perturbation in
�c� causes the wave-function intensity ��0�2 corresponding to the
bound state to pile up at the position of the perturbation. Screening
of the core hole is done by the bound state on a length scale of the
order of the Fermi wavelength, 
F, indicated by the black bar.
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The existence of a bound state has several important con-
sequences. The first is the existence of a secondary band of
absorption corresponding to final states for which the bound
state is unoccupied �formation of a shakeup pair involving
the bound state�. The secondary band is well separated in
energy from the main band �where the bound state is filled in
the final state�, and we shall not consider it here in much
detail.

Another consequence of direct relevance to our study is
the effect of the bound state on the magnitude of the dipole
matrix elements because of the large amplitude �0�r�c�. For
strong perturbation, the probability density ��0�r�c��2 at r�c is
significantly larger than the sum for all the other states �we
return to this point below�. In contrast, this is not the case for
the derivative of �0 at r�c, since the largeness of the amplitude
is compensated by the fact that �0 possesses a maximum in
the vicinity of r�c. Therefore, even for strong interaction, the
bound state is not going to play a dominant role for the
K-edge absorption spectra. On the other hand, for the L edge,
where the dipole matrix element is proportional to ��, re-
placement processes through the bound state will, for strong
perturbation, dominate the absorption.

In light of this discussion of the bound state, it is instruc-
tive to see how the Friedel sum rule is treated in our model
Hamiltonian approach, Eqs. �2�–�5�, in the semiconductor
case in which there is a single type of conduction electron.
Indeed, in this model, the Coulomb interaction between elec-
trons is neglected, but the fact that the charge of the core
hole is +e is taken into account by requiring that the phase

shift at the Fermi energy caused by V̂c is �0=−� /2. In this
way each spin channel provides half a charge to screen the
core hole.

Looking at the energy dependence of the phase shift for
our model, one realizes, however, that the manner of this
screening is somewhat unintuitive. The most natural initial
supposition is that the phase shift decreases smoothly from 0
at the bottom of the band �i.e., little effect of the perturbation
on states at the band edge� to −� /2 at the Fermi energy.
However, what happens in practice is that the phase shift
starts at −� at the bottom of the band and increases gradually
to −� /2 at the Fermi energy. In other words, the bound state
provides a charge −2e because both spin species have to be
taken into account, which means that the core hole is actually
overscreened. All the other �perturbed� wave functions, in-
stead of participating in the screening, are actually pushed
away from the location of the perturbation, providing an ef-
fective charge +e near the core hole, leaving, of course, the
required net screening charge of −e.

A natural question is whether the scenario described
above actually happens in physical �experimental� systems,
where Coulomb interaction between the electrons and chem-
istry at the lattice level both occur. It is clear, for instance,
that the two electrons occupying the bound state interact
strongly with each other. If this interaction energy is larger
than the difference between the bound state and Fermi ener-
gies, it will prevent double occupation of the bound state and
give rise to a local moment and so Kondo physics. For the
experimental realizations we have in mind, however, the
bound state wave function will be spread out on the scale of

the Fermi wavelength �it is not a deep level of an impurity�,
and simple estimates show that a local moment is not ex-
pected.

Assuming Kondo physics is not involved, we now have to
consider how “real” the bound state actually is in practice
and if its properties are the same in experimental systems as
in our model. This question is, of course, not specific to the
mesoscopic problem. As early as 1952, Friedel discussed in
detail the physical reality of the bound state in rank one
models28 �see also the discussion by Combescot and
Nozières in Ref. 29�. For example, the screening of the core
hole at the lithium K edge is done by the 2s conduction
electrons, while the sodium L2,3 edge is screened by its 3s
conduction electrons.28 It is precisely those s orbitals which,
according to the picture developed here following Ref. 28,
take the role of a bound state.

Thus the bound state is a physical reality. But one should
bear in mind that its extension in space, which controls the
size of the dipole matrix element �c0, can be heavily influ-
enced by the local chemistry or other factors not described
by our model. In the two limiting cases—�1� if the absorp-
tion is entirely dominated by the bound state �L shell with
strong perturbation� or �2� if the bound state is playing a
negligible role �weak perturbation or K shell�—the fact that
�c0 may not have the proper physical value is of little rel-
evance: In the former case, only an overall prefactor is in-
volved in which we are in any case not interested, and in the
latter case, an incorrect magnitude will obviously not affect
at all the description. Note furthermore that in the strong
perturbation limit, since the phase shift at the Fermi energy is
essentially independent of vc for vc /d�−1, vccan be chosen
so that the energy of the bound state is the physical one.

The situation is more complicated for intermediate pertur-
bation strengths, where the processes involving the bound
state have a similar contribution to the absorption spectra as
those not involving the bound state �L shell with vc /d�−1�.
Since our model has only one parameter, it cannot reproduce
arbitrary values of both the phase shift at the Fermi energy
and the ratio between �c0 and the mean value of the other
dipole matrix elements. In such a situation, it is then neces-
sary to look into the details of the bound state for the physi-
cal system before employing our model. We shall come back
to this point in Sec. VIII when discussing particular mesos-
copic realizations. However, in the following, we mainly dis-
cuss the limiting cases for which the physical relevance is
unambiguous.

IV. METHOD

We will see in this section that the absorption amplitude
A��� for the L edge is determined entirely by the unper-
turbed and perturbed eigenvalues �	� and �
�. For the K
edge, knowledge of the derivative of the unperturbed wave
functions at rc is also required. For a chaotic system, these
latter are statistically independent of the spectra and obey a
Porter-Thomas distribution,27 and thus do not pose any par-
ticular difficulty. To study numerically the �statistical� prop-
erties of A���, we therefore generate one particle spectra
with the known joint distribution25 by using a Metropolis

FERMI EDGE SINGULARITIES IN THE MESOSCOPIC… PHYSICAL REVIEW B 76, 245419 �2007�

245419-5



algorithm and deduce from them all the statistical quantities
needed to characterize the absorption spectra. �Some details
about the algorithm we have used are given in Ref. 33.� This
section derives the basic expressions needed for this purpose.

