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Based on a microscopic many-particle theory, we investigate the influence of excitonic correlations on the
vectorial polarization state characteristics of the parametric amplification of polaritons in semiconductor mi-
crocavities. We study a microcavity with perfect in-plane isotropy. A linear stability analysis of the cavity-
polariton dynamics shows that in the co-linear �TE-TE or TM-TM� pump-probe polarization state configura-
tion, excitonic correlations diminish the parametric scattering process, whereas it is enhanced by excitonic
correlations in the cross-linear �TE-TM or TM-TE� configuration. Without any free parameters, our micro-
scopic theory gives a quantitative understanding how many-particle effects can lead to a rotation or change of
the outgoing �amplified� probe signal’s vectorial polarization state relative to the incoming one’s.
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I. INTRODUCTION

In the past decade, the parametric amplification of polari-
tons in planar semiconductor microcavities has been the sub-
ject of intense experimental and theoretical research, see,
e.g., Refs. 1–6 or the reviews given in Refs. 7–9. In a typical
pump-probe setup in a co-circular polarization configuration,
the amplification of a weak probe pulse has mainly been
attributed to four-wave mixing �FWM� processes mediated
by the repulsive Coulomb interaction of the exciton constitu-
ent of the polaritons excited on the lower polariton branch
�LPB�.3,4,6,10 For a specific pump in-plane momentum �defin-
ing the so-called “magic angle”�, energy and momentum
conservation is best fulfilled for the FWM processes and thus
a pronounced angular dependence of this amplification is
observed.1,3 Since in the strong coupling regime the LPB is
spectrally well below the two-exciton scattering continuum,
the influence of excitonic correlations in the scattering pro-
cesses of polaritons on the LPB is strongly suppressed �com-
pared to the situation in a single quantum well �QW� without
the strong coupling to a confined photon cavity mode11�.
However, even for co-circular pump-probe excitation, these
correlations must be considered for a complete understand-
ing of the experimental results.5,10,12

Whereas for co-circular pump-probe excitation only
exciton-exciton scattering in the electron-spin triplet channel
plays a role, for excitations in other vectorial polarization
state configurations, excitonic scattering in the electron-spin
singlet channel is also expected to contribute to the amplifi-
cation mechanism. In the latter case, a change �in the follow-
ing loosely referred to as “rotation”� of the vectorial polar-
ization state of the amplified probe signal compared to the
incoming one’s can be attributed to this coupling of the two
spin subsystems excited with right ��� and left ��� circu-
larly polarized light, respectively.13–21 However, different ef-
fects can overshadow rotations in the vectorial polarization
state that are caused by the spin-dependent many-particle
interactions that mediate the amplification process, e.g., a
splitting of the TE and TM cavity modes22,23 �longitudinal-
transverse splitting� or an in-plane anisotropy of the embed-
ded QW or the cavity.21,24 Furthermore, for not linearly po-

larized pump excitation, an imbalance in the polariton
densities in the two spin subsystems �� and �� will also lead
to a rotation in the vectorial polarization state of the ampli-
fied signal.17,21 These different mechanisms have previously
been investigated16–19,21,25,26 based on models describing the
effective polariton dynamics in the cavity. In these models
that describe the system dynamics at the polariton quasipar-
ticle level, the spin-dependent polariton-polariton scattering
matrix elements are included as input parameters for the
theory. With a reasonable choice of the parameter set, good
agreement with experimental results showing rotations in the
probe’s vectorial polarization state has been
obtained.16,18,19,21

In contrast to these previous studies,16–19,21 we employ a
microscopic theory that calculates, from a few material pa-
rameters, the scattering matrices driving the polariton ampli-
fication in the different vectorial polarization state
channels.27 No additional assumptions for the effective
polariton-polariton interaction are needed, which is directly
included in our theory via the frequency-dependent and com-
plex exciton-exciton scattering matrices.10 Our theoretical
analysis incorporates �i� the well-established microscopic
many-particle theory for the optically induced QW polariza-
tion dynamics based on the dynamics-controlled truncation
�DCT� formalism28,29 and �ii� the self-consistent coupling of
this dynamics to the dynamics of the optical fields in the
cavity modes10,30,31 including all vectorial polarization state
channels. The theory consistently includes all coherent third
order ���3�� nonlinearities and the resulting equations of mo-
tion are solved in a self-consistent fashion in the optical
fields, which includes a certain class of higher-order
nonlinearities.32–34 Correlations involving more than two ex-
citons and those involving incoherent excitons are neglected.
These effects are not expected to qualitatively alter the pre-
sented results for the considered coherent exciton densities of
�1010 cm−2, especially for excitation well below the exciton
resonance.

Based on this theory, we introduce a linear stability analy-
sis �LSA� of the cavity-polariton dynamics as a general and
powerful tool to study the role of spin-dependent polariton-
polariton scattering �including time-retarded quantum corre-
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lations�. For steady-state pump excitation and as long as
depletion of the pump from scattering into probe and FWM
signals can be neglected, the LSA gives comprehensive in-
formation about growth and/or decay �in the following only
referred to as “growth”� rates for probe and FWM intensities
in all vectorial polarization states. The growth rates deter-
mine the exponential growth of components in different vec-
torial polarization states over time and determine together
with the initial conditions the ratio of these components after
a given growth duration, uniquely determining the final vec-
torial polarization state. Although the results are obtained for
strict steady-state pump excitation, as discussed below, they
can to a large extent be carried over to the analysis of pump-
probe experiments with finite pulse lengths.11

We use this theory to investigate a microcavity system
with perfect in-plane isotropy. As an intrinsic effect that is
not caused by structural imperfection, we include a splitting
of the TE and TM cavity modes, as shown in Fig. 1�a�. This
way, we study a system where all vectorial polarization state
rotations of the amplified probe signal can unambiguously be
traced back to intrinsic phenomena always present in planar
semiconductor microcavities, the TE-TM cavity-mode split-
ting and the spin-dependent polariton-polariton scattering
mediating the amplification.

