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We propose a model for magnetic noise based on spin flips �not electron trapping� of paramagnetic dangling
bonds at the amorphous-semiconductor/oxide interface. A wide distribution of spin-flip times is derived from
the single-phonon cross-relaxation mechanism for a dangling bond interacting with the tunneling two-level
systems of the amorphous interface. The temperature and frequency dependence is sensitive to three energy
scales: The dangling-bond spin Zeeman energy ���, as well as the minimum �Emin� and maximum �Emax�
values for the energy splittings of the tunneling two-level systems. At the highest temperatures, kBT�max
�� ,Emax�, the noise spectral density is independent of temperature and has a 1 / f frequency dependence. At
intermediate temperatures, kBT�� and Emin�kBT�Emax, the noise is proportional to a power law in tempera-
ture and possesses a 1 / fp spectral density, with p=1.2–1.5. At the lowest temperatures, kBT��, or kBT
�Emin, the magnetic noise is exponentially suppressed. We compare and fit our model parameters to a recent
experiment probing spin coherence of antimony donors implanted in nuclear-spin-free silicon �T. Schenkel et
al., Appl. Phys. Lett. 88, 112101 �2006��, and conclude that a dangling-bond area density of the order of
1014 cm−2 is consistent with the data. This enables the prediction of single spin qubit coherence times as a
function of the distance from the interface and the dangling-bond area density in a real device structure. We
apply our theory to calculations of magnetic flux noise affecting superconducting quantum interference devices
�SQUIDs� due to their Si /SiO2 substrate. Our explicit estimates of flux noise in SQUIDs lead to a noise
spectral density of the order of 10−12 �0

2�Hz�−1 at f =1 Hz. This value might explain the origin of flux noise in
some SQUIDs. Finally, we consider the suppression of these effects using surface passivation with hydrogen,
and the residual nuclear-spin noise resulting from a perfect silicon-hydride surface.
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I. INTRODUCTION

Our physical understanding of spin relaxation in semi-
conductors plays a crucial role in the current develop-
ment of spin-based electronics1 and spin-based quantum
computation.2 One question that received little or no atten-
tion so far is related to magnetic noise in semiconductor
devices and nanostructures. Magnetic noise from impurities
and other defects at the interface may be the dominant source
of spin phase relaxation �decoherence� for implanted donor
electrons3 or nuclear spins4 in isotopically purified silicon.
Moreover, because Si /SiO2 and other amorphous oxide in-
terfaces are used as the substrate for sensitive superconduct-
ing quantum interference device �SQUID� magnetometers,5–7

the spin relaxation of magnetic impurities at the substrate
might explain the observed magnetic flux noise in these de-
vices.

One universal characteristic of silicon devices is the pres-
ence of an insulating interface, usually an oxide, separating
the metallic gate from the semiconductor. It is known for a
long time that these interfaces are rich in dangling-bond-type
defects �also denoted “Pb centers”� which can be detected
using spin resonance techniques. These studies have estab-
lished a wide distribution of dangling-bond �DB� energy lev-
els, spanning almost the whole semiconductor energy gap,
with each DB characterized by a large on-site Coulomb en-
ergy U�0.5 eV.8,9 When the DB energy level falls within
kBT of the interface Fermi level, it acts as a trapping center
and leads to the well known 1 / f charge and current noise for
interface conduction electrons.10 Nevertheless at low tem-

peratures the area density for trapping-center DBs is only a
tiny fraction of the area density for paramagnetic DBs. For
example, at T=5 K this fraction is only kBT /U�10−3 �Fig.
1�. As a consequence, the magnetic noise due to paramag-
netic DBs is at least a factor of U /kBT�1 larger than mag-
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FIG. 1. �Color online� Band diagram for a Si /SiO2 interface.
Dangling bonds with energy much larger than �F are empty; DBs
with energy in the interval ��F−kBT ,�F+kBT� are trapping centers
for interface conduction electrons, responsible for charge, current,
and magnetic noise. DBs with energy in the interval ��F−U ,�F

−kBT� are singly occupied �paramagnetic�, and hence contribute
exclusively to magnetic noise. DBs with energy less than �F−U are
doubly occupied and do not contribute to any kind of noise.

