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We propose a concurrently coupled hybrid molecular dynamics �MD� and kinetic Monte Carlo �KMC�
algorithm to simulate the motion of grain boundaries between fcc and hcp islands during epitaxial growth on
a fcc �111� surface. The method combines MD and KMC in an adaptive spatial domain decomposition, so that
near the grain boundary, atoms are treated using MD but away from the boundary atoms are simulated by
KMC. The method allows the grain boundary to interact with structures that form on spatial scales significantly
larger than that of the MD domain but with a negligible increase in computational cost.
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I. INTRODUCTION

Epitaxial growth of thin films involves a number of dis-
parate length and time scales, posing an enormous challenge
for modeling and simulation.1,2 A popular and powerful ap-
proach to the simulation of such processes is the kinetic
Monte Carlo �KMC� method �for a recent review, see Ref.
3�, especially when combined with first principles determi-
nation of rates.4 While the standard KMC method assumes
that atoms reside on a perfect lattice, this approximation is
not always appropriate. For instance, both homoepitaxial5 or
heteroepitaxial6 growth on a fcc �111� surface can lead to the
formation of both fcc and hcp islands and the subsequent
formation of grain boundaries as these islands impinge on
one another.7 The mobility of grain boundaries is an impor-
tant factor in determining the quality of thin films,8 and in
several known instances, the mobility can depend on the in-
teraction of the grain boundary with subsequent overlayer
growth.6,9 However, such boundaries and other defects may
be poorly described by the usual lattice approximation fa-
vored by standard KMC.10

Molecular dynamics �MD�, on the other hand, does not
rely on a lattice approximation. With an appropriate potential
energy function, one would expect MD to give an accurate
description of the structure and dynamics of a grain bound-
ary or dislocation. However, the drawbacks of the conven-
tional MD method include the need to compute forces be-
tween each pair of atoms in the simulation cell at each time
step and an upper limit on the time step that can be taken to
obtain a good solution to the corresponding equations of mo-
tion. In practice, this means that with MD, one can only
simulate a relatively small number of atoms for relatively
short durations. While this has motivated the development of
a number accelerated MD algorithms which extend the time
step �for a review, see Ref. 11�, this remains a significant
problem for the simulation of epitaxial growth, where the
time scales involved generally prohibit the use of MD except
in the limits of high temperatures and high deposition rates.12

Of course, this is a more general problem that has become
particularly acute as interest in nanostructures intensifies. Al-
though a nanostructure may consist of fewer atoms than its

micro- or macroscale counterpart, in many ways, it is less
amenable to treatment by MD. Not only may it contain too
many atoms to be feasibly simulated by MD, it will almost
certainly lack the homogeneity of a larger system, preventing
the use of a smaller simulation cell with periodic boundary
conditions. These problems have motivated the development
of hybrid multiscale methods which attempt to combine
faster coarse-grained methods with atomistic simulation
techniques �for a recent review, see Ref. 13�.

Here, we present an algorithm that combines MD and
KMC in an adaptive spatial domain decomposition in an
attempt to reduce the computational cost of MD. We have
used this method to study the motion of grain boundaries
during epitaxial growth. Near the grain boundaries, atoms
are treated using MD, but away from the boundaries, we use
KMC. We note that Pomeroy et al.15 have described a
scheme for hybrid MD-KMC. Their scheme involved con-
secutive application of MD and KMC to a single region
rather than the concurrent, spatially decomposed adaptive al-
gorithm we propose here. Several other hybrid schemes have
been developed for modeling epitaxial growth based on spa-
tial decomposition, including an algorithm that couples the
continuum Burton-Cabrera-Frank �BCF� model to KMC.16,17

In principle, it would be possible to combine several such
hybrid schemes with the method described here. We also
note that it would be straightforward to utilize an accelerated
MD method in our approach in place of the standard MD
method used for illustrative purposes here.

II. METHODOLOGY

In our approach, the full system is evolved by performing
one KMC step that moves the system time forward by an
increment tn.14 The rate for a KMC event depends on the
location of neighboring MD and KMC atoms, and similarly,
the MD atoms feel forces from the frozen KMC atoms up to
the cutoff distance of the potential. To ensure that each do-
main interacts with a contemporaneous version of the other,
the evolution of the KMC and MD regions should remain as
synchronous as possible. Thus, the MD simulation is run for
tn /�t steps �where �t is the MD time step� to catch up with
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the KMC clock, although, in practice, one may select a num-
ber of KMC events to ensure that a minimum number of MD
steps are performed �e.g., when the KMC region is much
larger than the MD region, one might select multiple KMC
events to ensure that �tn��t�. At the end of such an itera-
tion, the atoms are repartitioned into KMC and MD catego-
ries using an appropriate adaptive criteria. In the example
studied below, the domain decomposition is adapted to fol-
low the position of the grain boundary. One could consider a
variety of other adaptive criteria, such as a threshold of strain
induced by the grain boundary, for instance. Our choice here,
which is based on distance from the position of the grain
boundary, is perhaps the simplest and easiest to implement,
although it is likely that more efficient schemes could be
devised.

