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We find that the total spectrum of electron states in a bounded two-dimensional electron gas with spin-orbit
interaction contains two types of evanescent states lying in different energy ranges. The first-type states fill in
a gap, which opens in the band of propagating spin-splitted states if tangential momentum is nonzero. They are
described by a pure imaginary wave vector. The states of second type lie in the forbidden band. They are
described by a complex wave vector. These states give rise to unusual features of the electron transmission
through a lateral potential barrier with spin-orbit interaction, such as an oscillatory dependence of the tunneling
coefficient on the barrier width and electron energy. However, of most interest is the spin polarization of an
unpolarized incident electron flow. Particularly, the transmitted electron current acquires spin polarization even
if the distribution function of incident electrons is symmetric with respect to the transverse momentum. The
polarization efficiency is an oscillatory function of the barrier width. Spin filtering is most effective if the
Fermi energy is close to the barrier height.
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I. INTRODUCTION

The spin-orbit interaction �SOI� in low-dimensional struc-
tures attracts a great deal of interest since it opens up the
possibility of manipulating the electron spin in nonmagnetic
structures using electrical means.1,2 In this view, semicon-
ductor heterostructures with two-dimensional �2D� electrons
are very promising since the Rashba SOI is effectively
controlled3–5 by varying the applied bias or gate voltages. In
recent years, predominant interest was paid to effects appear-
ing when the SOI modifies propagating electron modes with
energy above the conduction band bottom. It suffices to men-
tion the spin-Hall effect6–8 or spin manipulation in strained
semiconductors.9 In this paper, we show that interesting ef-
fects of the SOI arise also when the electron energy is lower
than or near the conduction band bottom and evanescent
states are involved. These states determine electron tunnel-
ing. They are important in 2D structures with laterally inho-
mogeneous potential landscape. We find that such structures
can effectively polarize the transmitted electron current.

Three-dimensional �3D� tunnel structures, in which spin
polarization arises due to the SOI, were considered in a num-
ber of recent works. Zakharova et al.10 studied the interband
tunneling. Voskoboynikov et al.11 considered tunnel struc-
tures with the Rashba SOI at the interfaces. In these cases,
the electron flow acquires a spin polarization if the structure,
is asymmetric. In symmetric tunnel structures, the spin
polarization arises if the barrier material is non-
centrosymmetrical.12 The polarization mechanism proposed
by Perel’ and co-workers12,13 consists in a spin-dependent
renormalization of the electron effective mass owing to the
Dresselhaus SOI in the barrier. However, all these structures
have a common property restricting their capability to gen-
erate spin polarization. The polarization is absent if the elec-
tron current is perpendicular to the barrier. In other words,
for the spin polarization to appear, the momentum distribu-
tion function of incident electrons must be asymmetric with
respect to the momentum component parallel to the barrier.

The effective mass renormalization occurs if the Hamil-
tonian of the SOI is quadratic in longitudinal momentum.
However, the dispersion relation of electrons in the presence
of the SOI is generally much more complicated and, there-
fore, a more careful analysis of the complex band structure
and evanescent states should be carried out to study the spin-
dependent tunneling. In the 3D case, such calculations were
recently carried out for some specific materials and qualita-
tively new features were found.14–16

2D tunnel structures are scantily studied to date. In par-
ticular, as far as we know, even the complex band structure
of 2D electrons was not explored. Though the presence of
evanescent states is obvious, only a few works touched upon
these modes. Usaj and co-workers17,18 attracted evanescent
states to study the electron scattering at the edges of 2D
samples, but the total spectrum of evanescent states was not
considered. The importance of evanescent modes in quasi-
one-dimensional systems in the presence of the SOI was
pointed out in a number of works.19–22

Khodas and co-workers23,24 studied the electron beam
propagation in 2D electron gas with spatially inhomogeneous
SOI. They considered the transmission through a strip, in
which the SOI strength differs from that in the rest of the 2D
electron gas, to show that an initially unpolarized beam splits
into two beams with different spin polarizations propagating
in different directions. The consideration was restricted by
propagating states since only the case of uniform potential
landscape was studied. Spin-dependent reflection of elec-
trons from a lateral barrier in a 2D system was observed in
InSb / InAlSb heterostructures25 and described theoretically
in Ref. 26. Silvestrov and Mishchenko27 demonstrated the
possibility of achieving spin-polarized currents in a 2D sys-
tem with smooth potential barrier and spatially uniform SOI
by considering propagating modes within a semiclassical ap-
proach.