Photoabsorption cross section. Following the Fermi
golden rule based treatment by Tanabe and Ohtaka,3 we write
the photoabsorption cross section A��� in terms of the matrix

element of the dipole operator D̂ between the unperturbed
many-body ground state with the core level c filled, ��0

c� and
energy E0

c, and the perturbed �final� many-body state with an
additional conduction electron �� f� at energy Ef =E0

c +��,

A��� =
2�

�
�

f

�
� f�D̂��0
c��2��Ef − E0

c − ��� . �11�

For clarity, we consider spinless electrons for now, and
return at the end of this section to the modification intro-
duced by spins. The unperturbed ground state, therefore,
comprises M electrons on levels 0 to M −1 with the core
level filled,

��0
c� = �

i=0

M−1

ci
†cc

†�0� . �12�

The core electron is created �annihilated� by the operator
cc

†�cc�. In the perturbed final states �� f� there are M +1 con-
duction electrons and the core level is empty,

�� f� = �
� filled

c̃�
†�0� . �13�

The dipole operator in second quantized form is

D̂ = �
�=0

N−1

wc��c̃�
†cc + H.c.� . �14�

The dipole matrix elements wc� were discussed in Sec. II B.
Photoabsorption processes at threshold. Let us begin our

discussion with the absorption at the threshold energy �th.
Then, the only possible final state is the perturbed ground
state with the core electron excited to level M just above the
Fermi energy; no shakeup processes are possible. The direct
process, Fig. 1�a�, is defined by keeping only �=M in the
dipole operator �14�—the term which acts between the core
electron and the lowest unfilled level. The contribution of the
direct process is, then,

Ad��th� =
2�

�
�
0�c̃0c̃1 . . . c̃M�wcMc̃M

† cc�cM−1
† . . . c1

†c0
†cc

†�0��2

=
2�

�
�wcM�2�
�0��0��2 � �wcM�2���2. �15�

Introducing for reference the amplitude for the bare process
in which many-body effects are ignored, A0��th�� �wcM�2, the
contribution of the direct process can be expressed as
Ad��th�=A0��th� ���2. This makes evident the role of AOC
and the fact that Ad vanishes in the thermodynamic limit.

Even at threshold the direct term is not the only contribu-
tion to the absorption amplitude: Since c̃��c�, the terms �
�M in Eq. �14� are nonzero. These are known as replace-

ment processes, Fig. 1�b�. In terms of the generalized over-
lap,

��̄� � 
�0�c̃�
† c̃���0� , �16�

of the unperturbed ground state with the perturbed state in
which the particle in the orbital ��M −1 has been promoted
to the orbital ��M, the total photoabsorption cross section
at threshold reads

Ad,r��th� =
2�

�
��0��

�=0

M

c̃��
�=0

M

wc�c̃�
† cc �

i=M−1

0

ci
†cc

†�0��2

=
2�

�
�wcM��1 − �

�=0

M−1 wc���̄M

wcM�
��2

. �17�

Direct and replacement contribution away from threshold.
For higher photon energies, such that the final state is ob-
tained by adding a particle in the orbital ��M to the per-
turbed ground state �0, the last equation is readily general-
ized by the substitution M→�,

Ad,r��� =
2�

�
�wc���1 − �

�=0

M−1 wc���̄�

wc��
��2

. �18�

The replacement overlap enters the photoabsorption cross
section via the ratio wc���̄� / �wc��� in the second term. This
ratio can be expressed as a product of eigenvalue differences
using Eqs. �15�–�19� of Ref. 6. To this end, we need the
dipole matrix elements wc� discussed in Sec. II B. Recalling
that wc�=��� �r�c�� ũ�� at the K edge, and wc�=���r�c�� ũ� at
the L edge, we express the ratio in Eq. �18� as

wc���̄�

wc��
� F�

ũ���̄�

ũ��
= F� �

�=0
���

M−1

� − 
�


� − 
�
�
k=0

M−1
	k − 
�

	k − 
�

,

�19�

where

F� �ũ�ũ�� /ũ�ũ�� , K edge,

1, L edge
�20�

carries the symmetry dependence of the dipole matrix ele-
ments. The structure of Eq. �18� suggests furthermore the
introduction of a function p���,

p��� � wc��1 − �
�=0

M−1 wc���̄�

wc��
� , �21�

which can be computed using Eq. �19�.
Shakeup processes. When the energy of the incident pho-

ton is at least two level spacings above the threshold energy,
particle-hole pairs can be created in the final state, Fig. 1�c�.
In the one-pair shakeup contribution, two electrons are ex-
cited above EF in levels �1 and �2 with the level �2 empty in
the final state. This situation can be handled in close analogy
to the replacement process above by introducing a renum-
bered level sequence: Let �
�

1� be a renumbering of �
�� in
which the level 
�2

is skipped whereas 
�1
and 
�2

are ap-
pended as elements 
M−1

1 and 
M
1 . Let �ũ1� and �ũ�1� be simi-
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larly renumbered sequences. Then, the one-pair shakeup
photoabsorption cross section is3

Ash��� =
2�

�
�

���2,�1,�2���

���̄2�1
p1��2��2, �22�

where

p1��2� � wc�2 �
�=0

M−1 �F�
1 �

�=0����

M−1

�

1 − 
M
1


�
1 − 
�

1 �
k=0

M−1
	k − 
�

1

	k − 
M
1 � .

�23�

Here, the factor F�
1 generalizes Eq. �20� and takes the values

F�
1 = ũM

1 ũ��
1/ũ�

1 ũM�
1, K edge,

1, L edge.
�24�

Note that Ash��� does not change when �1 and �2 are inter-
changed in the above equations.

Generalization to cases with two and more shakeup pairs
is straightforward: In Eq. �22�, the overlap of the initial state
with a state with two or more shakeup pairs is needed. The
corresponding functions p2, p3 , . . . are obtained based on re-
numbering the energy levels such that an index shift occurs
for each empty level below EF, and the filled levels above
are appended.