For this system, we analyze results that show how for a
linearly polarized pump many-particle correlations and the
TE-TM cavity-mode splitting lead to different growth rates
of the linearly polarized components �TE or TM� in the
probe pulse. This difference can lead to rotation in the vec-
torial polarization state of the amplified probe compared to
the incoming one’s.16–19,21 Starting from the equations gov-
erning the cavity-polariton dynamics, we take advantage of
our theoretical approach to isolate and discuss the frequency-
dependent scattering matrices that give rise to this difference

in the vectorial polarization state channels. We show that in
the studied regime, close to the amplification threshold, even
where the correlation contribution in the spin-singlet channel
is weak,15,20 these correlations can give rise to an almost
complete vectorial polarization state rotation into the “pre-
ferred” cross-linear �TE-TM or TM-TE� pump-probe con-
figuration for the pump and outgoing probe pulses. For suf-
ficiently long amplification duration, this result can become
virtually independent of the input probe’s vectorial polariza-
tion state as long as it contains a small component polarized
perpendicular to the linearly polarized pump.

II. THEORETICAL MODEL

We use a microscopic many-particle theory to describe
the coherent QW response to the light field confined in the
cavity. Based on the DCT approach,28,29 all coherent opti-
cally induced third order nonlinearities, i.e., phase-space-
filling �PSF�, excitonic mean-field �Hartree-Fock� Coulomb
interaction, and two-exciton correlations are included on a
microscopic level. We use a two-band model �including spin-
degenerate conduction and heavy-hole valence band� to de-
scribe the optically induced polarization in the GaAs QW.35

Since we are mainly interested in the pump excitation in the
LPB, i.e., energetically below the bare exciton resonance �cf.
Fig. 1�, we account for the dominant contributions to the QW
response by evaluating the optically induced QW polariza-
tion in the 1s heavy-hole exciton basis.31,33,34,36

We start from the coupled equations of motion for the
field Ek in the cavity modes with in-plane momentum k
�treated in quasimode approximation37� and the optically in-
duced interband polarization amplitude pk in the embedded
QW. We formulate our theory in the TE-TM basis for the
optical fields in the cavity, Ek=Ek

TEeTE+Ek
TMeTM �see Fig. 2

for the excitation geometry�, where the field components in

FIG. 1. �Color online� �a� Shown is the dependence of the
cavity-polariton modes on the magnitude k of the in-plane momen-
tum. Depicted are the lower �LPB� and upper �UPB� polariton
branches for TE �solid� and TM �dashed� cavity modes and the bare
cavity and exciton �dotted� dispersions. For details on the modeling
of the cavity modes, see Sec. II. �b� Real and imaginary parts of the
two-exciton scattering matrices T��� in the co-circular ���� and
counter-circular ���� polarization state channels as defined in Ap-
pendix A. ��a� and �b�� Results are shown for typical GaAs param-
eters �Ref. 35�, as used throughout this work.
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FIG. 2. �Color online� Schematic of the excitation geometry.
The plane of incidence is spanned by the wave vector of the incom-
ing light field and the z axis. All lines in this plane are solid. The
quantum-well plane is the x-y plane. All lines in this plane are
broken. The figure shows the basis vectors eTE

in-plane and eTM
in-plane that

span the projection of the TE-TM basis on the x-y plane. The polar
angle � and azimuthal angle �k are also shown. For more explana-
tion, see text in Sec. II.
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the TE mode Ek
TEeTE �also called s polarized� are character-

ized by an electric field vector with in-plane �in the plane of
the QW� component perpendicular to the in-plane momen-
tum k and field components in the TM mode Ek

TMeTM �also
called p polarized� by an electric field vector with in-plane
component parallel k. In this basis, it is most intuitive to
include different cavity-mode exciton couplings for the TE
and TM modes in the theory: the in-plane component of the
fields in the TE mode does not depend on the polar angle of
incidence � �cf. Fig. 2� and thus the coupling strength to the
excitonic dipole in the quantum-well plane does not depend
on �. A different result is found for fields in the TM mode
where the magnitude of the in-plane component depends on
the polar angle of incidence �. Since the z component of
fields in the TM mode does not couple to the excitonic dipole
for excitation of heavy-hole excitons in the QW,38 the effec-
tive coupling constant of excitons and fields in the TM mode
decreases with the polar angle like �cos �. Additionally, we
include a slightly different polar angular dependence of the

bare TE and TM cavity dispersions �k
TE
TM

that in general de-
pend on the specific materials and design of the cavity.22 The

resulting cavity dispersions are shown in Fig. 1�a� and the
parameters will be given later in this section. In order not to
complicate the structure of the nonlinear terms in the equa-
tions of motion for the polarization amplitudes, we use the
usual Cartesian basis �X-Y basis� in the QW plane �x-y
plane� to decompose the polarization into its components as
pk= pk

Xex+ pk
Yey. In the X-Y basis, the projection of the

TE-TM basis vectors on the x-y plane, eTE
in-plane and eTM

in-plane,
rotates with the in-plane component k of the momentum of
the incident wave. The azimuthal angle between k and the x
axis is denoted by �k �cf. Fig. 2�. Simple geometric consid-
erations lead to the azimuthal angular dependencies that ap-
pear in the terms coupling the equations of motion for field
and polarization amplitude components in the different
bases,
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These equations constitute the generalization of the equa-
tions given in Ref. 10, now including all vectorial polariza-
tion states. As discussed above, the polarization amplitudes
are given in the X-Y basis, while the fields are given in the
TE-TM basis.39 The meaning of the symbols in Eq. �2� is to
be discussed in the remainder of this paragraph, along with
the used parameters and approximations. Unless otherwise
noted, the time argument in Eqs. �1� and �2� is t. tc is the
coupling constant of the cavity mode to the external light

fields Ek,inc
TE
TM

, and the dephasing constant 	c describes optical
losses from the cavity to the outside world.10 The depen-

dence of the bare cavity modes �k
TE
TM

and the dependence of

the exciton cavity-mode coupling Vk
TE
TM

on the polar angle �
is modeled on a phenomenological level along the guidelines
given in Ref. 22. We approximate the bare cavity dispersions
with �k