In this paper, we show that a strong polarization effect
appears in 2D structures when electrons pass through a lat-
eral potential barrier, in which the SOI is stronger than that
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in the outside 2D electron gas regions �reservoirs�. The po-
larization arises even if the electric current is normal to the
barrier. The highest polarization is attained when the electron
energy is close to the conduction band bottom in the barrier.
In this case, the fact that the SOI effectively splits the barrier
height so that some of the electrons pass through the barrier
via propagating states while others do this via the evanescent
modes becomes important. Since the spin and orbital degrees
of freedom are coupled, rather strong spin filtering occurs.

We study the total spectrum of electron states in a 2D
bounded system with SOI to find that there are two types of
evanescent states. The first-type states are characterized by
an imaginary longitudinal wave vector. They fill in a gap in
the propagating state spectrum. The states of the second type
lie in the forbidden gap. They are described by a complex
wave vector. The electron tunneling through a lateral barrier
with SOI via these evanescent states exhibits unusual fea-
tures, such as an oscillatory behavior of the transmission
coefficient with the barrier width. However, of most interest
is the spin polarization of the electron current. The polariza-
tion efficiency is high enough even if the distribution func-
tion of incident electrons is symmetric with respect to the
transverse momentum. We explore the polarization efficiency
in a wide range of electron energy to find that most effective
spin filtering occurs if the Fermi energy is close to the barrier
height.

The paper is organized as follows. In Sec. II, we describe
the complex band structure and total spectrum of electron
states. Section III is devoted to the tunneling through a bar-
rier with SOI. In Sec. IV, the electric and spin currents
through the barrier with SOI are considered for a wide range
of the Fermi energy in the reservoirs. The results obtained for
the Rashba SOI are generalized to the Dresselhaus SOI in
Sec. V. We summarize and conclude in Sec. VI.

II. COMPLEX BAND STRUCTURE
OF A TWO-DIMENSIONAL ELECTRON

SYSTEM WITH SPIN-ORBIT INTERACTION

We start by considering the total spectrum of propagating
and evanescent electron states in 2D electron gas with the
Rashba SOI. The Hamiltonian is28

HR =
�2

2m
�px

2 + py
2� +

�

�
�py�x − px�y� , �1�

where � is the SOI constant, and �x ,�y are Pauli matrices.
The eigenfunctions are

�k,s = Cei�kxx+kyy���s�k�
1

� , �2�

where s= + ,− stands for spin states, k= �kx ,ky�, and C is a
constant. The eigenenergy �k,s and the spin function �s�k�
are defined by the following equations:

��k,s − k2��s�k� − 2a�ky + ikx� = 0,

− 2a�ky − ikx��s�k� + ��k,s − k2� = 0, �3�

where a=m� /�2 is a characteristic wave vector of SOI, k2

=kx
2+ky

2, and �k,s is the normalized eigenenergy:

�k,s =
2m�k,s

�2 .

Using Eq. �3�, one obtains the dispersion equation

��k,s − k2�2 − 4a2k2 = 0 �4�

and the spin function

�s�k� = 2a
ky + ikx

�k,s − k2 . �5�

Let us analyze the dispersion equation. To be specific, let
us assume that the system under consideration is infinite in
the y direction and has a boundary in the x direction, i.e., the
system is semi-infinite or finite in the x direction. In this
case, the y component of the wave vector ky is real, while kx
is generally complex, kx=kx�+ ikx�. Dividing the real and
imaginary parts of Eq. �4�, we obtain an equation set deter-
mining the energy � as a function of kx� ,kx� ,ky and trajectories
in the �kx� ,kx�� plane, along which ��kx� ,kx� ,ky� is real:

�� − k�2 + k�2�2 = 4a2�k�2 − k�2� + 4k�2k�2, �6�

�� − k�2 + k�2�k�k� = − 2a2k�k�, �7�

where k�+ ik�=��kx�+ ikx��
2+ky

2.
Equation �7� possesses a solution in the following cases:

�i� k�=0, �ii� k�=0, and �iii� �−k�2+k�2=−2a2 for k� ,k��0.
The first case contradicts Eq. �6�, and hence cannot be real-
ized. The second case generates two branches of the solution,
which can be found after dividing the real and imaginary
parts of Eq. �6�:

�1� kx�=0,

�k,s = − a2 + �a ± �ky
2 + kx�

2�2,

�s�k� = ±
ky + ikx�

�ky
2 + kx�

2
; �8�

�2� kx�=0, �kx��	 �ky�,

�k,s = − a2 + �a ± �ky
2 − kx�

2�2,

�s�k� = ±
ky − kx�

�ky
2 − kx�

2
. �9�

The third case gives one further branch:
�3� This branch is defined for kx� ,kx� belonging to the fol-

lowing trajectory:

kx�
2kx�

2 + a2�ky
2 + kx�

2 − kx�
2� − a4 = 0, �10�

in the complex plane �kx� ,kx��. The eigenenergy and the spin
function are

�k,s = − a2 −
kx�

2kx�
2

a2 ,

�s�k� = − a
ky − kx� + ikx�

a2 + ikx�kx�
. �11�

VLADIMIR A. SABLIKOV AND YURII YA. TKACH PHYSICAL REVIEW B 76, 245321 �2007�

245321-2



The total spectrum is shown schematically in Fig. 1,
where the energy �k,s is presented as a function of kx�, kx� for
a given transverse momentum ky. The form of all three
branches is different in the cases �ky�	a and �ky�
a.

Branch 1 describes the propagating states with real kx.
This branch is splitted by spin. The energy gap, which opens
at kx=0 for ky �0, depends on �ky�.

Branch 2 describes purely decaying evanescent states de-
fined on the imaginary kx axis. This branch connects the
propagating state branches along the imaginary axis. The
spectrum of branch 2 is also splitted by spin. The energy
minimum �m=−�a2 / �2m� is common for branches 1 and 2.
The minimum is attained on branch 1 if �ky�	a or on branch
2 in the opposite case.

Branch 3 corresponds to evanescent states in the forbid-
den gap, �k,s	�m. They are described by a complex longi-
tudinal wave vector, and therefore can be named “oscillat-

ing” evanescent states. The trajectories along which these
states are defined obey the following equation:

�a2 − kx�
2��a2 + kx�

2� = a2ky
2. �12�

They are shown in Fig. 2. There are trajectories of two types.
If �ky�	a, the trajectories �lines 1, 2� intersect the imaginary
axis kx�. In the vicinity of the intersection point, �kx��� �kx��
and, hence, the wave function oscillates with the distance
faster than it decreases. If �ky�
a, the trajectories �lines 4–6�
intersect the kx� axis.

It is seen that there are four states for any energy, in
accordance with the number of the degrees of freedom of the
system. At a given energy, all the states are distinguished by
the wave vector components kx�, kx� and the spin function. The
propagating states and the evanescent states of branch 2 have
two sub-branches divided by the energy, while the evanes-
cent states of branch 3 are splitted in the complex momen-
tum plane.

Though the wave functions of the third branch are com-
plex, they do not carry the current. Using the Hamiltonian
�Eq. �1��, one obtains the following expression for the par-
ticle current in the state:

�s = ��1

�2
� , �13�

js =
i�

2m
��1 � �1

* − �1
* � �1 + �2 � �2

* − �2
* � �2�

−
i�

�
��1�2

* − �1
*�2�ex +

�

�
��1

*�2 + �1�2
*�ey . �14�

The wave functions of branch 3, calculated using Eqs. �2�
and �11�, are easily seen to turn the x component of the
current �Eq. �14�� to zero while the y component is nonzero.

III. TUNNELING CURRENTS THROUGH A BARRIER
WITH SPIN-ORBIT INTERACTION

In this section, we study the electron tunneling via the
oscillating evanescent states of branch 3. Consider a 2D elec-
tron gas without SOI divided into two semiplanes �reser-

FIG. 1. �Color online� Total spectrum of 2D electron gas with
SOI. Solid lines 1+ and 1− are spin-splitted propagating modes of
branch 1; lines 2+ and 2− are evanescent states, branch 2; lines
3L ,3R are evanescent states in the forbidden gap, branch 3. Dashed
lines 1�, 2� and 3L�, 3R� are the trajectories corresponding to these
branches on the complex plane �kx� ,kx��.