As the energy above the threshold increases, the number
of energetically allowed final states with an arbitrary number
of particle-hole excitations increases exponentially, and their
exhaustive enumeration quickly becomes a hopeless task.
However, as we shall demonstrate in the next section, the
number of final states that actually contribute to the absorp-
tion process remains finite, and actually not very large. This
is what makes our approach practical in the end.

Spin, the spectator channel. We end this section by dis-
cussing how the above picture is modified when the spin of
the electrons is taken into account. Let us choose the axis of
spin quantization such that the core electron excited into the

conduction band has spin up. Since the dipole operator D̂ is
spin independent, all the discussion above concerning direct,
replacement, and shakeup terms applies to the excited spin
channel. The electrons with spin opposite to the excited
spin—referred to as the spectator channel—are not con-

nected by D̂ to the core electrons; however, they are affected
by the core hole potential, and their energies and wave func-
tions are modified. As a consequence, the ground state is
subject to the Anderson orthogonality catastrophe, and some
excited states may have nonzero overlap with the unper-
turbed ground state, Fig. 1�d�. Note that the energy of the
incident photon can be shared between the two spin chan-
nels.

In practice, to account for the spin of the electrons the
photoabsorption spectrum for the optically active channel
has to be convoluted with curves for the spectator channel.
This will lead to a slight smearing out of features obtained
for the photoabsorption cross section for the optically active
channel, as we will see below.

V. SIGNIFICANT REPLACEMENT AND SHAKEUP
PROCESSES

We have seen that it is straightforward to express the ma-
trix elements appearing in the Fermi golden rule approach,
Eq. �11�, in terms of the one particle energies �	� and �
�.
However, the total number of final states increases exponen-
tially with the energy above threshold. It is therefore neces-
sary to identify more precisely which final states do actually
contribute to absorption, and show that the number of such
states is not prohibitive.

Toward this end, Fig. 3 shows, for a strong perturbation
case �vc /d=−10�, the spectral weight of the unperturbed
�many-body� ground state in the perturbed basis, as a func-
tion of the perturbed state’s energy. In addition, the cumula-
tive spectral weight �summation up to the perturbed state
energy� is shown. Including all possible terms and all ener-
gies, the cumulative spectral weight will, of course, be
��0�2=1. Figure 3 tells us that in practice not all but rather
only a few terms are needed to reach a spectral weight of 1.
In particular, it is not necessary to include shakeup processes
of all orders and energies: Figure 3 suggests that including
terms with up to three shakeup pairs and energies up to one
and a half the band width is 100% sufficient and including
terms with up to two shakeup pairs captures more than
99.9% of the weight. Indeed, one-pair shakeup processes
provide the dominant contribution to the spectral weight34

�about 92% for vc /d=−10�. A similar behavior is obtained
for all the examples we have considered, and in particular for
weak as well as strong perturbations. Below, we will there-
fore perform the calculation of the photoabsorption spectra
including only the processes involving up to two shakeup
pairs.
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FIG. 3. �Color online� Spectral weight of the unperturbed many-
body ground state ��0� in terms of perturbed many-body states
�� f����, classified by their �average� energy from threshold mea-
sured in units of mean level spacings d. �vc /d=−10, M =50, N
=100, COE statistics.� The threshold for the secondary band �right
panel�, when the bound state is empty in the final state, is Md+
0

greater than the threshold with bound state filled �left�. The lower
�thick� curve is the energy-resolved width of ��0� in the perturbed
basis, equivalent to the contribution of the spectator channel to the
absorption cross section. The upper �thinner� curves show the cu-
mulative spectral weight taking into account terms with one, up to
two, and up to three shakeup pairs �dashed, dotted with symbols,
and full lines, respectively�. Remarkably, less than 0.1% of the
weight is missed when including only up to two shakeup pairs. The
slow saturation of the total weight �taking place on the scale of the
band width� is a characteristic of AOC.
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The thicker blue curves in Fig. 3 show the energy distri-
bution of the spectral weight �processes with up to three
shakeup pairs are included�. Evidently, a significant percent-
age of the total weight is borne by states of low energy �near
the excitation threshold�, or by states with energy equal to or

slightly above the energy Ẽbs=
M+1−
0 necessary to pro-
mote the bound state electron into an empty orbital.

Because the dipole operator D̂ is a one-particle operator, a

non-negligible matrix element 
� f � D̂cc
† ��0� requires �� f�

= c̃�
† �� f

0� where � can be arbitrary but �� f
0� is restricted to be

one of the states which overlaps significantly with �0. There-
fore, the total number of final states that need to be consid-
ered grows only quadratically with the energy above thresh-
old, and there is no problem in enumerating them all.

For processes involving only one shakeup pair, a more
detailed representation of the decomposition of the unper-
turbed ground state is shown in Fig. 4, where ���̄�

b �2 is shown
as a function of � and � for the bulklike case. These bulklike
overlaps, which also determine the replacement contribution,
provide a good estimate for the mean value in the meso-
scopic case and are useful to estimate the relative importance
of the different processes. We see immediately that most of
these overlaps are very small. There are two notable areas of
exception: One where the particle-hole pair lies close to the
Fermi energy �� ,��M�, and a second for terms involving

the bound state. For a small perturbation, the Fermi energy
peak dominates. However, as soon as a bound state develops
upon increasing the perturbation, the overlaps ��

0̄�

b �2 start to
grow and eventually overwhelm those near the Fermi energy.

VI. PHOTOABSORPTION SPECTRA: AVERAGED CROSS
SECTION

In the mesoscopic case, the photoabsorption threshold en-
ergy fluctuates from sample to sample. We assume here that
�th can be determined experimentally, and that energies and
spectra are then measured with respect to this energy. There-
fore, we will often give the photon excess energy relative to
the threshold energy in mean level spacings, ���−�th� /d. In
addition, from this point on we set �=1, so that � is an
energy.

Furthermore, in a mesoscopic system the final state en-
ergy Ef can only take discrete values. A mesoscopic photo-
absorption spectrum is therefore comprised of a series of �
peaks �broadened in experiment, see Fig. 9 below for an
illustration�. We are interested in particular in the prefactor
given by the Fermi golden rule matrix elements. First, we
discuss their average in this section, turning to fluctuations in
the next. In all cases, we present only the photoabsorption
from the primary band, for which the bound state is occupied
in the final state. The absorption is normalized to the total
absorption of the primary band.