TM=
�0

cos � +100 meV sin2 � and �k
TE=

�0

cos � with sin �

=

k
c0

�nbg
. This way, a TE-TM cavity-mode splitting resulting

from the mismatch of the center of the stop band of the
cavity mirrors and the Fabry-Pérot frequency of the cavity is
phenomenologically included.22 The cavity-mode exciton
couplings are Vk

TM=V0
TM cos � and Vk

TE=V0
TE, respectively,

with V0
TM=V0

TE=5.2 meV. With ��0
TE
TM

=0
x, we assume zero

cavity-mode exciton splitting for k=0. The chosen param-
eters give a reasonable magnitude and polar angular depen-
dence of the TE-TM mode splitting in the LPB, comparable
to the results in, e.g., Ref. 23. Since the presented results do
not crucially depend on the details of the cavity-mode split-
ting, no further insight is expected from a more elaborate
treatment. In Eq. �2�, ��k

x is the 1s heavy-hole exciton in-
plane dispersion, 	x a phenomenological dephasing constant

of the excitonic polarization amplitude, and Ã is related to

the excitonic PSF constant APSF by Ã= APSF

�1s
* �0� , with �1s�r� be-

ing the two-dimensional QW exciton wave function. Without

loss of generality, in the following, the quantities �1s, V0
TE
TM

,
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and tc are chosen to be real valued. The parameter values are
listed in Ref. 35. Although in this paper we investigate a
spatially isotropic microcavity system, spatial anisotropy can
easily be included in the theory via �k

x→�k
x to model an

anisotropic dispersion of the QW excitons and via �k
TE
TM

→�k
TE
TM

to model an anisotropy of the cavity modes. The
two-exciton scattering matrices �T matrices� T in the co-
circular ���� and counter-circular ���� polarization state
channels include a two-exciton dephasing rate 2	x and are
given by T++=T+ and T+−= �T++T−� /2, with the T matrices
T+ and T− in the electron-spin triplet and -singlet channels,
respectively �see Appendix A and Ref. 27 for more details�.
The frequency dependence of real and imaginary parts of T++

and T+− is shown in Fig. 1�b�. We neglect the momentum
dependence of the T matrices for scattering processes involv-
ing two excitons with different in-plane momenta. Calcula-
tions in a different context have shown that this is justified in
a good approximation for the small optical momenta contrib-
uting here.40 We also neglect possible corrections to the ex-
citonic T matrices from the coupling to the photons in the
cavity modes. This is supported by experimental observa-
tions that indicate that even in the strong coupling regime,
the biexciton binding energy is not significantly affected by
the coupling to the cavity modes.41 Also, good theory-
experiment agreement has been achieved in Refs. 30, 31, and
42 using a theory based on pure exciton-exciton scattering
matrices.

To simulate a typical pump-probe setup, we start from
Eqs. �1� and �2� and choose a finite in-plane momentum kp
for the pump propagating along a given axis, here, without
loss of generality the x axis, i.e., �kp

=0. We “detect” the
probe in normal incidence with in-plane momentum k=0
where in the past, the strongest amplification has been
observed.10,12,16,43 This fixes the in-plane momentum of the
background-free FWM signal to 2kp. We go beyond an
evaluation of the theory on a strict ��3� level by self-
consistently calculating the resulting excitonic and biexci-
tonic polarization amplitude dynamics up to arbitrary order
in the pump field,32,33 and we linearize the equations of mo-
tion in the weak probe field. Only via this self-consistent
solution, the coupling of the probe signal to the background-
free FWM signal is included in the theory, which provides
the basic feedback mechanism that leads to the unstable be-
havior in, e.g., Refs. 1–5, 7, and 8. We limit our analysis to
coherent exciton densities that are low enough ��2
�1010 cm−2, cf. Figs. 3 and 4� so that the neglect of higher
than two-exciton Coulomb correlations can be justified.

III. LINEAR STABILITY ANALYSIS

In this section, we introduce the linear stability analysis
�LSA� used in the remainder of this paper. To analyze the
stability of the pump-probe dynamics, the LSA is done with-
out an incoming probe field and for a linearly polarized

monochromatic continuous wave �cw� pump field Ekp
TE
TM

�t�

= Ẽkp
TE
TM

��p�e−i�pt inducing the pump polarization amplitude

pkp
Y
X

�t�= p̃kp
Y
X

��p�e−i�pt, with ṗ̃kp
Y
X

=0 and Ẽ
˙

kp
TE
TM

=0 ��p is the

pump frequency�. The pump polarization amplitude is a so-
lution of the cubic nonlinear pump equation following from
Eqs. �1� and �2� for unidirectional light propagation and is
determined as outlined in Appendix B. The resulting

FIG. 3. �Color online� Top: coherent steady-state exciton density

pkp

Y 
2 for a fixed pump intensity of a linearly TE polarized pump as
a function of the magnitude kp of the pump in-plane momentum and
the pump detuning �=��p−0

x from the bare exciton resonance
0

x. Middle and lower figures show the real part of the eigenvalue of
M�

TE,TE and M�
TE,TM with the largest real part in meV �maximum

growth rate if larger than zero�. The linear polariton dispersions are
included as the dashed lines and the insets show the same data
around the magic angle for pump excitation on the LPB.
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coherent exciton density 
pkp
Y
X