The reduced computational cost of the hybrid MD-KMC
algorithm comes largely from avoiding the computation of
forces between pairs of KMC atoms. If the system is de-
scribed by a short-range potential with a cutoff, then the MD
force calculation �accelerated or otherwise� would ordinarily
scale as O�N�, where N is the total number of atoms. In this
case, a domain decomposition with distinct KMC regions
that are significantly larger than the potential cutoff will
maximize the number of pairs of KMC atoms that can be
ignored in the force calculation. This is the approach we
adopt here, with distinct MD and KMC domains, reducing
the computational time by a factor proportional to M /N,
where M is the number of atoms in the MD domain�s�. We
note that one would also achieve a similar reduction in com-
putational cost in a system with long ranges forces when an
O�N2� force calculation is performed.

There are several artifacts that may arise at the interface
between the MD and KMC domains. The first involves the
reflection of phonons from the rigid atoms in the KMC lat-
tice. This problem also arises in hybrid MD-continuum
methods, and several techniques have now been proposed to
deal with this issue.18,19 Secondly, we note that the rigidity of
the KMC region, which in effect imposes a constant volume
constraint on the MD region, will lead to stresses that may
alter the mobility of atoms in the MD region. As the primary
object of interest in this study is the migration of grain
boundaries, we have dealt with these artifacts by �i� applying
a Langevin thermostat20 to the atoms in the MD regions to
damp the reflection of phonons and to keep the MD atoms in
thermal equilibrium and �ii� increasing the widths of the MD
regions until we observed the convergence of the grain
boundary diffusion coefficient.

III. APPLICATION TO GRAIN BOUNDARY MIGRATION

To illustrate the method, we will follow the propagation
of a grain boundary between fcc and hcp islands nucleating
on a fcc �111� surface by adaptively partitioning the system
so that the grain boundaries are contained in MD regions as
shown in Fig. 1. We first examine this system in the absence
of adatom deposition. The types of boundaries that form be-
tween fcc and hcp islands are discussed in some detail in
Ref. 7, and our simulations show both types of boundaries
�A gaps and B gaps separated by kinks� described there. We

have used our method to look at the mobility of such bound-
aries in the absence �this section� and presence of adatoms
�next section�. The Lennard-Jones potential �parametrized by
the usual energy scale � and length scale �� with a cutoff of
3� was used to calculate forces between MD atoms and
forces between MD and KMC atoms. The nudged elastic
band �NEB� method21 was used to determine energy barriers
from this potential. However, in the absence of adatoms on
the surface, there are no KMC events, so in this section the
KMC will play no role in system evolution.

Figure 2 shows the results of several simulations using the
adaptive domain decomposition algorithm without KMC
events where we have plotted a time series of x�t� defined as
the instantaneous boundary position averaged across the
short slab direction at a temperature of 0.3� /kB. The �111�-
terminated slab used in the simulations was 6 atoms deep, 12
wide, and �at least� 72 long. Atoms in the KMC regions
remain fixed on the lattice unless the boundary migrates, in
which case, at the end of each interval tn, the adaptive do-
main decomposition converts these regions to MD regions to
keep the MD region centered on x�t�, the instantaneous
position of the grain boundary. Atoms in the bottom layer of
the MD region were also fixed. Here, we have chosen tn
=1� �=1��m /��1/2� in the absence any KMC rates.

Using this approach, we have examined the dependence
of grain boundary migration on the width of the MD parti-
tion. Also in Fig. 2 we plot the time averaged square dis-
placement �x2= �x�t+�t�−x�t��2 of the grain boundary posi-
tion in a time interval �t versus �t for a variety of MD
domain widths w, including a full MD simulation without
partitioning. For each domain size, we collected data from 30
independent simulations �each of duration 104�� to compute
the curves seen in Fig. 2. As �x2 grows linearly with �t, we

(b)

(a)

FIG. 1. �Color online� �Top� Snapshots showing the �instanta-
neous� decomposition of the system into KMC domains �far left and
far right� and a MD domain �center� of width w, centered on a grain
boundary. The atoms on the right occupy fcc sites, while the atoms
on the left occupy hcp sites. �Bottom� A snapshot and a schematic
representation of a typical grain boundary configuration showing a
mixture of A- and B-type boundaries and a kink site where they
meet.
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conclude that the grain boundaries are undergoing a diffusive
random walk. We also observe a preference for hcp over fcc
at this temperature, although this drift is generally not appre-
ciable over the duration of a typical simulation. Note the
convergence of �x2 in Fig. 2 to that of the full MD result as
the width of the MD regions increases, indicating that the
dynamics of the boundary is no longer affected by the pres-
ence of the adaptive domain decomposition for sufficiently
large w. Indeed, at w=30�, we find that both the diffusive
dynamics and the drift of the boundary are reproduced well
by the hybrid method.