FIG. 2. �Color online� Real-energy trajectories along which the
oscillating evanescent states are defined. ky is fixed for each line:
lines 1–6 correspond to ky /a=0.4,0.8,1.0,2.0,5.0,10.0.
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voirs� by a rectangular barrier, in which the SOI is present.
The barrier height is U and the width is d.

Let us calculate the transmission probability for electrons
incident on the barrier from the left reservoir. We use the
presentation of the wave functions in the reservoirs in the
basis of eigenstates �s	 of the �z matrix. The basis functions
are �kx ,ky ,s	, where kx and ky are the wave vector compo-
nents in the reservoirs, s= ↑ ,↓.

In the left reservoir �x	0�, the wave function is

��kx,ky,s
�L� 	 = �kx,ky,s	 + 


s�

rs,s��− kx,ky,s�	 , �15�

where �kx ,ky ,s	 is the state vector of incident electrons. The
wave function of transmitted electrons �x
d� is

��kx,ky,s
�R� 	 = 


s�

ts,s��kx,ky,s�	 . �16�

Here, rs,s� and ts,s� are the reflection and transmission matri-
ces.

The wave function in the barrier is expanded in the eigen-
states �Eq. �2�� of the Hamiltonian �Eq. �1��:

��kx,ky,s
�B� 	 = 


r,r�=+,−

br,r�
s �rKx�,r�Kx�,ky	 , �17�

where Kx=Kx�+ iKx� denotes the complex wave vector in the
barrier; r ,r�=± are indices labeling all four evanescent states
in the barrier. They are described by the spinors �Eq. �2��, in
which the real and imaginary parts of Kx should be taken
with different signs.

The matrices rs,s�, ts,s�, and br,r�
s are determined by an

equation set, which follows from the boundary conditions at
the interfaces of the barrier and 2D electron reservoirs.

Boundary conditions for wave functions are obtained in a
standard way by integrating the Schrödinger equation over
the infinitesimal vicinity of the boundary. These conditions
are well known for a boundary between regions with differ-
ent strengths of SOI.23,29 In our case, it is necessary to take
into account that the lateral potential step at the boundary
also contributes to the SOI. In the transition region, where
the potential U�x� varies with x, the following additional
term should be added to the Hamiltonian �Eq. �1��:

Hso
b =

�

�

dU

dx
�zpy , �18�

where � is the SOI constant connected with � by �=−e�Fz,
Fz being the electric field perpendicular to the 2D layer. This
term, having been integrated over the transition region, gives
a finite contribution to the boundary conditions. Finally, one
obtains the following equations for the spinor �Eq. �13��
components:

��1�−0
+0 = ��2�−0

+0 = 0; �19�

1

m�x�� ��1

�x
± 
�x�ky�1 − a�x��2�

−0

+0

= 0, �20�

1

m�x�� ��2

�x
� 
�x�ky�2 + a�x��1�

−0

+0

= 0, �21�

where the parameter


 = a
2U

eFz
�22�

describes the Rashba SOI caused by the in-plane field. The
upper and lower signs in Eqs. �20� and �21� correspond to the
boundaries at which U�x� increases or decreases with x.

Applying these boundary conditions to the system under
consideration, we set a=0 in the 2D electron reservoirs and
keep a�0 in the barrier. For simplicity, we ignore the dif-
ference in the effective masses of electrons in the barrier and
reservoirs.

In addition, the wave vectors in the barrier and the reser-
voirs should be matched. The tangential components ky must
be equal. The relation of the normal components is deter-
mined by equaling the energy E of an incident electron to the
electron energy in the barrier:

E�kx,ky� = U + ��Kx,ky,s� , �23�

where ��Kx ,ky ,s� is defined by Eqs. �8�, �9�, and �11�, in
accordance with the energy spectrum branch �1, 2, or 3�, that
is considered. In the present section, we restrict ourselves by
branch 3.

Finally, one obtains two equation sets for the cases of the
incident spin directed up and down. Each equation set con-
tains eight equations. Dropping elementary calculations and
cumbersome expressions for matrices ts,s�, rs,s�, and br,r�

s , we
turn directly to the main results.