2 for excitation with a linearly
polarized pump of fixed intensity is shown in Figs. 3 and 4 as
a function of the magnitude of the pump in-plane momentum

kp
 and pump detuning � from the bare exciton resonance
for excitation in the TE or TM mode, respectively. No
bistable behavior of the pump-induced exciton density in
Figs. 3 and 4 is found �this follows from the solution of the
nonlinear pump equation as outlined in Appendix B�. How-
ever, for other values of cavity or QW parameters and a
different pump intensity, bistability may occur, which would

complicate our discussion.43,44 The pump densities shown
have their maxima close to the linear polariton dispersions
�included as the dashed lines� and decrease along the LPB
with increasing in-plane momentum because of the de-
creased coupling of the �mostly excitonlike� large-
momentum polariton states to the incoming field. Further-
more, a reduced exciton density is found for excitation of the
UPB caused by strong excitation-induced dephasing �EID�
for pump excitation in the two-exciton scattering continuum
�the spectral region where the two-exciton scattering matri-
ces shown in Fig. 1 exhibit a large imaginary part�. For the
stability analysis, we evaluate the memory integrals in Eq.
�2� contributing to the probe and FWM directions in a Mar-
kov approximation for the two-exciton scattering continua in
the T matrices T++ and T+−. Our Markov approximation is
effected by taking p0�t��� p0�t�ei�p�t−t�� and p2kp

�t��
� p2kp

�t�ei�p�t−t��, where the probe and FWM polarization
amplitudes p0 and p2kp

appear under the time-retarded inte-
grals in Eq. �2� together with the continuum contributions in
T++ and T+−. In contrast, we include the bound biexciton
state exactly via the time-dependent amplitudes bkp

�t� and
b3kp

�t�. For this, we separate the bound biexciton contribu-
tions Txx

+− from the correlation kernels T+− in Eq. �2� as T+−

=Tcont
+− +Txx

+−. The bound biexciton contributions to Eq. �2� can
be exactly included via the equations of motion �cf. Eqs. �11�
and �12� of Ref. 27� for the biexciton amplitudes bkp

�t� and
b3kp

�t� which are labeled according to the total in-plane mo-
mentum of their source terms: �p0pkp

and �p2kp
pkp

, respec-
tively. This way, we include quantum memory effects related
to the excitation of bound biexcitons, which were previously
shown to play an important role in the study of FWM insta-
bilities in single semiconductor QWs.11 Since, for the chosen
excitation geometry with finite pump in-plane momentum
kp, the probe and FWM signals do not oscillate at the pump
frequency �p, the Markov approximation for the two-exciton
scattering continuum may not be as justified as it is for the
single QW system investigated in Ref. 11. However, close to
or in the unstable regime, those wave mixing processes that
describe the pairwise scattering of pump polaritons into the
probe and FWM directions play the dominant role in the
probe and FWM dynamics. For monochromatic cw pump
excitation, these terms are of purely Markovian nature and
hence the T matrices in these terms contribute exactly at
frequency �=2�p; no approximation is required. Indeed, for
the results discussed here, not even from the excitation of the
bound biexciton state have we found a sizable contribution
from non-Markovian �quantum memory� effects. For mono-

chromatic cw pump excitation and with the ansatz E0
TE
TM

�t�
= Ẽ0

TE
TM

�t�e−i�pt, E2kp
TE
TM

�t�= Ẽ2kp
TE
TM

�t�e−i�pt, p0
Y
X

�t�= p̃0
Y
X

�t�e−i�pt,

p2kp
Y
X

�t�= p̃2kp
Y
X

�t�e−i�pt and bkp
�t�= b̃kp

�t�e−i2�pt, b3kp
�t�

= b̃3kp
�t�e−i2�pt, the coupled probe and FWM dynamics can

be written in the form

�ṗ̃�t� = Mp̃�t� . �3�

The vector,

FIG. 4. �Color online� Same as Fig. 3 but for linearly TM po-
larized pump.
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p̃�t� = �Ẽ0
TE�t�,Ẽ2kp

TE*�t�,Ẽ0
TM�t�,Ẽ2kp

TM*�t�, p̃0
Y�t�, p̃2kp

Y* �t�, p̃0
X�t�, p̃2kp

X* �t�, b̃kp
�t�, b̃3kp

* �t��T,

groups field and polarization amplitude variables together. M
is a time-independent matrix where all system parameters
and the steady-state pump polarization amplitude �Figs. 3
and 4� and the corresponding pump field in the cavity modes
parametrically enter the analysis. For excitation with a lin-
early polarized pump either exciting the TE or the TM mode,
the matrix M is block diagonal for the components of probe
and FWM parallel �co-linear configuration� and perpendicu-
lar �cross-linear configuration� to the pump’s vectorial polar-
ization state. Then, for each pump polarization state �TE or
TM, respectively�, the 10�10 matrix M can be decomposed
into the 6�6 block M�

�s,�p with �s=�p and the 4�4 block
M�

�s,�p with �s��p, which describe the dynamics of the
coupled variables in the vectors p̃�

�s�t�
= �Ẽ0

�s�t� , Ẽ2kp

�s*�t� , p̃0
�s�t� , p̃2kp

�s*�t� , b̃kp
�t� , b̃3kp

* �t��T with �s=�p

for the co-linear configurations and p̃�
�s�t�

= �Ẽ0
�s�t� , Ẽ2kp

�s*�t� , p̃0
�s�t� , p̃2kp

�s*�t��T with �s��p for the cross-
linear configurations, respectively. The indices �s and �p re-
late to the cavity modes TE and TM or to the corresponding
excitonic polarization amplitude components X and Y that
are excited by the fields in these modes. Note that for the
above-described excitation situation �pump pulse propagat-
ing along the x axis and linearly polarized excitation in TE or
TM mode�, the x component of the polarization amplitude is
exclusively excited by fields in the TM mode and the y com-
ponent by fields in the TE mode. The matrices M�

�s,�p and
M�

�s,�p can be derived from Eqs. �1� and �2� and take the
following form:

M�
�s,�p =

h0
�s 0 iV0

�s 0

0 h2kp

�s* 0
1

i
V2kp

�s*

V0,eff
�s,�p 0 a0,�

�p b�
�p

0 V2kp,eff
�s,�p*

b�
�p* a2kp,�

�p*
� , �4�

M�
�s,�p

=
h0

�s 0 iV0
�s 0 0 0

0 h2kp

�s* 0
1

i
V2kp

�s* 0 0

V0,eff
�s,�p 0 a0,�

�p b�
�p C�p 0

0 V2kp,eff
�s,�p*

b�
�p* a2kp,�

�p*
0 C�p*

0 0 − 1
2C�p* 0 B0,kp

0

0 0 0 − 1
2C�p 0 Bkp,2kp

*

� .