Using a domain decomposition with the width of the MD
region w=30�, we have undertaken further simulations of
grain boundary migration over a range of temperatures, al-
lowing us to identify the rate limiting step in boundary dif-
fusion. Figure 3 shows an Arrhenius plot of the boundary

diffusion coefficient D=�x2 / �2�t�, i.e., ln D vs 1 /T. The
slope of the curve gives the energy barrier, �E=0.70�, which
presumably corresponds to that of the rate limiting step in
grain boundary diffusion. As expected, this is very close to
the NEB calculated energy barrier for kink migration, �E
= �0.71±0.01��, shown as the inset of Fig. 3. We note that
with the cutoff used here, the NEB calculations reveal a
slight 0.01� preference for kink migration from fcc to hcp
sites. Although this is consistent with the observed drift, it is
a rather small preference which will be dominated by ther-
mal effects at the temperatures examined here.

We note that as the boundary is constrained by periodic
boundary conditions across the short slab direction, the
boundary cannot develop significant curvature during propa-
gation. Any curvature that does develop as the result of fluc-
tuations will tend to drive the boundary back to its flat con-
figuration producing no net drift. Indeed, we observe an
average spread of the boundary in the long slab direction of
only 2.8� �the snapshot of the boundary in Fig. 1�, which is
close to atomic scale roughness. Nonetheless, we expect that
the boundary mobility will depend on the slab width as it
will affect the kink density along the boundary. These effects
could be studied further using a wider slab which would
be most efficiently handled by a more elaborate two-
dimensional domain decomposition.

The mechanisms by which the rigid KMC region restricts
the mobility of the boundary are not immediately apparent.
As noted earlier, the rigid KMC region effectively imposes a
constant volume constraint on the MD region which will
cause corresponding stresses on this region. To examine this
more systematically, we have computed a series of energy
barriers for kink migration as a grain boundary approaches a
rigid KMC boundary. The results are shown in Fig. 4. When
the kink approaches within 2� of the boundary, we can see
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FIG. 2. �Color online� �Top� Evolution of the grain boundary
position �defined as the average position of the boundary across the
short direction of the slab� during typical simulations using the full
MD method, the hybrid method with w=30�, and the hybrid
method with w=5�. The mobility of the boundary in the w=5�
MD domain is clearly suppressed. �Bottom� The mean square dis-
placement �x2 versus �t for the full MD simulation and for the
hybrid method for various MD domain sizes.
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FIG. 3. �Color online� The dependence of the logarithm of the
grain boundary diffusion coefficient D on temperature, calculated
using the hybrid method. The slope of the plot gives an energy
barrier �E=0.70�. As expected, this is very close to the barriers for
kink migration �shown in the inset are the important hcp to fcc kink
migration steps�, calculated using the NEB method, which limits
the diffusion of the boundaries.
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that the energy barrier increases by 0.01� with no significant
change in the hcp-fcc bias. This increase in barrier heights is
to be expected as rigid atoms will not relax as the kink ap-
proaches. However, this effect is too small to fully explain
the observed decrease in boundary mobility as the width of
the MD region decreases �which we estimate is equivalent to
an increase in barrier height of approximately 0.1� when the
size of the MD region is halved from 30� to 15��. Thus, it
seems likely that the stresses due to the constant volume
constraint have a stronger effect on the diffusion prefactor
than the energy barriers. This also suggests that the effi-
ciency of the method could be improved by relaxing the
atoms in the KMC region to reduce the induced stresses
and/or by using a domain decomposition based on strain
rather than distance to the grain boundary. This will be ex-
plored in future work.

IV. GRAIN BOUNDARY MIGRATION WITH
ADATOM DEPOSITION

To demonstrate the full hybrid scheme, we have investi-
gated the effect of adatoms on the grain boundary mobility
using a simple solid-on-solid-type KMC model for adatom
diffusion on a �111�-terminated fcc surface, where energy
barriers are a linear function of coordination number n, i.e.,
�E=Enn+Es. While more complex models are available
�e.g., Ref. 22�, the simplicity of this approach is attractive for
a hybrid scheme. We note that a similar approach has re-
cently been used for modeling the evolution of fcc clusters
toward their equilibrium shapes.23 In addition, we use the
rule that atoms can only move to, or be deposited on, sites
that are unoccupied, are supported by a triad of nearest-
neighbor atoms in the previous layer of growth, and have
unoccupied neighboring sites. The second rule restricts in-
plane moves to a subset of the six neighboring lattice sites.
The last rule ensures that atoms do not overlap, as the lattice
is the union of fcc and hcp lattices and the distance between
neighboring sites is less than the nearest-neighbor distance in

a close-packed plane. In the course of a film’s evolution, any
of the sites in the lattice could become occupied at some
point.