First, note that the ts,s� matrix obeys the following sym-
metry relations:

t↑↑�Kx,ky� = t↓↓�Kx,− ky� ,

t↑↓�Kx,ky� = − t↓↑�Kx,− ky� . �24�

The particle current through the barrier is

jkx,ky,s =
�kx

m
Ts�kx,ky� , �25�

where Ts is the transmission coefficient, Ts=
s��ts,s��
2, which

is the probability of an electron to tunnel with any spin in the
final state. The peculiarity of the tunneling in the presence of
the SOI consists in the involvement of four interfering states
with different spin structures.

One of the unusual consequences of this fact is an oscil-
latory dependence of the tunneling coefficient on the barrier
width. This feature is demonstrated in Fig. 3. The oscillations
exist when the electron energy is close to the top of the third
branch: U−Eso−E�Eso, where Eso=�2a2 / �2m� is a charac-
teristic energy scale of SOI. The oscillations fade away as the
energy decreases deep into the forbidden band because Kx�
exceeds Kx�. The oscillations disappear also if the tangential
momentum ky goes to zero.

Figure 3 shows clearly that the barrier filters incident
electrons by spin. This process depends evidently on the in-
cident angle and the energy of electrons. Let us consider the
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spin polarization of transmitted electrons in more detail. We
let an unpolarized electron flow with the wave vector �kx ,ky�
incident on the barrier. The flow consists of two components
�kx ,ky , ↑ 	 and �kx ,ky , ↓ 	 with opposite spins. The transmitted
flow acquires spin polarization. The spin density of transmit-
ted electrons is

�� kx,ky
=

�

2 

s=±1


�kx,ky,s
�R� ���̂ ��kx,ky,s

�R� 	 . �26�

Using Eq. �16�, the spin density takes the form

�� kx,ky
=

�

2
�C�2


s,s�

��ex − ieys��ts,s�
* ts,−s� + ezs��ts,s��

2� , �27�

where �C�2 is a normalization constant.
The components of the spin polarization are shown in Fig.

4 as functions of the transverse momentum ky for a given
energy of incident electrons. The main property of the ac-
quired polarization is that the x and z components of the spin
polarization are odd functions of ky, while the y component
is an even function of ky. This property is independent of the
electron energy, the barrier height, and the SOI strength, and
thus universal for the Rashba SOI. Two consequences follow
from this fact. First, the unpolarized electron flow acquires
spin polarization even if the distribution function of the in-

cident electrons is symmetric with respect to the tangential
momentum direction, the polarization being directed parallel
to the barrier. Second, if the distribution function is not sym-
metric about ky, the spin polarization arises also in the x and
z directions.

Detailed analysis shows that the spin polarization is
caused mainly by the SOI in the barrier, as it is described by
the Hamiltonian �Eq. �1��. The SOI at the boundaries of the
barrier �described by Eq. �18�� does not essentially affect the
results if the parameter 
 defined by Eq. �22� is small. This
case corresponds to a realistic situation in experiments. Nu-
merical estimations for InAs quantum well ���6
�10−9 eV cm, Fz�105 V /cm, U�20 meV� give 
�0.1. If

�1, the boundary SOI changes the value of polarization,
but the main features �such as the symmetry relations, the
oscillatory behavior of the tunneling coefficients� remain
qualitatively similar.

IV. SPIN POLARIZATION OF ELECTRONS
BY A BARRIER WITH SPIN-ORBIT INTERACTION

In this section, we turn from the separate electron states to
the total spin polarization produced by all electron states
contributing to the current through a barrier with SOI. In
addition, we consider a wide range of the incident electron
energy to include all three branches of the electron spectrum.
This allows one to find conditions under which the electron
current is polarized most effectively.

Consider an electron current directed normally to the bar-
rier. For definiteness, let the current be caused by a voltage V
applied across the 2D electron reservoirs, as it is shown in
Fig. 5. The incident electron states, which contribute to the
current, occupy an energy layer near the Fermi level. They
are located in a semiring in the kx, ky plane, shown in the
inset. The particle and spin currents through the barrier are
determined by summing over all these states. We carry out
this calculation for various positions of the Fermi level EF
relative to the barrier height U to find the spin-polarization
efficiency as a function of EF.

FIG. 3. �Color online� Tunneling coefficients for incident elec-
trons with spins up and down as functions of the barrier width. U
=2Eso, E=0.95Eso, ky =0.49a, and 
=0.1.