�5�

The time-independent coefficients are defined as,

hk
�s =

1

i
���k

�s − ��p − i	c� ,

Vk,eff
�s,�p = iVk

�s�1 − Ã
p̃kp

�p
2� ,

ak,i
�p =

1

i
�− �k − i	x + ÃVkp

�pp̃kp

�p*Ẽkp

�p + �T++�2�p�

+ �i,�Tcont
+− �2�p��
p̃kp

�p
2	 ,

bi
�p =

1

i
��− 1��i,�ÃVkp

�pp̃kp

�pẼkp

�p +
1

2
��− 1��i,�T++�2�p�

+ T+−�2�p��p̃kp

�p
2� ,

Bk1,k2
=

1

i
�− �k1

− �k2
− 2i	x − Eb

xx� ,

C�p =
1

i
�Cxxp̃kp

�p*� ,

Cxx = ���q
Wxx

−†�q,0��gs
−�q����

q�

�gs
−†�q��Wxx

− �q�,0���1/2
.

T++��� and T+−��� are the Fourier transformed correlation
kernels, as shown in Fig. 1�b� and defined in Appendix A
�see also Ref. 27 for more details�. The coupling strength
Cxx�0.54Eb

xa0
x of the excitonic polarization amplitudes to

the bound biexciton amplitude is given by the two-exciton
�biexciton� ground state wave function in the electron-spin
singlet configuration �gs

−�q� and the corresponding two-
exciton Coulomb interaction matrix element Wxx

−�q ,0�, both
as defined in Appendix A.

For steady-state monochromatic pump excitation, the lin-
ear stability analysis formulated in this section gives us com-
prehensive information about the growth �real part of the
eigenvalues of M� and the frequency �imaginary part of the
eigenvalues of M� of the polariton modes in the probe and
FWM directions, after the initial external driving pulse
�seed� in the probe direction is gone. Information how the
different eigenmodes contribute to the polarization ampli-
tudes and fields with different in-plane momenta �0 or 2kp�
can be obtained from the eigenvectors of the matrices M. If
at least one of the eigenvalues �i of the matrices M fulfills
Re��i	�0, the system is unstable. An arbitrarily small seed

of p0
Y
X

or p2kp
Y
X

�X or Y, depending on which subspace shows
an unstable dynamics� or in the corresponding cavity modes
would grow exponentially until the matrix M ceases to de-
scribe the system correctly.
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In addition to the strict steady-state analysis �regarding
the pump excitation�, the general information obtained from
the stability analysis can—to a large extent—be carried over
to the discussion of pump-probe experiments with finite
pulse lengths. From the linear stability analysis, reasonable
predictions for growth rates of probe and FWM signals and
thus for polarization rotations can be made as long as no
external probe pulse significantly drives the probe polariton
dynamics during the period of amplification. Furthermore,
for interpretation of pulsed experiments based on the linear
stability analysis, the pump pulse must be spectrally suffi-
ciently narrow and the pump and probe must have a signifi-
cant temporal overlap. After a sufficiently long period of
time, that particular eigenmode of M corresponding to the
eigenvalue with the largest real part will dominate the overall
outgoing signal in probe and FWM directions. In a pump-
probe experiment, an incoming probe pulse in this particular
mode will be most efficiently amplified, or for steady-state
pump excitation without an incoming probe, fluctuations in
this mode �serving as a seed� will grow most efficiently over
time and dominate the signal in probe and FWM directions
after a sufficiently long growth period.

IV. RESULTS AND DISCUSSION

Without excitonic correlations �and neglecting the TE-TM
splitting of the cavity modes�, the equations of motion for the
two circular polarization state channels, � and �, are decou-
pled. In this case, for excitation with a linearly polarized
pump, where equal densities of polaritons are excited in
these two different polarization state channels, the incoming
�seed in our linear stability analysis� and outgoing probes are
always in the same vectorial polarization state, in the stable
�all Re��	�0� as well as in the unstable �at least one
Re��	�0� regime. Neglecting the TE-TM cavity-mode split-
ting, for the pump in a linear polarization state, only the
spin-dependent excitonic correlations can give rise to a rota-
tion of the outgoing probe signal’s vectorial polarization
state relative to the incoming one’s. The actual fraction of
polaritons that is scattered into the probe and FWM direc-
tions in a vectorial polarization state perpendicular or paral-
lel to the pump’s vectorial polarization state, respectively,
strongly depends on the excitonic correlations in the ��
polarization state channel �included in T+−�.9 As discussed in
the previous section, for a linearly polarized �either TE or
TM� pump, all the eigenmodes �eigenvectors of the matrix M
in Eq. �3�� for the probe and FWM dynamics are either po-
larized parallel �co-linear configuration� or perpendicular
�cross-linear configuration� to the pump, even when both ex-
citonic correlations and cavity-mode splitting are included.
However, either excitonic correlations alone or the cavity-
mode splitting alone �when the polariton scattering is medi-
ated by Hartree-Fock Coulomb interaction� is sufficient to
give different probe and FWM dynamics in the two different
polarization state configurations.