PHYSICAL REVIEW B 76, 245306 �2007�

1098-0121/2007/76�24�/245306�15� ©2007 The American Physical Society245306-1

http://dx.doi.org/10.1103/PhysRevB.76.245306


netic noise generated by electron trapping, provided the para-
magnetic DBs have a nonzero spin-flip rate �magnetic noise
due to electron trapping is discussed in Appendix A�.

The spin relaxation rate for dangling-bond-type defects
depends crucially on the noncrystalline nature of amorphous
compounds.11–13 However, a detailed theoretical study of the
magnetic field and temperature dependence of this effect has
not been done. In this paper we present a general theory of
dangling-bond spin-lattice relaxation in amorphous materi-
als, and show that the noise created by the magnetic dipolar
field of an ensemble of dangling bonds has the 1 / f frequency
dependence at high temperatures. We fit our theory to a re-
cent experiment probing spin coherence of antimony donors
implanted in nuclear-spin-free silicon3 in order to estimate
our model parameters.

We exploit the important relationship between phase co-
herence of a localized “probe” spin �e.g., the implanted Sb
spins in Ref. 3� and its environmental magnetic noise �Fig.
2�. The coherence decay envelope of a probe spin measured
by a class of pulse spin resonance sequences is directly re-
lated to a frequency integral over magnetic noise times a
filter function.14 This allows us to interpret pulse spin reso-
nance experiments of localized spins as sensitive detectors of
magnetic noise in nanostructures. The spin qubit phase co-
herence is a local probe of low frequency magnetic noise.
The same ideas apply equally well to experiments probing
the coherent dynamics of superconducting devices.15,16

An important step toward this characterization was given
recently, by the report of the first measurements of spin echo
decay in silicon implanted with an ultralow dose of antimony
donors ��1011 cm−2�.3 Two samples were reported, 120 and
400 keV, with low and high implant energies, respectively.
The former leads to a donor distribution closer to the inter-
face, see Table I.

Table I provides experimental evidence that the surface
leads to additional mechanisms for donor spin phase fluctua-
tion and magnetic noise. These mechanisms seem to contrib-
ute exclusively to the phase coherence time �T2� but not to
the spin-flip time �T1� of the Sb donors; therefore, the asso-
ciated noise spectrum should be low frequency in nature
�with a high frequency cutoff much smaller than the spin
resonance frequency�.

Here we consider the mechanisms of magnetic noise that
might be playing a role in these experiments. For a Si /SiO2

interface we show that dangling-bond spin flips play a domi-
nant role. A DB is a paramagnetic defect usually associated
with an oxygen vacancy in the Si /SiO2 interface. These
point defects are generically denoted Pb centers with chemi-
cal structure represented by Si3wSi·.8,9 There are yet no
experimental or theoretical studies of spin relaxation times
�T1

DB� for DBs at the Si /SiO2 interface. Nevertheless a sys-
tematic study of DB spin relaxation in bulk amorphous sili-
con was carried out in the 1980s.11,13 The measured DB spin
relaxation rate was found to increase as a power law on
temperature, 1 /T1

DB�Tn with an anomalous exponent n
=2–4 dependent on the sample preparation method. At T
=5 K and B=0.3 T the typical T1

DB was in the range
0.1–1 ms.13

At first it seems puzzling that the dangling-bond spin
would relax in such a short time scale at the lowest tempera-
tures. The typical T1 of localized electron spins in crystalline
silicon �e.g., phosphorus donor impurities� is almost a thou-
sand seconds in the same regime.17 This happens due to the
weak spin-orbit coupling in bulk crystalline silicon. How-
ever, dangling bonds in noncrystalline silicon are coupled to
unstable structural defects, and this fact seems to explain
their short T1.11,13 These structural defects behave as tunnel-
ing two-level systems strongly coupled to lattice vibrations
�phonons�. Each time a tunneling two-level system �TTLS�
undergoes a phonon-induced transition, the DB spin feels a
sudden shift in its local spin-orbit interaction, which may be
quite large because the TTLS is associated with a local reor-
dering of the atomic positions of the noncrystalline material.
As a consequence, the DB spin may flip each time the TTLS
switches. Remarkably, this cross-relaxation process remains
effective even at zero magnetic field because it does not in-
volve a Kramers conjugate pair �in contrast to spin flips
without a simultaneous TTLS switch�.