FIG. 4. �Color online� Spin polarization of transmitted electrons,
�̃=2�x,y,z /��C�2. The curves are marked by letters corresponding to
the polarization components. The incident electron energy E
=9.5Eso, the barrier height U=11Eso, the barrier width d=a, and the
lateral SOI parameter 
=0.1.

FIG. 5. �Color online� A schematic view of the barrier with SOI.
Lines L and R show the electron dispersion relations in the left and
right reservoirs. Lines 1, 2, 3 image schematically the correspond-
ing branches of the dispersion relation in the barrier. The inset is the
kx, ky space, in which the shaded region shows the electron states
contributing to the current.
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For simplicity, suppose that the voltage is small compared
to other energies, eV�U, EF, Eso. This simplification allows
one to restrict the summation by the integration in k space
over the azimuthal angle at a given energy E. The integration
is convenient to carry out over ky, but in doing this, the fact
that the set of branches, which must be used at given ky and
E, can change with varying ky should be taken into account.
This happens because the gap ��12 between spin-splitted
sub-branches of propagating modes �curves 1+ and 1− in
Fig. 1� increases with ky ���12=2�2a�ky� /m� and, further-
more, the form of the dispersion curves describing the propa-
gating �1+ ,1− � and evanescent �2+ ,2− � modes changes.
The switches between the actual branches occur when any
extremum of the dispersion curves �which is a function of ky�
coincides with the energy E. Physically, this means that elec-
trons incident on the barrier at different angles and in differ-
ent spin states feel different effective barrier heights.

Figure 6 presents a diagram showing which branches of
the dispersion relation are accessible for electrons with given
E and ky. Within each region bounded by thick lines, there
are two different branches with two fundamental eigenfunc-
tions on each one or one branch with four solutions.

For each region of the diagram, the wave functions are
determined in the same way as in Sec. III. The only differ-
ence is that the eigenfunctions of the branches specified in
the diagram are to be used in Eq. �17� instead of the wave
functions of branch 3. As a result of these calculations, the
transmission ts,s��E ,ky� and reflection rs,s��E ,ky� matrices are
obtained for the whole �E ,ky� plane. Using ts,s��E ,ky�, we
find the particle and spin currents in the right electron reser-
voir.

The particle current is found by the summation of Eq.
�25� over all states of incident electrons:

J =
eV

2�h
�

−kF

kF

dky��t↑↑�2 + �t↑↓�2 + �t↓↑�2 + �t↓↓�2� , �28�

where the integration symbol implies also the summation
over all regions of the �E ,ky� plane which fall within the
�−kF ,kF� interval, with kF being the Fermi wave vector in the
2D reservoirs.

The transmitted spin current in the left reservoir is defined
in a standard way30,31 using the following expression for the
current in a state �kx ,ky	:

Js,i
j �kx,ky� = 1

2 
vi� j + � jvi	 , �29�

where i= �x ,y� denotes the velocity components in the plane,
and j= �x ,y ,z� denotes the spin components in 3D space. In
the case under consideration, the x component of the total
spin current is

Js
j =

eV

2�h
�

−kF

kF

dky�2 Re�t↑↑t↑↓
* + t↓↓t↓↑

* �
2 Im�− t↑↑t↑↓

* + t↓↓t↓↑
* �

�t↑↑�2 − �t↑↓�2 + �t↓↑�2 − �t↓↓�2
� , �30�

where the three lines in the right hand side correspond to the
x, y, z components of the spin polarization for the spin cur-
rent directed along the x axis.

The efficiency of spin polarization is characterized by the
ratio of the spin current to the particle current:

P j =
Js

j

J
. �31�

Using the symmetry relations in Eq. �24� and Eq. �30�,
one finds that the x and z components of the spin current are
absent in the case of the Rashba SOI, and only the y com-
ponent is nonzero. Of course, this is a consequence of the
symmetry of the distribution function with respect to the sign
of ky. If the current were not perpendicular to the barrier, the
polarization would appear also in the x and z directions. The
polarization efficiency turns out to be sufficiently high. The
dependencies of the polarization on the Fermi energy and the
barrier width are nontrivial because they reflect a complex
structure of the electron spectrum. Below, two most signifi-
cant results are considered.