Since the above-listed effects lead to a difference in the
growth rates of the modes polarized parallel or perpendicular
to the pump, for an arbitrarily polarized probe, the two dif-
ferent vectorial polarization state components �parallel or

perpendicular� will grow differently over time. The stronger
the amplification of the probe and the longer the amplifica-
tion duration, the more the fractions of the probe in those
modes that exhibit the fastest exponential growth will domi-
nate the outgoing probe and FWM signals. Thus, for strong
amplification, the growth rates of the fastest growing modes
in the two polarization states �parallel and perpendicular� ul-
timately determine the rotation in the probe’s vectorial polar-
ization state. Studying these growth rates also answers the
question about the preferred mode for the growth of probe
fluctuations over time, when no incoming probe is present.
Figures 3 and 4 show these growth rates—the real part of the
eigenvalue of M with the largest real part in each case—for a
fixed pump intensity for the different polarization state con-
figurations �co-linear or cross-linear� for the pump excitation
of TE �Fig. 3� and TM �Fig. 4� modes, respectively. The
results show that pumping either TE or TM mode does not
significantly influence the overall result regarding the maxi-
mum growth rates in the co-linear or cross-linear configura-
tion; merely a small change in the optimum pump momen-
tum and frequency is observed. However, a significant
difference between co-linear and cross-linear configurations
is found for pumping close to the inflection point of the LPB
�the so-called magic angle� where phase matching is best
fulfilled so that triply resonant �resonant for the pump exci-
tation and at an angle so that the dispersions in probe and
FWM directions allow for phase-matched scattering of pairs

FIG. 5. �Color online� Same as the two lower panels in Fig. 3

but without exciton-exciton scattering in the �� channel �T̃+−

�0�.
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of pump-excited polaritons into these two directions� ampli-
fication of the polaritons can occur. For the chosen intensity,
close to the instability threshold, and for the pump excitation
under the magic angle, we are in a regime where the insta-
bility �Re��	�0� and the corresponding exponential signal
growth are only found in the cross-linear configurations
�TE-TM and TM-TE�, while all the modes in the co-linear
configurations �TE-TE and TM-TM� are exponentially de-
caying. In this regime, for an arbitrarily polarized probe,
only that component polarized perpendicular to the pump is
exponentially growing over time and thus only this compo-
nent experiences a significant amplification. To isolate the
mechanism that leads to this striking difference in the polar-
ization state configurations, Fig. 5 shows results for both
configurations in Fig. 3 but without taking into account the
correlations in the �� channel �T+−�0�. Without these cor-
relations, the results for the two configurations almost look
alike; we find only a small difference in the growth rates
caused by the TE-TM cavity-mode splitting. Note that with-
out the correlations in the �� channel in both configura-
tions, the instability threshold is not reached for the same
pump intensity as used in Figs. 3 and 4.

In the co-circular ���� excitation configuration, it was
found earlier10 that excitonic correlations in the �� channel
may considerably reduce the maximum growth rates in the
polariton amplification. In the �� channel, the driving
mechanism for the instabilities, the phase-conjugate feed-
back, is weakened by the two-exciton correlations. Addition-
ally, but for large negative detuning less important, correla-
tions in the �� channel give rise to pump-induced EID, also
reducing the exponential growth rate over time. Figures 3
and 4 show that the correlations in the �� channel enhance
the growth rate in the cross-linear configuration and diminish
it in the co-linear configuration, compared to the results
shown in Fig. 5 where these correlations are absent.

In the following, we will interpret these results in terms of
the exciton-exciton scattering matrices shown in Fig. 1�b� for
the different polarization state channels of polariton-
polariton scattering. For this discussion, we ignore the small
PSF nonlinearities that contribute to the probe and FWM
dynamics and concentrate on the nonlinearities in the exci-
tonic polarization amplitudes in Eq. �2� that contribute to the
probe and FWM dynamics, and therefore determine the am-
plification process. Being sufficient for a qualitative under-
standing, we discuss all contributions in Markov approxima-
tion. Three different terms have to be analyzed that enter the
matrices M in Eqs. �4� and �5�.

�i� Excitation-induced dephasing for the excitonic compo-
nent of the polaritons �entering M via ak,i

�p�,

Im�T++�2�p� + �i,�T
+−�2�p�	
p̃k

�p
2. �6�

�ii� Nonlinear shifts to the effective exciton resonances in
probe and FWM directions �entering M via ak,i

�p�,

Re�T++�2�p� + �i,�T
+−�2�p�	
p̃k

�p
2. �7�

�iii� The phase-conjugate oscillation feedback for the ex-
citonic constituents of the polaritons that drives the instabil-
ity �entering M via bi

�p�,

1

2
��− 1��i,�T++�2�p� + T+−�2�p��p̃k

�p
2

. �8�

The index i� �� , � 	 labels the co-linear and cross-linear po-
larization state configurations, respectively. The maximum
growth rates in Figs. 3–5 are obtained when the pump is
tuned about 3 meV below the exciton resonance and close to
the magic angle. For this pump detuning and in Markov ap-
proximation, the two-exciton scattering matrices shown in
Fig. 1�b� contribute at ��−2x�−6 meV. For this detuning,
the Im�T++	 is much smaller than Im�T+−	, which according
to Eq. �6� leads to a much larger EID in the co-linear ���
configuration. According to Eq. �7�, a partial cancellation of
the nonlinear energy shifts from contributions in the �� and
�� channels is found in the co-linear ��� configuration only.
This, however, only slightly modifies the effective resonance
frequencies �polariton dispersions� and thus slightly changes
the optimum pump momentum and frequency. Most impor-
tant for the stimulated amplification process is the difference
in the polarization state configurations that can be seen in Eq.
�8�. Whereas for the co-linear ��� configuration, the sum of
the scattering matrices in the �� and �� polarization state
channels determines the strength of the phase-conjugate
feedback driving the instability, for the cross-linear ��� con-
figuration, the difference of the two is relevant. Compared to
the results without correlations in the �� channel, the dif-
ference in sign in the real parts of these two contributions �cf.
Fig. 1�b�� leads to a strong cancellation in Eq. �8� for the
co-linear configuration and to a strong enhancement in the
cross-linear configuration. As previously pointed out in Ref.
18, this leads to an imbalance in the pairwise scattering of
polaritons into the probe and FWM directions with polariza-
tion parallel or perpendicular to the pump. From our results,
we conclude that this does not necessarily lead to an overall
rotation of the vectorial polarization state by 90° in contrast
to the conclusions in Ref. 21. Based on our explicit treatment
of the bound biexciton, we also find that in the studied sys-
tem, the scattering matrix element T+− that drives the ampli-
fication process by scattering of polaritons with opposite
spins is not small compared to T++. We note that this is in
contrast to the case reported in Ref. 19. Our results indicate
that in the cw regime for a linearly polarized pump and close
to threshold, spontaneous fluctuations preferably grow in the
cross-linear polarization configuration. This is in agreement
with recent observations for a slightly different system and
excitation geometry.24