We develop this theory further in order to incorporate the
exponentially wide TTLS parameter distribution typical of
amorphous materials. As a result, we find that the magneti-
zation of an initially polarized ensemble of DB spins will
undergo nonexponential relaxation in time. Our theory of
dangling-bond spin-lattice relaxation and magnetic noise is
based on an effective Hamiltonian approach, allowing us to
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FIG. 2. �Color online� How to detect low frequency magnetic
noise using electron spin resonance. A low density of antimony �Sb�
donor impurities is implanted in a Si /SiO2 sample using an ion gun,
and the distribution of Sb donors is determined using secondary ion
mass spectroscopy. Next, a Hahn echo decay experiment is per-
formed on the Sb spins �Ref. 3�. The Hahn echo decay envelope is
directly related to magnetic noise produced by, e.g., dangling bonds
at the interface, see Eq. �5�.

TABLE I. Spin relaxation data �Ref. 3� taken at 5.2 K for anti-
mony donor electron spins implanted in isotopically purified sili-
con. T1 was measured using inversion recovery ESR, while T2 is the
1 /e decay of Hahn echo. For each sample, data were taken for the
untreated oxidized surface �SiO2� and for the passivated surface,
treated with hydrofluoric acid in order to obtain a hydrogen termi-
nated surface. The data clearly indicate that �1� donors close to the
surface have lower spin coherence times T2 but the same spin-flip
time T1; and �2� surface passivation leads to a sizable increment in
T2, but no change in T1.

Sample Interface Peak depth �nm� T1 �ms� T2 �ms�

120 keV Si /SiO2 50 15±2 0.30±0.03

120 keV SiuH 50 16±2 0.75±0.04

400 keV Si /SiO2 150 16±1 1.5±0.1

400 keV SiuH 150 14±1 2.1±0.1
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draw generic conclusions about the frequency, temperature,
and magnetic field dependence of spin noise in a variety of
amorphous materials. For example, our results apply equally
well to the magnetic noise produced by E� centers in bulk
SiO2, another well studied dangling bond. Other materials of
relevance to our work are the bulk Al2O3 �sapphire�, and
Al /Al2O3 and Si /Si3N4 interfaces, whose paramagnetic dan-
gling bonds and/or magnetic impurities are yet to be charac-
terized experimentally.

Our results are of particular importance to magnetic flux
noise in SQUIDs, whose microscopic origin is a long-
standing puzzle �for a review, see Sec. IVG of Ref. 18�. In
Sec. VII we apply our results to calculations of flux noise
due to DBs within the area enclosed by the SQUID loop, and
show that this contribution might explain some of the avail-
able flux noise measurements.

It is possible to considerably reduce the dangling-bond
area density using a surface passivation technique. For ex-
ample, the application of hydrofluoric acid to the Si /SiO2
surface removes dangling bonds by covering the surface with
a monolayer of hydrogen atoms. Recently, Eng et al. fabri-
cated a field-effect transistor using a passivated Si�111�H sur-
face, and demonstrated record high electron mobility.19 Nev-
ertheless, the large density of hydrogen nuclear spins might
be an important source of magnetic noise. The nuclear spins
are constantly fluctuating due to their mutual dipolar cou-
pling. In Sec. VIII we consider calculations of magnetic
noise due to a hydrogen terminated Si�100�H surface. We use
the same theory previously developed for Hahn echo decay
of a phosphorus impurity in bulk doped natural silicon.14,20

We show that the Hahn echo decay in a Si�100�H surface has
many peculiarities, including a special crystal orientation de-
pendence for the donor T2 times that may be used as the
fingerprint for detecting this source of noise experimentally.