It is important that the rates for events in the KMC model
are consistent with corresponding processes in the MD re-
gion. To ensure this, we simulated adatom diffusion in a
purely MD system at temperatures up to 0.2� /kB. The result-
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FIG. 5. �Color online� �Top� Time series showing the movement
of grain boundaries at different adatom coverages �0%, 2.5%, and
30%, respectively�. At 30% coverage, the boundaries are generally
pinned by adatoms and adatom islands, although motion can occur
when the boundaries pass under islands �two such events are noted
by arrows�. At 2.5%, the pinning is generally not observed, al-
though mobility is reduced as the boundaries encounter single ada-
toms. �Bottom� The mean square displacement �x2 of the boundary
versus �t for a range of adatom coverages from 0% to 60%. The
inset shows one of the main mechanisms for pinning of the bound-
aries: a kink site decorated by an adatom in an off-lattice position.
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ing diffusion coefficient showed the usual Arrhenius depen-
dence on temperature with an energy barrier of 0.29�. This
compares well with the barrier height estimated using the
NEB method of 0.31�. In addition, we were able to compute
the prefactor for the KMC rate using the MD simulations
which has a value of 0.38�m�2 /��1/2. The prefactor and en-
ergy barrier were then used to fix En and Es. In addition, it is
now possible for adatoms to diffuse across the MD-KMC
boundary in either direction. A KMC atom that hops into the
MD region is converted to a MD atom prior to the MD run
beginning. However, a MD atom that leaves the MD region
continues to undergo molecular dynamics until the next do-
main decomposition is performed. We note that KMC events
continue to be chosen until the KMC clock exceeds 1�.

We then simulated boundary movement using the syn-
chronized hybrid method for a variety of adatom coverages.
Figure 5 compares the displacement in time of a boundary at
2.5% adatom coverage with a boundary at 30% adatom cov-
erage. Clearly, at 30% coverage, the boundary becomes
pinned for long periods of time by adatom islands as indi-
cated by the steps in the 30% trace. This effect is also sum-
marized in Fig. 5, which shows �x2 vs �t for a variety of
adatom coverages. Also shown in the inset is one of the
principle pinning mechanisms identified, where a kink site
has become decorated by a diatomic island. Note that the
pinning atom is in an off-lattice position, sitting in a fourfold
hollow above the A gap, an effect which would not have
been captured by our KMC simulation alone. Pinning of fcc-
hcp boundaries by atoms in such fourfold hollow sites has
recently been observed experimentally in homoepitaxial
growth on Ir �111�.7

Figure 5 also serves to illustrate the value of the hybrid
scheme. First, with approximately 32% of the atoms remain-
ing in the MD region in the runs used to collect the data
shown here, the hybrid runs took �1 /3 of the time of a full
MD run. Second, it can clearly be seen that the grain bound-
aries are leaving the initial MD region �width 30��. In fact,
in the trace shown at 30% adatom coverage, the boundary is
pinned by a structure that has nucleated and grown within the

KMC region before the arrival of the boundary. In this way,
the KMC does more than simply act as a static boundary
condition for the MD, allowing the grain boundary the pos-
sibility of interacting with structures that form on spatial
scales significantly larger than that of the MD domain w with
a negligible increase in computational cost.

V. CONCLUSION

In conclusion, we have demonstrated an adaptive hybrid
method that couples MD and KMC in a domain decomposi-
tion for dealing with inhomogeneities that develop in epitax-
ial growth. This method leads to a reduction in computa-
tional cost compared to conventional MD, reducing the
execution time by a factor of approximately equal to the
relative fraction of remaining MD atoms. We have shown
that it is possible to reproduce grain boundary mobilities
from full MD simulations with the domain decomposition
method in the absence of KMC events. We have then used
the method to study the effect of overlayer adatoms on the
mobility of the boundaries, demonstrating that boundaries
can become pinned by adatom islands. These effects would
have been difficult to capture in a conventional KMC simu-
lation. We expect that this method may be useful in other
applications such as three-dimensional island growth or
nanocluster coalescence and ripening. In addition, the do-
main decomposition could be extended to two and three di-
mensions rather than the simple one-dimensional decompo-
sition used here. Furthermore, the method could also be used
in conjunction with accelerated molecular dynamics
methods.11
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