The above discussion has a very general character. The
actual cancellation of the different contributions in Eqs.
�6�–�8� depends quantitatively on parameters such as the
coupling strength of the cavity modes to the excitonic polar-
ization amplitudes. The general trend follows from the fre-
quency dependence of the two-exciton scattering matrices, as
shown in Fig. 1�b�: the stronger the cavity-mode exciton
coupling �shifting the magic angle to larger negative detun-
ing�, the less pronounced the role of T+− will be. However,
especially close to threshold, even a small difference in
growth rates can be crucial, and in this regime, even a small
T+− contribution can play a major role for the analysis of
vectorial polarization state rotations. Although for the system
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studied here it was found to be almost insignificant, the over-
all role of the TE-TM cavity-mode splitting can depend on
parameters and excitation conditions, too. Furthermore, the
importance of a TE-TM cavity-mode splitting can be differ-
ent in other systems such as the quasi-one-dimensional mi-
crocavity system studied in Ref. 20. As recently demon-
strated in Ref. 25, polarization effects in the polariton
amplification in semiconductor microcavities can be even
more complicated if structural anisotropy plays a significant
role.

For pulsed off-resonant pump excitation of a CdTe based
microcavity, a pinning of the vectorial polarization state of
the detected photoluminescence signal to one of the crystal-
lographic axes of the system has been observed in Ref. 26.
This effect has been attributed to an intrinsic polarization
anisotropy in the optical cavity modes and is not expected in
the structurally perfectly isotropic microcavity system stud-
ied here. In addition, unlike in the coherently driven polar-
iton dynamics considered in this work, in pulsed lumines-
cence experiments,45 the vectorial polarization state of the
relevant pump-excited polariton density is not strictly tied to
the vectorial polarization state of the linearly polarized pump
pulse but may depend on the dynamics of the polariton re-
laxation toward the bottom of the LPB.

Although not relevant for the amplification of polaritons
on the LPB, we finally note that Figs. 3–5 show a strong
pump-induced EID for excitation on the UPB. Although the
two-exciton scattering matrices evaluated in the 1s approxi-
mation are not quantitatively accurate in this energy region,
even in a theory including only coherent excitations, this
additional EID would likely inhibit the observation of any
instability in the UPB �previously discussed, e.g., in Ref. 46�
in analogy to the situation for positive pump detuning in a
single QW.11

V. CONCLUSIONS

Based on a microscopic many-particle theory, we have
investigated the influence of excitonic correlations on the
vectorial polarization state characteristics of the parametric
amplification of polaritons in semiconductor microcavities.
By means of a linear stability analysis, it has been analyzed
how a linearly polarized pump can induce a polarization state
anisotropy in an otherwise perfectly isotropic microcavity
system. For the discussion of this effect, we take advantage
of our theoretical approach which—in contrast to previous
models16–19—is based on microscopically calculated exciton-
exciton scattering matrix elements. Accounting for all coher-
ent correlations between two excitons, these matrix elements
determine the nonlinear cavity-polariton dynamics in the
probe and FWM directions in the amplification regime.

A previous study10 found that excitonic correlations
weaken the polariton amplification for co-circular pump-
probe excitation. We confirm these findings and additionally
investigate the effects of correlations on the polariton ampli-
fication in linearly polarized pump-probe configurations. We
find that scattering contributions of the excitonic components
of polaritons with opposite spins can strongly diminish the
driving force for the amplification, the phase-conjugate cou-

pling, in the co-linear �TE-TE or TM-TM� pump-probe po-
larization configuration and strongly enhance it in the cross-
linear �TE-TM or TM-TE� configuration. In the spectral
region where instability occurs, the scattering of polaritons
with opposite spins is dominated by the virtual formation of
bound biexcitons.

In or close to the unstable regime, this polarization state
anisotropy has the potential to alter the polarization state of
an amplified probe pulse compared to the incident probe. If
the incoming probe has both components polarized parallel
and perpendicular to the pump’s polarization state, in gen-
eral, the maximum growth rate for these two components
over time is not the same. Then, after a certain growth pe-
riod, the amplification of these two polarization state compo-
nents will be different, and hence the vectorial polarization
state of the outgoing probe is rotated compared to the incom-
ing one’s. Since the probe component polarized perpendicu-
lar to the pump’s polarization vector grows faster over time
than the parallel component, the probe is always rotated to-
ward the “preferred” cross-linear configuration. However,
the overall rotation in the vectorial polarization state depends
on both the duration of amplification and the difference in
the growth rates in the two polarization state channels.

Finally, we note that in a situation where steady-state
pump excitation brings only the cross-linear configuration
above the unstable amplification threshold, without an in-
coming probe, only spontaneous fluctuations in the cross-
linear polarization state channel will be amplified and thus
observed as a finite signal in probe and FWM direction.
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APPENDIX A: THE EXCITONIC T MATRIX

In this appendix, we give the explicit form of the two-
exciton scattering matrices �T matrices� used in the evalua-
tion of our theory in the frequency domain. We only summa-
rize the essential ingredients here since a detailed description
of the construction of the T matrices we use can be found in
Ref. 27. In Eq. �2�, we have introduced the two-exciton scat-
tering matrix elements T++ and T+− in the co-circular ����
and counter-circular ���� polarization channels. In the fre-
quency domain, they are defined as27

T++��� = VHF + 2G+��� ,

T+−��� = G+��� + G−��� .