The dependence of Py on the barrier width is shown in
Fig. 7 for energies below the top of the energy band where
the evanescent states of branch 3 exist in the barrier, EF
	U−Eso�Eb. The polarization efficiency is seen to oscillate
with d because of the interference of four oscillating evanes-
cent modes. The effect is rather strong and becomes stronger
the closer the energy is to the band top. The oscillation pe-
riod is of the order of � /a.

FIG. 6. The diagram of the spectrum branches accessible for
electrons with energy E and tangential momentum ky. Thick lines
divide the �E ,ky� plane into six regions, in which the corresponding
branches are denoted by the numbers 1, 2, 3 and chirality indices �,
�, in accordance with Fig. 1. Line L is defined by the equation
ky /a= ���E−U−Eso� /Eso+1±1�2.

FIG. 7. Dependence of the polarization efficiency on the barrier
width for the Fermi energy below Eb for tunneling through branch
3. U=5Eso, EF=3.5Eso, and 
=0.1.
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The dependence of Py on the Fermi energy is presented in
Fig. 8 for a wide energy range including the energy both
below and above the barrier. It is seen that there is a critical
energy E=8Eso, which coincides with the top energy of the
third branch band, Eb=U−Eso, in the barrier. At energies
well below Eb, the polarization efficiency Py increases with
the energy. In the vicinity of the threshold Eb, an oscillatory
behavior appears as a result of the interference of four slowly
decaying waves. Above this energy, the transmission process
goes via the propagating states of branch 1 and the evanes-
cent states of branch 2. At EF slightly higher than Eb, the
polarization efficiency attains the highest value. With further
increasing the energy, the efficiency Py decreases. It is worth
noting that the highest efficiency of the spin polarization
slightly depends on the SOI strength, but the barrier width at
which this high polarization is attained varies inversely with
the SOI constant.

Figure 8 demonstrates also how Py changes with the bar-
rier width. Increasing d above �� /a leads to more pro-
nounced oscillatory dependence of Py on the energy caused
by the four-wave interference.

The physical mechanism, owing to which the polarization
of normally incident electron current appears, is connected
with the splitting of electron waves in the barrier because of
the SOI. Let us consider first a simplified case of a semi-
infinite barrier region with SOI. We let the energy be high
enough so that electrons occupy propagating states �branches
1+, 1−�. The incident electron states can be represented in
terms of two chiral modes:

�±
�0� = �±�

1
�, � =

ky + ikx

�ky
2 + kx

2
.

In the barrier region, each electron beam splits into two
beams, which propagate at different angles and have differ-
ent chiralities:

�1,2
�1� = ��1,2

1
�, �1,2 = ±

ky + iK1,2

�ky
2 + K1,2

2
, �32�

where K1 is the x component of the wave vector of the upper
mode with positive chirality �1 and K2 corresponds to the
lower mode with negative chirality �2. It is essential that
K1	K2. The incident and refracted beams as well as their
spin polarizations are illustrated in Fig. 9. The transmitted
beam amplitudes are A+ and B+ for the incident beam with
positive chirality, and A− and B− for negative chirality. The x
and y components of the spin polarization in the barrier are
estimated as

Sx � ��A+�2 + �A−�2�Re �1 − ��B+�2 + �B−�2�Re �2 + ¯ ,

Sy � ��A+�2 + �A−�2�Im �1 − ��B+�2 + �B−�2�Im �2 + ¯ ,

where the dots denote spatially dependent terms originating
from the interference.

The total spin polarization is determined by the sum over
all incident angles. To estimate this sum, we consider the
dependence of the spin components on ky. It is clear that
�A±�2 and �B±�2 are even functions of ky. Real and imaginary
parts of �1,2 are seen from Eq. �32� to be correspondingly
odd and even functions of ky. Therefore, Sx is an even func-
tion of ky and Sy is an odd function, as illustrated in Fig. 9.
Thus, the total Sx component vanishes while Sy is nonzero.

It is easy to find the direction of the total spin for the
energy close to the barrier height. If ky =0, the amplitudes
�A+� and �B−� are equal, �A−�= �B+�=0, and �1=�2= i. Hence,
the total spin density is zero because the spins of opposite
chiralities cancel each other. At small ky, the spin polariza-
tion appears. Since the amplitudes are functions of ky

2, they
remain unchanged in the first approximation, so that the re-
sulting spin is determined by the difference �1−�2 and

Sy �
K1

�ky
2 + K1

2
−

K2

�ky
2 + K2

2
.