A. K edge

Figure 5 shows the average photoabsorption cross section
for a K edge. The time-reversal non-invariant case �CUE� is
considered �see Ref. 5 for a similar illustration of the time-
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FIG. 4. �Color online� One-pair shakeup and replacement over-
laps for the bulklike case. �a� Intermediate perturbation strength,
vc /d=−0.5. �b� Strong perturbation, vc /d=−10. For almost all
�� ,�� the replacement overlap ���̄�

b �2 is zero. Nonzero values arise
for �1� replacement through the bound state with the excited elec-
tron close to EF ��=0 and ��M, black arrow�, and �2� shakeup
pairs formed in the vicinity of the Fermi edge �� ,� both close to M,
red arrow�. For a strong perturbation, replacement through the
bound state becomes the dominant process.
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FIG. 5. �Color online� Average mesoscopic absorption spectra at
the K edge �N=100, M =50, vc /d=−10, CUE�. �a� The total absorp-
tion cross section in the active channel �full line� is the sum of the
direct/replacement �triangles� and shakeup �diamonds� contribu-
tions. For comparison, the bare contribution �dashed-dotted line�
and the direct process alone �squares� are shown. �b� Active �full
circles� and spectator �open circles� channel spectra separately, as
well as the full spin photoabsorption cross section obtained after
convolution �down triangles�. The edge is slightly peaked.
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reversal invariant case �COE��. Note that the replacement
contribution decreases rapidly away from threshold, at which
point shakeup processes become important. The large re-
placement amplitude at threshold causes the mesoscopic K
edge to be peaked.

Figure 5�b� shows the modification made by spin. The
contribution of electrons with spin opposite to the excited
core electron—the spectator channel—is shown. The full
spin cross section is obtained after convolution of the spectra
of the two spin species. The slight peak at the K-edge thresh-
old is maintained in the full spin spectrum.

Comparison of the mesoscopic and bulklike situations is
shown in Fig. 6. At a K edge �lower curves�, the mesoscopic
and bulklike photoabsorption spectra are qualitatively differ-
ent. The bulklike K edge shows the rounded behavior ex-
pected from AOC, though the threshold value is nonzero due
to incompleteness of AOC in a finite system. The average
mesoscopic K-edge spectra, on the other hand, is slightly
peaked at threshold. However, as the photon energy becomes
only a few mean level spacings above threshold, the average
mesoscopic K-edge photoabsorption quickly approaches the
bulklike result from above.

The reason for the different K-edge behavior in bulklike
and mesoscopic samples lies in the dipole matrix elements.
In the bulklike situation, dipole selection rules cause the ma-
trix elements in the l=0 channel to vanish, and therefore
there is zero MND response. In contrast, the dipole matrix
elements in the mesoscopic situation are generally nonzero
random numbers with a Porter-Thomas distribution, originat-
ing from the distribution of wave-function derivatives as dis-
cussed in Sec. II B. Therefore, there is a MND response near
threshold in the mesoscopic situation that counteracts the
AOC edge rounding, thus causing the peaked K edge.

B. L edge

The dipole matrix elements wc� for the L edge are pro-
portional to the wave function ���r�c�= ũ� at the position of
the perturbation �see Sec. II B�. We therefore find that when-
ever the perturbation is strong enough to form the bound

state this latter will play a very significant role. Indeed, in the
situation where the l=0 channel provides all the screening of
the impurity �i.e., �0=−� /2�, the photoabsorption process is
entirely dominated by the term �c0c̃0

†cc in the dipole operator
Eq. �14�. The shape of the average photoabsorption spectra
can in this case be essentially understood from the energy
dependence of the overlap �0̄� shown in Fig. 4: A sharp peak
for �=M is followed by a relatively long tail. As shown in
Fig. 7, this is the behavior of the L-edge photoabsorption
spectrum in the strong perturbation regime. Note that the
L-edge peak is considerably stronger than for the K edge
�compare to Fig. 6�. Convolution of the sharp peak in the
active channel with the spectator spin result still yields a
prominent peak.

In comparing with the bulklike case, we start by empha-
sizing again that the physics for an L edge in the strong
perturbation regime is dominated by the bound state. As
there are no strong differences between the bound state in the
bulklike and mesoscopic cases, we expect the results to be
similar. Figure 6 shows, in fact, a stronger result: For a
strong perturbation, the mesoscopic and bulklike spectra at
an L edge are nearly in quantitative agreement.35

C. Dependence on perturbation strength and number of
particles

So far our major focus has been the strong perturbation
regime and a model nanosystem with 100 electrons �50 elec-
trons per spin species in a half-filled band�. Since the pro-
cesses that determine the shape of the edge, namely the AOC
and MND responses, depend on the number of particles, we
will now address how the �average� photoabsorption spectra
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FIG. 6. �Color online� Average mesoscopic �triangles� and bulk-
like �quadrangles� spectra as a function of energy from threshold at
both a K and L edge �N=100, M =50, vc /d=−10, CUE�. Whereas
the bulklike and mesoscopic-chaotic results coincide for the L edge,
there is a clear difference in the K-edge spectra: The bulklike edge
is rounded whereas a generic mesoscopic system yields a slightly
peaked edge on average. The dashed curves are the mesoscopic
spectra in a COE situation; they are nearly indistinguishable from
the CUE case.
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FIG. 7. �Color online� Average mesoscopic absorption spectra at
the L edge �N=100, M =50, vc /d=−10, CUE�. �a� The spectrum of
the optically active channel is the sum of the direct/replacement
�triangles� and shakeup �diamonds� contributions. �b� Active �full
circles� and spectator �open circles� channel spectra separately, as
well as the full spin photoabsorption cross section obtained after
convolution �down triangles�. The contribution of the spectator
channel is identical to that in Fig. 5�b�. The peak at the L edge is
much more pronounced than that at the K edge �Fig. 5� and extends
over several mean level spacings in photon energy.
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change as the number of particles in the system is varied.
This is of particular interest with respect to experiments
since the number of electrons in the system can be adjusted
by means of the geometry �size�, gate voltages, or the density
of states �doping�. It is convenient at the same time to vary
the strength of the perturbation produced by the core hole.
The strong perturbation regime describes semiconductor het-
erostructures. In these systems, only s-conduction electrons
are present and available for screening; the Friedel sum rule
then implies the strong perturbation regime. In contrast,
Fermi edge singularities in metals are described by weaker
perturbations,3,13 corresponding to a smaller phase shift for
the s electrons and in agreement with the fact that other
channels of conduction electrons �p ,d , . . . � are involved in
the screening. Metallic nanoparticles are one mesoscopic
system where similar values for the phase shifts occur. Other
situations where the small perturbation regime is relevant
could arise.