These T matrices contain the frequency-independent �and in
the time-domain instantaneous� Hartree-Fock contribution,
which in the 1 s heavy-hole exciton approximation is VHF

=2��1−315�2 /4096�a0
x2Eb

x. The frequency-dependent two-
exciton correlation kernels G���� are defined in the electron-
spin singlet ��=−1� or -triplet ��= + � channel, respectively.
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In the time domain, they give rise to time-retarded contribu-
tions to the coherent nonlinear exciton dynamics. In the fre-
quency domain, the correlation kernels can be constructed in
the following way:

G���� =
1

2 �
Jqq�

�Wxx
� †�q,0��J

��q����J
�†�q��Wxx

� �q�,0��
�� − J

� + i	b

.

�A1�

Here, �J
��q� denotes the two-exciton eigenstates in the elec-

tronic singlet ��=−1� and triplet ��= +1� configurations as a
function of the two-exciton in-plane relative momentum q,
and the J

� are the corresponding two-exciton eigenenergies.
These quantities are calculated in the 1s heavy-hole exciton
approximation from the two-exciton Hamiltonian Hxx

� �q ,q��
along the lines given in Ref. 27. The two-exciton dephasing
rate 	b is taken to be twice the dephasing rate of each of the
constituent excitons 	b=2	x. The two-exciton interaction
matrix elements Wxx

� �q ,q�� in Eq. �A1� are the sum ��=
+1� and the difference ��=−1� of the direct and exchange
two-exciton Coulomb interaction calculated in the 1s heavy-
hole exciton subspace.27

APPENDIX B: THE NONLINEAR PUMP EQUATION

The linear stability analysis of probe and FWM dynamics
in Sec. III is done for monochromatic cw pump excitation.

The stationary pump field inside the cavity, Ekp
TE
TM

, and pump-

induced polarization amplitude in the QW, pkp
Y
X

, which enter
the matrix M in Eq. �3� are needed to analyze the probe and
FWM dynamics. In this work, we have considered pump
excitation with a linearly polarized pump in the TM or TE
cavity mode with in-plane momentum kp along a certain
axis, here, without loss of generality the x axis, i.e., �kp

=0.
Seeking a steady-state solution for the pump-induced polar-

ization amplitude pkp
Y
X

, we use the ansatz Ekp,inc
TE
TM

= Ẽkp,inc
TE
TM

e−i�pt,

Ekp
TE
TM

= Ẽkp
TE
TM

e−i�pt for the incoming pump field and the field in

the excited cavity mode, respectively, and pkp
Y
X

= p̃kp
Y
X

e−i�pt for

the polarization amplitude, with Ẽ
˙

kp,inc
TE
TM

= Ẽ
˙

kp
TE
TM

= ṗ̃kp
Y
X

=0. Then,
from Eq. �1�, it follows that the electric field in the cavity
mode for in-plane momentum kp is given by

Ẽ
kp

TM
TE =

− V
kp

TM
TE p̃

kp

X
Y + i�tcẼkp,inc

TM
TE

��p − ��
kp

TM
TE + i	c

. �B1�

For unidirectional light propagation, i.e., by removing all
sums in Eq. �2�, taking all field and polarization amplitude
variables at momentum kp and replacing the pump field by
Eq. �B1�, a cubic equation of the form

0 = a0 + a1
p̃
kp

X
Y 
2 + a2
p̃

kp

X
Y 
4 + 
p̃

kp

X
Y 
6 �B2�

can be derived. This equation determines the monochromatic
solutions for each pump frequency �p and incoming pump

intensity ��
Ekp,inc
TE
TM


2�. The coefficients in Eq. �B2� are

a0 = −
1


T
2
�2tc

2V
kp

TM
TE 2
Ẽ

kp,inc

TM
TE 
2

���p − ��
kp

TM
TE �2 + 	c

2
,

a1 =
1


T
2
̃
2 +
2�2tc

2V
kp

TM
TE 2Ã
Ẽ

kp,inc

TM
TE 
2

���p − ��
kp

TM
TE �2 + 	c

2� ,

and

a2 =
2


T
2Re�̃	Re�T	 + Im�̃	Im�T	

−
�2tc

2V
kp

TM
TE 2Ã2
Ẽ

kp,inc

TM
TE 
2

���p − ��
kp

TM
TE �2 + 	c

2� ,

with the definitions

̃ = ��kp

x − ��p − i	x +
V

kp

TM
TE 2

��p − ��
kp

TM
TE + i	c

,

T =
1

2
�T++�2�p� + T+−�2�p�� −

V
kp

TM
TE 2Ã

��p − ��
kp

TM
TE + i	c

.

Being a cubic equation in 
p̃kp
Y
X


2, depending on the coeffi-
cients a0, a1, a2, Eq. �B2� can have either one or three real-
valued solutions. These solutions are given, e.g., in Ref. 47.

Equation �B2� only determines the magnitude of the

pump-induced polarization amplitude 
p̃kp
Y
X


 and contains no
information about the different phases of the polarization
amplitude and the incoming field. We define a phase � ac-

cording to Ẽkp,inc
TE
TM

· p̃kp
Y
X

= 
Ẽkp,inc
TE
TM

� p̃kp
Y
X


ei�. This phase � is re-
quired to determine the field in the cavity mode from Eq.
�B1� that is coupled to the polarization amplitude. The field
enters the linear stability analysis via the PSF terms in M. If

we choose the solution of Eq. �B2� to be real, p̃kp
Y
X

= 
p̃kp
Y
X


, then
the incoming field inducing this polarization amplitude is

Ẽkp,inc
TE
TM

= 
Ẽkp,inc
TE
TM


ei�. The phase of the incoming field can be
obtained from Eq. �2� and is given by

ei� =
�̃
p̃

kp

X
Y 
 + T
p̃

kp

X
Y 
3����p − ��

kp

TM
TE + i	c�

i�tcVkp

TM
TE �1 − Ã
p̃

kp

X
Y 
2�
Ẽ

kp,inc

TM
TE 


,

which then also determines the phase of the field in the cav-
ity mode given by Eq. �B1�.
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