II. RELATIONSHIP BETWEEN MAGNETIC NOISE AND
PHASE RELAXATION IN PULSE SPIN RESONANCE

EXPERIMENTS: ELECTRON SPIN AS A LOCAL PROBE
OF MAGNETIC NOISE

Consider the following model Hamiltonian for the inter-
action of a localized spin with a noisy environment:

H = 1
2�eB	z + �̂�t� · � . �1�

Here �= �	x ,	y ,	z� is the vector of Pauli matrices denoting
the state of the electron spin being probed by a pulse spin
resonance experiment �henceforth called the donor spin, e.g.,
the Sb spins in Ref. 3�, �eB is the spin Zeeman frequency in
an applied external magnetic field B, and �e=ge / �2mec� is a
gyromagnetic ratio for the electron spin �for a group V donor
impurity such as P or Sb, �e�1.76
107 �sG�−1 is close to
the free electron value�. Note that Eq. �1� was divided by �
so that energy is measured in units of frequency. Each com-
ponent of the vector �̂= ��̂x , �̂y , �̂z� is an operator modeling
the magnetic environment �the DB or other impurity spins�
surrounding the donor spin. The simplest way to describe the
time evolution of the spin’s magnetization ��� is the Bloch-
Wangsness-Redfield approach, which assumes ��� satisfies a

first order differential equation in time. The decay rate for
�	z� is then given by

1

T1
=


2 	
q=x,y

�S̃q�+ �eB� + S̃q�− �eB�� , �2�

with the environmental noise spectrum defined by

S̃q��� =
1

2



−�

�

ei�t��̂q�t��̂q�0��dt . �3�

Note that the energy relaxation time T1 for the donor spin is
determined by the noise at �= ±�eB, that is just a statement
of energy conservation. Within the Bloch-Wangsness-
Redfield theory the spin’s transverse magnetization ��	+�
= �	x+ i	y� /2� decays exponentially with the rate

1

T2
* =

1

2T1
+ S̃z�0� , �4�

where we added an � to emphasize that this rate refers to a
free induction decay �FID� experiment. The Bloch-
Wangsness-Redfield approach leads to a simple exponential
time dependence for all spin observables. Actually this is not
true in many cases of interest, including the case of a group
V donor in bulk silicon where this approximation fails com-
pletely �for Si:P the observed Hahn echo decay fits well to
e−�2.3

in many regimes�.20,34 The problem lies in the fact that
the Bloch-Wangsness-Redfield theory is based on an infinite
time limit approximation, that averages out finite frequency
fluctuations. Note that T2

* differs from T1 only via static

noise, S̃z�0� in Eq. �4�. A large number of spin resonance
sequences, most notably the Hahn echo, are able to remove
static noise completely.

We may develop a theory for spin decoherence that takes
into account low frequency fluctuations in the semiclassical

regime ���kBT, when S̃z�−��=e−��/kBTS̃z���� S̃z���. The
spin coherence envelope may be calculated in the pure
dephasing limit ��̂x= �̂y =0�, with the assumption that �̂z

→�z is distributed according to Gaussian statistics. For deri-
vations and discussions on the applicability of this theory, we
refer to Ref. 14. A similar method in the context of super-
conducting qubits was proposed in Ref. 16. The final result is
a direct relationship between phase coherence and magnetic
noise according to

��	+�t��� = exp�− 

−�

�

d�S̃z���F�t,�� , �5�

with F�t ,�� a filter function that depends on the particular
pulse spin resonance sequence. For a free induction decay
experiment � /2-t-measure� we have

FFID�t,�� =
1

2

sin2��t/2�
��/2�2 , �6�

while for the Hahn echo � /2-�--�-measure� the filter func-
tion becomes
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FHahn�2�,�� =
1

2

sin4���/2�
��/4�2 . �7�

Note that in the limit t→� Eq. �6� becomes ����t, recov-
ering the Bloch-Wangsness-Redfield result Eq. �4�. The Hahn
echo filter function satisfies FHahn�2� ,0�=0, showing that it

filters out terms proportional to S̃z�0� in spin evolution. This
is equivalent to the well known removal of inhomogeneous
broadening by the spin echo. Any pulse spin resonance se-
quence containing instantaneous  /2 or  pulses can be de-
scribed by Eq. �5�. Another important example is the class of
Carr-Purcell sequences used for coherence control
� /2-��--�-echo�repeat�.