Figure 8 shows photoabsorption spectra at both the K and
L edge for two different perturbation strengths with the num-
ber of electrons ranging from 24 to 200. �Note that COE
statistics are used here rather than the CUE statistics used in
Figs. 5–7.� The weaker perturbation �vc /d=−0.3� produces a
phase shift at EF which is typical of a metallic environment,
while the larger strength produces complete s-wave screen-
ing ��0F�−� /2� suitable for semiconductors. All curves
show the main FES signatures: For a K edge, a peak at
threshold superposed on a rounded edge, while at an L edge,
a strong peak at threshold. Clearly, the FES signatures are
enhanced when the perturbation is strong.

For the weaker perturbation, the bound state is not
formed. Absorption near the edge is nevertheless enhanced
because of correlation between the spectrum and the values
of the wave functions at rc. This implies in particular that all
the terms in the replacement sum Eq. �17� have the same
sign, as in the bulk and despite the random character of the
wave functions.

Since the mean level spacing d=2� /N is N-dependent,
the energy from threshold is given here in units of band
filling above threshold, 
�−�th� /Nd �such that an excitation
into the highest level �=N−1 corresponds to a value 1/2� in
order to allow for a direct comparison of the curves. Note
that we do not confine our attention to the immediate thresh-
old vicinity but rather consider excitation energies that allow
electrons to fill states up to 3/4 of the bandwidth.

We first discuss the K-edge spectra in Fig. 8. First, note
that all four curves converge at large energy to the same
behavior. In fact, they approach a line corresponding to the
bare process ���wc��2� which with our normalization corre-
sponds to the value 1. This is easily understood: Once the
photon energy is well above threshold, so that �−�th is sig-
nificantly larger than the width of the unperturbed ground
state in the perturbed basis �see Fig. 3�, the final states are
necessarily of the form �� f�= c̃�

† �� f
0� where �� f

0� is one of
the states with a significant overlap with �0. All the “extra
energy” is borne by the highly excited one particle state �. In

this case, only the term �c�c̃�
†cc of the dipole operator D̂

contributes to the absorption—there are no replacement pro-
cesses. Summing over final states amounts to averaging �c�

2

on an energy window equal to the width of �0 in the per-
turbed basis, and so the result is the same as for the bare
process.

Moving toward the K-edge threshold, one sees that the
photoabsorption is first suppressed and then jumps right at
threshold. The suppression is simply the manifestation of the
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FIG. 8. �Color online� Mesoscopic averaged photoabsorption
cross section as a function of the number 2M of particles in a
half-filled band for �a�, �b� K edge and �c�, �d� L edge, and both
weak coupling ��a�,�c� vc /d=−0.3� and strong coupling ��b�,�d�
vc /d=−10�. Results are for the COE with full spin up to excitation
energies a quarter of the bandwidth above threshold, and are nor-
malized by the bare photoabsorption value. The K edge appears,
apart from the behavior directly at threshold, rounded, and the
rounding increases for more particles in the system. In this sense
AOC wins the competition with MND as the thermodynamic limit
is approached. However, the slight peak at the edge persists as the
signature characteristic of a mesoscopic-coherent system. The L
edge clearly is peaked, and this peak sharpens with increasing par-
ticle number. For strong coupling, the L edge is completely domi-
nated by replacement through the bound state, making the magni-
tude at the L edge much larger. Comparison is made to the bulk
power law behavior in each case �light gray, yellow online�.
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AOC familiar from the bulk K edge. In fact, as N increases,
the rounding becomes more pronounced. When the perturba-
tion is weak, the resulting points lie right on the bulk power-
law curve. Thus, for weak perturbation, the average meso-
scopic photoabsorption in the N→� limit yields the bulk
singularity. For strong perturbation �the semiconductor case�,
there are substantial deviations from the bulk power law: At
large energies the average mesoscopic photoabsorption is
suppressed while for energies just above threshold, as for the
threshold point itself, photoabsorption is enhanced.

A striking difference between the bulk and mesoscopic
K-edge spectra occurs right at threshold: Rather than follow-
ing a rounded edge, the average mesoscopic response shows
a peak �see also Fig. 6�. The relative magnitude of this peak
does depend on the strength of the perturbation but is ap-
proximately N independent. For the strong perturbation case
�vc /d=−10�, the peak is approximately 50% larger than the
second point and about three times larger than the bulk re-
sult. This enhancement near the Fermi edge comes from the
dipole matrix elements which, for the generic nanosystems
considered here, are nonzero even at the K edge: Breaking of
rotational symmetry allows MND processes in the meso-
scopic case while only AOC is present in bulk.

The L-edge spectra in Fig. 8 show the strongly peaked
edge characteristic of the MND singularity. In the case of a
weak perturbation, panel �c�, there is extremely good agree-
ment between the average mesoscopic photoabsorption and
the bulk power-law response for all energies and all N. Right
at threshold, it appears that the average mesoscopic result is
slightly larger than the bulklike result. The peak becomes
more pronounced as N increases because, as for the K edge,
one is able to access smaller energies with respect to the
band width.

For strong perturbation at the L edge, note the very large
magnitude of the photoabsorption. This stems from the fact
that replacement processes through the bound state com-
pletely dominate. In this case, the bulk power law �which
neglects the bound state completely� provides a qualitative
guide to the peak, but, as for the K edge, does not agree
quantitatively.