Since K1	K2, the y component of the spin density is nega-
tive, i.e., the sign of the spin polarization is determined by
the lower-energy branch of the propagating mode.

FIG. 8. �Color online� Dependence of the polarization efficiency
on the Fermi energy in 2D electron reservoirs. U=9Eso for d=5 /a
�solid line 1� and d=3 /a �dashed line 2�; 
=0.1. Vertical dashed
line marks the threshold energy Eb=U−Eso, which divides the eva-
nescent states of branch 3 �on the left of Eb� from the states of
branches 2 and 1.

FIG. 9. �Color online� Refraction and spin polarization of elec-
tron beams incident on the semi-infinite barrier with SOI. Solid
arrows show the spin polarization in the case of positive chirality of
the incident beam. Dashed arrows are the polarization for negative
incident chirality. A± and B± are amplitudes for incident beam with
ky 
0. The primed letters denote the same amplitudes for ky 
0.
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If the barrier width is finite, there are four modes in the
barrier, but the above property remains unchanged. It is also
kept for other branches of the electron spectrum.

V. CASE OF DRESSELHAUS SPIN-ORBIT INTERACTION

All the above results are generalized to the case of
Dresselhaus SOI. For a 2D system oriented along the �001�
crystallographic direction, the SOI Hamiltonian is32

HD =
�2

2m
�px

2 + py
2� +

�

�
�px�x − py�y� .

It is well known that Dresselhaus and Rashba Hamiltonians
are unitary equivalent.33 The unitary matrix

U = �0 i

1 0
� �33�

transforms the Rashba Hamiltonian �Eq. �1�� to the Dressel-

haus one: H̃R=U+HRU=HD. Therefore, the Dresselhaus SOI
case does not require separate calculations. It is enough to
carry out this transformation. Taking into account that the
matrix �Eq. �33�� transforms the spin matrices as follows:
�̃x=−�y, �̃y =−�x, and �̃z=−�z, we arrive at the following
conclusions:

�i� The dispersion equation is the same as in the Rashba
case �Eq. �4��.

�ii� The spin functions differ from those defined by Eq. �5�
by a simple substitution kx�ky.

�iii� The spin components of transmitted electrons in
the incident states �kx ,ky , ↑ 	 and �kx ,ky , ↓ 	 differ from those
of Sec. III by replacements �x→−�y, �y→−�x, and
�z→−�z.

�iv� The spin polarization of the current transmitted
through a barrier with SOI has only x component if the dis-
tribution function is even with respect to the transverse mo-
mentum. In particular, Figs. 7 and 8 are valid for the spin
polarization normal to the barrier, Px.

Of course, if the Rashba and Dresselhaus mechanisms act
simultaneously, the results change qualitatively.

VI. CONCLUSION

We have found the total spectrum of electron states in a
bounded 2D electron gas with SOI. It addition to well known
propagating states, it contains two branches of evanescent
states. Their wave functions decay with the distance in the
direction x perpendicular to the boundary. One branch
�“purely decaying” evanescent mode� is described by an
imaginary wave vector. The energy of this state is splitted by
spin, so that there are two sub-branches. They fill in the gap,
which opens in the propagating state spectrum at ky �0. The
other branch �oscillating evanescent mode� is characterized
by a complex wave vector Kx. These states lie in the forbid-
den gap.

We have studied the electron transmission through a lat-
eral potential barrier with the SOI. In the energy range,
where electrons tunnel via the oscillating evanescent states,
the tunneling reveals unusual features, such as an oscillatory
dependence of the transmission coefficients on the barrier
width and the energy. However, of most importance is the
spin polarization of the electron current. The value and di-
rection of the polarization depend on the angle of incidence
and the energy of incident electrons. The polarization ap-
pears even if the distribution function of incident electrons is
symmetric with respect to the transverse momentum. In this
case, the polarization is directed parallel to the barrier �in the
Rashba SOI case� or perpendicular to it �for Dresselhaus
SOI�. The highest efficiency of the spin polarization is at-
tained when the Fermi energy is close to the barrier height.
In this case, electrons pass through the barrier partially via
the propagating states and partially via the purely decaying
evanescent states. Under this condition, the most effective
spin filtering occurs. The maximal polarization efficiency de-
pends on the barrier height and can exceed 0.5 if the barrier
width is on the order of � /a.
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