III. DANGLING-BOND SPIN RELAXATION: DIRECT
VERSUS CROSS RELAXATION

The presence of an inversion center in crystalline Si leads
to weak spin-orbit coupling and extremely long spin relax-
ation times. The T1 for localized donor electrons in crystal-
line silicon can reach thousands of seconds at low
temperatures.17 This is in contrast to spin-lattice relaxation of
dangling bonds in various forms of amorphous silicon where
instead T1

DB was found to range between 1 and a 100 ms at
the lowest temperatures �T=0.3–4 K�.13 The proposed theo-
retical explanation was that DB spin relaxation happens due
to its coupling to phonon-induced transitions of TTLSs in the
amorphous material.11 The TTLSs are thought to be struc-
tural rearrangements between groups of atoms, which can be
modeled by a double well potential �see Fig. 3�a��. The
TTLS assumption is able to explain several special proper-
ties of amorphous materials at low temperatures.21 The DB
spin couples to the TTLSs either through spin-orbit or hyper-
fine interaction, both of which are modulated by the TTLS

transition. Note that the presence of a TTLS breaks the crys-
tal inversion symmetry.

We start by developing the theory of phonon-induced
transitions for the TTLS,22 and the associated cross relax-
ation of the DB spin. The Hamiltonian for a TTLS reads

HTTLS� =
1

2
� � �

� − �
� . �8�

The energy scale � is a double well asymmetry, while �
=�0e−� is the tunneling matrix element between the states ��
is related to the barrier height and its thickness, see Fig.
3�a��. After diagonalizing Eq. �8� we obtain HTTLS
=diag�E /2,−E /2�, with E=��2+�2 �for notational clarity
we prime the Hamiltonians in the nondiagonal basis�. The
coupling to phonons can be obtained by expanding the pa-
rameter � to first order in the phonon strain operator,

û = i	
q
� �

2�V�q
�q��aqeiq·r + aq

†e−iq·r� , �9�

leading to �→�+��û. Below we average over TTLS param-
eters with ���, so to be consistent we must assume the
deformation parameter ��=0. Applying this expansion to Eq.
�8� and transforming to the diagonal basis we get

HTTLS-ph =
��û

2E
� � − �

− � − �
� . �10�

Using Fermi’s golden rule for dissipation into a phonon bath
Hph=	q��qaq

†aq, we find that the transitions from +E /2 to
−E /2 and vice versa are given by

r+ = aE�2�nph�E� + 1� , �11�

r− = aE�2nph�E� , �12�

with phonon occupation number

nph�E� =
1

eE/kBT − 1
. �13�

In Eqs. �11� and �12� the parameter a depends on the material
density �, sound velocity s, and deformation potential �� �a
= �8����2�4�s5�−1�. The DB spin Zeeman energy is denoted
by HDB=��eBSz

DB. To simplify the notation we define �
���eB as the DB spin Zeeman energy. The coupling of the
DB spin to the TTLS may be derived directly from the spin-
orbit interaction Hso=�SDB· �E
p�, where SDB is the DB
spin operator, p is the DB orbital momentum, and E a local
electric field. After averaging over the coordinate states, the
resulting effective Hamiltonian becomes directly propor-
tional to the magnetic field, a consequence of time reversal
symmetry.23 For simplicity, we assume that E is perpendicu-
lar to the interface,24 and that the spin-orbit energy fluctuates
by a certain amount A
� when the TTLS switches. This
leads to the following effective Hamiltonian in the nondiago-
nal basis:

0e λ−∆ = ∆

E
ε

(a) (b)

E
δ
−

−

+

E δ�

(c)