VII. FLUCTUATIONS OF THE PHOTOABSORPTION
CROSS SECTION

Turning from the average photoabsorption, we now inves-
tigate a quantity inherent to mesoscopic systems and a key
characteristic of the photoabsorption cross section: Its fluc-
tuations. Figure 9 shows several examples of the photoab-
sorption cross section of individual systems �within our ran-
dom matrix model�. As for the average, all data presented are
for absorption in the primary band and are normalized to the
total absorption of the primary band. There are two sources
of fluctuations: Wave-function �matrix-element� fluctuations
and energy-level fluctuations.

First, the wave-function amplitudes at the location of the
core hole vary, causing the dipole matrix elements to fluctu-
ate. This is the most dramatic mesoscopic effect, causing the
large fluctuations in the photoabsorption cross section seen in
Fig. 9. In particular, the shape of the spectrum of an indi-

vidual system is not necessarily peaked, but can be
“rounded,” almost uniform, or even zigzag.

Second, the energy level effect creates fluctuations in the
photoabsorption as well as in the photon energies that can be
absorbed. The former is small compared to the effect of the
wave functions, but the latter can be quite significant. The
absorbed photon energies fluctuate by an amount of order the
mean level spacing d, with increasing width further away
from threshold. Because core electrons at different locations
can be excited by the different photons, subsequent measure-
ments of one and the same system will result in different
final �perturbed� energy levels �
�, and therefore give rise to
different spectra even though the unperturbed energy levels
�	� remain the same. With single measurements of different
systems, as we assume here, both the �	� and �
� would vary.

Note that the threshold energy varies from dot to dot,
resulting in a relative shift of the spectra of a few mean level
spacings. In Fig. 9 the spectra are shown with respect to their
threshold, enhancing in this way the organization of the ab-
sorption points at the bottom of the spectra. Away from
threshold, the positions of the levels start to decorrelate from
the threshold energy, and the spectra show less structure.

In order to analyze the fluctuations more systematically,
Figs. 10 and 11 show the photoabsorption cross section as a
weighted histogram, highlighting the fluctuations in energy
weighted by absorption intensity. The total cross section is
broken down by grouping processes which have the same
mean photon energy, and then for each of these groups the
average 
A���� is plotted. Two perturbation strengths are
contrasted, and energies are measured with respect to the
threshold energy �as would be the case in experiments�. Note
that the curves for the different classes have substantial over-
lap. For the peak next to threshold, higher cross sections are
achieved at smaller energies for all perturbation strengths
and at both the K and L edges. Further away from the Fermi
edge, the histograms become symmetric, broader, and more
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FIG. 9. �Color online� Individual K-edge absorption spectra of
four mesoscopic samples, illustrating the outcome expected in real
single-sample measurements �N=100, M =50, vc /d=−10, COE�.
Triangles �green online�: Direct and replacement processes. Crosses
�red online�: Shakeup processes. Solid line: Total absorption cross
section assuming an �experimental� resolution of d /6. The spectra
have been shifted such that their threshold energies coincide. Fluc-
tuations occur in both the energy and the cross section.
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Gaussian, as one expects from the central limit theorem.
In the rest of this section, we focus on the statistical prop-

erties of the absorption amplitude. We aggregate all the pro-

cesses �final states� taking place at the same mean energy;
the resulting probability distributions are shown in Fig. 12.

Most of the curves closely resemble the Porter-Thomas
distribution, in particular for the weaker perturbation �excep-
tions are discussed below�. This originates from the dipole
matrix elements �c� being proportional to Porter-Thomas
distributed wave-function derivatives �K edge� or wave func-
tions �L edge� at the position of the perturbation �Sec. II B�.
The corresponding randomness overwhelms any correlations
in the ground state, replacement, or shakeup overlaps. Fur-
ther away from threshold, as more and more processes are
included, the distribution becomes more Gaussian.

At the L edge in the limit of strong perturbations, we find
however clear deviations from the Porter-Thomas distribu-
tion �Fig. 12�b��. At threshold, 
��= 
�th�, the corresponding
curve �circles� is very similar to the probability distribution
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FIG. 10. �Color online� Fluctuations of the photoabsorption
cross section at the K edge for �a� weak and �b� strong perturbation
�N=100, M =50, CUE, optically active spin�. The average photoab-
sorption cross section as a function of energy, 
A����, is shown for
processes with different average excitation �marked �th+d, �th

+2d , . . .�. Note that energies are measured with respect to the
threshold energy �th �vertical line� as would be the case in experi-
ments. The behavior of the threshold energy and cross section are
shown in the inset: Both are approximately Gaussian distributed.
The peak next to threshold is clearly asymmetric with the maximum
photoabsorption cross section found at energies distinctly below the
average value. The curves broaden and symmetrize away from
threshold. The area under the curves is the total photoabsorption.
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FIG. 11. �Color online� Fluctuations of the photoabsorption
cross section at the L edge for �a� weak and �b� strong perturbation
�N=100, M =50, CUE, optically active spin�. Explanations are the
same as for Fig. 10. The strongly peaked FES is evident.
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FIG. 12. �Color online� Distribution of the mesoscopic photoab-
sorption fluctuations �N=100, M =50, CUE�: for a strong perturba-
tion vc /d=−10, �a� the K edge and �b� the L edge, and for a weak
perturbation vc /d=−0.3 at �c� the L edge with the K edge in the
inset. The probability distribution of the photoabsorption A��� nor-
malized by its mean value 
A���� is shown for different mean ex-
citation energies 
��, both near threshold �curves with symbols� and
further away from threshold �full line� where a Gaussian shape
emerges. For comparison, a Porter-Thomas distribution is indicated
by the dashed line. Near threshold, the distributions are Porter-
Thomas in almost all cases because the fluctuations in the dipole
matrix elements dominate and cancel all correlations from the over-
lap. An exception occurs at threshold for the L edge where the
excited electron sits in the first level above the Fermi energy. In this
case, the distribution resembles that of a ground state overlap.
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P����2� of the ground state overlap �between the unperturbed
and perturbed many-body ground state� presented in the first
paper of this series �see Fig. 3 of Ref. 6�. The origin of this
behavior can be traced back to the fact that, as discussed in
Sec. III, the absorption in the L-edge strong perturbation re-
gime is entirely dominated by processes involving the bound
state. Therefore, at threshold,

A��th� � �wc0�2��0̄M�2. �25�

As �wc0�2 does not fluctuate, the distribution of A��th� is the
same as that of ��0̄M�2, which is equivalent6 to an Anderson
ground state overlap for positive perturbation and phase shift
�− ��F� �Eq. �21� in Ref. 6�. In the strong perturbation limit,
��F � =� /2=�− ��F�, and therefore the distribution of ��0̄M�2
is the same as the ground state overlap distribution. For
weaker perturbations, such that the bound state still domi-
nates the absorption at threshold but with a phase shift ��F �
�� /2, the symmetry relation between the Anderson overlap
for negative perturbation and the replacement overlap in-
volving the bound state for a positive perturbation still holds,
but the negative and positive phase are no longer equal.

The mechanism underlying the fluctuations in the L-edge
strong perturbation case when the photon energy is above
threshold deserve further discussion. On the one hand, as
illustrated in Fig. 3, the overlap between final states � f
=c0

†� f
0 and the unperturbed ground state rapidly becomes

extremely small. On the other hand, the bound state dipole
matrix element wc0 is much larger than the others �basically
�wc0�2 is of the same order of magnitude as �i�0 �wci�2�. It is
therefore not clear a priori which effect, the smallness of the
overlaps or the largeness of the matrix element, will domi-
nate.

The answer to this question is given in Fig. 13, which
shows the relative importance of bound state dominated pro-
cesses in various cases. We see, first, that for weak perturba-
tions, the importance of the lowest perturbed one-particle
state �which is not here properly speaking a bound state� is,
as expected, marginal. We further see that for the K edge
with strong perturbation, this contribution is not negligible
�about 25% near the edge for the case considered� but neither
is it dominant. Furthermore, it decays rapidly to zero as the
photon energy becomes larger than the width of the unper-
turbed ground state in the perturbed basis.

For the strong perturbation L-edge case, panel �d�, which
is our main interest here, we see that the largeness of the
dipole matrix element is the dominant effect, even at large
photon energy. The overlap does not decrease fast enough to
compensate for this, and only a moderate decrease of the
relative contribution of the bound state is observed. As a
consequence, there are no fluctuations associated with the
dipole matrix element �since �wc0� does not fluctuate�—the
fluctuations derive entirely from those of the overlap be-
tween the unperturbed ground state ��0� and the final states
�� f� from which the bound state has been removed. As the
energy of the photon increases, the number of shake up pro-
cesses �i.e., of final states� increases, and the fluctuations
become more Gaussian. Note however that, as seen in Fig.
12�b�, the transition between the AOC-like distribution at

threshold and the Gaussian like distributions at high energy
is not a simple interpolation.

So far we have discussed fluctuations in the CUE situa-
tion where time-reversal symmetry is broken, corresponding
to the average photoabsorption spectra shown in Sec. VI.
Very similar results apply to the COE case �presence of time-
reversal symmetry� as we found above for the average pho-
toabsorption. The major difference comes from the change in
the Porter-Thomas distribution �it now diverges at zero�;
once this is taken into account, the fluctuation characteristics
�to the extent described here� are the same for COE and
CUE.

VIII. EXPERIMENTAL REALIZATIONS

We end this paper by discussing some possible experi-
mental realizations of the physics we have described. Be-
yond a simple illustrative purpose, this section provides an
opportunity to discuss in more detail the applicability of the
model we have used to real physical systems.

The model in Eqs. �2�–�5� has been built to contain the
main ingredient of the physics under consideration, namely
the sudden appearance of a local perturbation whose phase
shift at the Fermi energy is determined by the Friedel sum
rule. It turns out, however, that the output of the model does
not depend only on its properties at the Fermi energy, even
qualitatively. In particular, the bound state created in the
strong perturbation regime plays a major role in influencing
both the mean and fluctuations of the photoabsorption spec-
trum. It is therefore useful to discuss for a few examples how
much this mechanism is expected to be taken into account
correctly.
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FIG. 13. �Color online� Contribution of bound state processes to
the average photoabsorption cross section as a function of photon
energy above threshold �N=100, M =50, CUE, optically active
spin�. All replacement and shakeup processes involving the bound
state are included. Upper �lower� panels: Weak �strong� perturba-
tion. Left panels: K edge. Right panels: L edge. For weak perturba-
tion, the contribution is, as expected, small. For strong perturbation,
processes through the bound state make a significant but decaying
contribution at the K edge; at the L edge, they dominate.
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Since the basic physics we describe—a localized �rank
one� perturbation acting on a Fermi sea of chaotic
electrons—is very general, it can be realized in various sys-
tems:

�1� An obvious experiment would be the direct realization
of x-ray absorption measurements in small metallic nanopar-
ticles. Either colloidal nanoparticles with diameter 1–2 nm
or “metallic molecules” such as Au55 might be used. The
technical requirements for such an experiment are beyond
standard capability at present: Although the spatial resolution
of x-ray microbeams has been demonstrated at low tempera-
ture, their energy resolution seems to be insufficient.36 Such
an experiment may, of course, be possible in the future.

With regard to the importance of the bound state �discus-
sion at the end of Sec. III�, the bound state should play the
same general role in a nanoparticle as in the bulk material. In
the bulk metals that have been studied most carefully,3,13

several angular momentum channels are involved in screen-
ing, yielding phase shifts less than 1. These, then, are in the
weak perturbation regime: the bound state plays a minor role
in both the bulk and mesoscopic situations.

�2� Another, intrinsically different, example occurs in a
double quantum dot where the tunneling of an electron into
�or out of� the system causes a rank one perturbation due to
the constriction which mediates a sudden change of the wave
function in one dot to the other.37,38 The AOC analysis in
Ref. 37 shows that the phase shifts involved are ±� /4. Such
a phase shift is produced by vc /d in the range −0.3 to −0.5.
Thus for this situation as well, the perturbation is weak, and
the effect of the bound state is minor.

�3� Finally, photoabsorption in quantum dots is a third
example, one which is feasible with existing standard semi-
conductor heterostructure technology.39 Since for semicon-
ductor conduction electrons all of the screening comes from
a single channel, the phase shift is −� /2, and the role of the
bound state is critical. We now describe in detail this possi-
bility.

First, a quantum dot array can be formed in a semicon-
ductor heterostructure like GaAs /AlGaAs using standard
growth and etching techniques �see Fig. 14�. The dot diam-
eter can be made smaller than 100 nanometers, with a varia-
tion of ±5 nanometers, using state-of-the-art techniques. This
gives a mean level spacing of about 30±3 �eV. Slight fab-
rication imperfections guarantee that the dots are chaotic, all
slightly different but with a well defined average. The layer

of the two-dimensional electron gas �2DEG� cuts through all
the dots which “stand” as pillars on a GaAs substrate. Each
dot contains several tens of conduction electrons; this num-
ber can be varied in the fabrication process by adjusting the
doping.

The core electron of the original x-ray edge problem is
now replaced by an electron in an impurity level within the
GaAs band gap. In order to realize the assumptions made in
the paper, the electron has to be in a localized state, and in
order to probe a K-edge situation, it has to have s-like sym-
metry. This can be realized using a suitable deep level, or by
doping with N �isoelectronic to As�. The impurities host a
s-type bound state occupied by an electron that is subse-
quently excited into the conduction band. The variety of
available dopants should even allow one to change the sym-
metry of the impurity level, and thus to study the L-edge
behavior. The impurities have to be placed into the 2DEG in
order to ensure a sufficient overlap and have a suitable den-
sity �few impurities per dot�.

The excitation of the impurity-pinned electrons is
achieved using a micrometer laser �rather than an x ray�. The
resolution of these lasers is around 10 �eV, thus below the
mean level spacing of the electrons in the quantum dots and
sufficient to resolve the expected effects within a few mean
level spacings from threshold. The photoabsorption cross
section has to be measured at low temperature.

The first quantity investigated in this paper is the average
photoabsorption cross section. Although it is tempting to
measure it directly as the photoabsorption of the array, this
may not be possible �yet� due to fabrication uncertainty. The
Fermi energy in each dot �measured from the impurity level�
will vary by about a mean level spacing from dot to dot due
to single particle effects; in addition, the charging energy
may lead to a slightly larger variation, perhaps two mean
level spacings. Finally, the mean level spacing itself will
vary by about 10% from dot to dot �assuming 5% uncertainty
in the linear dimension�. Taken together, the dot-to-dot varia-
tion may wash out the expected threshold peak in the photo-
absorption, which extends, after all, over only about two
mean level spacings. Therefore, each dot may have to be
measured individually. Afterwards, the average over an en-
semble �the array� has to be performed. In this way, informa-
tion about the fluctuations can, of course, be extracted as
well.

IX. CONCLUSIONS

In this paper we have studied Fermi edge singularities in
the mesoscopic regime, in particular photoabsorption spectra
of generic, chaotic-coherent mesoscopic systems with a finite
number of electrons. The basic underlying physics that we
study is, however, much more general, and the model can be
applied to any situation where a sudden, localized �rank one�
perturbation acts on a finite number of chaotic electrons via a
�dipole� matrix element.

The photoabsorption cross section differs from the naive
expectation due to two counteracting many-body responses
resulting from the sudden perturbation of the system when a
core or impurity electron is removed: The Anderson orthogo-

GaAs

2DEG and
impurities

Quantum dot array

FIG. 14. �Color online� Experimental arrangement to test our
prediction of a transition from a rounded K edge to a slightly
peaked edge as the system size is diminished to the mesoscopic
coherent regime. We propose a quantum dot array in a semiconduc-
tor heterostructure where the plane of the 2DEG also contains im-
purities that provide a localized state in the GaAs band gap.
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nality catastrophe �AOC� and the Mahan-Nozières-
DeDominicis �MND� contribution. We have studied AOC in
detail in the first paper of this series.6 We found, for instance,
that typical mesoscopic systems are rather far from the ther-
modynamic �bulk� limit and AOC is incomplete. This is also
reflected in the photoabsorption spectra: The K-edge photo-
absorption cross section near threshold remains finite.

Whereas the threshold behavior in x-ray photoemission
�excited electron leaves the system� can be deduced from the
power law exponent of the AOC overlap alone, this does not
apply to photoabsorption or luminescence experiments
�where the electron is excited into, or relaxes from, the con-
duction band� where, besides AOC, the MND response is
crucial. It counteracts the AOC effect if the dipole selection
rules are fulfilled. In the present paper we included this re-
sponse and computed photoabsorption spectra of generic me-
soscopic systems in various situations using a Fermi golden
rule approach. In metals the result is typically a rounded K
and a peaked L edge in the photoabsorption cross section.

We confirm the peaked L-edge behavior in the average
photoabsorption cross section for mesoscopic systems. At the
K edge, however, we find characteristic changes that allow
one to infer the presence of chaotic-coherent dynamics of
electrons in nanosystems from the near-threshold behavior of
the average photoabsorption. As the system size is dimin-
ished to reach the mesoscopic-coherent scale, the most im-
portant change occurs in the dipole matrix elements. The
chaotic dynamics of the �conduction� electrons makes them
distinctively different from the bulklike situation: The elec-
tronic wave function and its derivative at a certain position

are independent, and the dipole matrix elements at the K
edge ������ are nonzero. As a consequence, mesoscopic
K-edge spectra are peaked and not rounded as in the metallic
�bulklike� case. This peak is visible right at threshold and is
a direct signature of chaotic-coherent dynamics of electrons
in mesoscopic systems. We propose in detail experiments
where this prediction can be tested using current semicon-
ductor technology.

The fluctuations of the photoabsorption cross section are
largely dominated by the Porter-Thomas distribution of the
dipole matrix elements. However, deviations occur at the L
edge right at threshold when the cross section probability
distribution resembles that of the AOC ground state overlap.
The reason for this behavior is the dominance of replacement
through the bound state, a recurring theme in this subject.
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