E δ�

+−

+−

E

δ

+

(d)

donor at z d=

x

y

z

ϕ
ir
�

iψ

DB

B
�

FIG. 3. �a� Effective double well potential for the tunneling two
level system �TTLS�. ��b� and �c�� Energy level structure for a
dangling-bond �DB� spin coupled to a TTLS, for �b� E�� and �c�
E��. �d� Coordinate system for the interaction of a dangling bond
located at ri with the donor spin. �i denotes the angle formed by the
donor-DB vector �dashed� and the external B field.
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HTTLS-DB� =
A�

2
�S+

DB + S−
DB��1 0

0 − 1
� , �14�

where S±
DB are raising and lowering operators for the DB

spin. The dimensionless constant A will play the role of a
small parameter in our theory. Transforming to the diagonal
basis we get

HTTLS-DB =
A�

2E
�S+

DB + S−
DB��+ � �

� − �
� . �15�

As a result of Eq. �15�, the DB-TTLS eigenstates are admix-
tures between spin up and spin down. We may still label the
eigenstates by their spin quantum number, provided we think
of ↑ �↓� as having a large projection onto the pure spin up
�down� state. The four-level structure is shown in Fig. 3�b� in
the limit E�� and in Fig. 3�c� for E��.

The total Hamiltonian is given by

H = HTTLS + HDB + HTTLS-DB + Hph + HTTLS-ph. �16�

Note that the first three contributions denote the discrete
TTLS-DB states �a four-level system�, the fourth is the en-
ergy bath �a continuum of phonon states�, and the fifth is the
coupling between the TTLS-DB to the phonon bath. The
eigenstates of the first three contributions may be calculated
using perturbation theory, and the transition rates are
straightforward to compute. The “direct” relaxation rate, cor-
responding to a DB spin flip with the TTLS state unchanged,
is given by

D±↑→±↓ =
a

4

�4A2

E2�E2 − �2�2�
5�nph��� + 1� , �17�

with �nph���+1�→nph��� for the reverse rate D±↓→±↑. Note
that Eq. �17� is proportional to �4, reflecting the fact that a
direct spin flip may only occur together with a virtual tran-
sition to an excited orbital state.17,23 In our case this virtual
transition is a “double switch” of the TTLS, hence D��4

�terms independent of � in Eq. �17� cancel exactly�; this
general feature of a direct spin-flip process is referred to as
“van Vleck cancellation,”23 giving a simple explanation of
why direct spin-flip rates are generally weak. Moreover, Eq.
�17� vanishes at B=0 in accordance with time reversal sym-
metry �the direct process couples a Kramers pair�.

The “cross-relaxation” rates, whereby the DB spin flips
simultaneously with a TTLS switch, are given by

�−↓ = a�M+�2�E + ��nph�E + �� , �18�

�+↑ = a�M+�2�E + ���nph�E + �� + 1� , �19�

�−↑ = a�M−�2�E − ��nph�E − �� , �20�

�+↓ = a�M−�2�E − ���nph�E − �� + 1� , �21�

where the subindices label the level that the system is exit-
ing, for example, �+↑��+↑→−↓. Note that the final state is
obtained from the initial state by changing the sign of the
TTLS and flipping the DB spin. The matrix element M± is
defined by

M± =
A��

E2 ��E ± �� + �� . �22�

Remarkably, this cross-relaxation process is not a transi-
tion between Kramers conjugate states. As a result, the rates
are qualitatively different from the direct process, particu-
larly due to their magnetic field ��� and TTLS energy �E�
dependence. At low temperatures �kBT���, the direct rate
always scales as D��5.17,23 In contrast, the cross-relaxation
rate has two distinct behaviors, depending whether E�� or
E��. For E��, M±�A�� /E, and the �’s are independent
of magnetic field. For E�� we get instead M±
�2�A�� /E2, and ���3 in contrast to the �5 scaling of the
direct rate.

Of extreme importance to our theory is to note that when-
ever the energy scales E and � are well separated, the direct
rates are much smaller than the cross-relaxation rates. For
E�� we have D /���� /��2�� /E�5, while for E�� we have
D /���E /��2�� /��2. The typical assumption for amorphous
semiconductors is ���, � and E��.10 In this regime the
direct rates are substantially weaker than the cross-relaxation
rates, except at the resonance point E=�. It is useful to list
simple expressions for the cross-relaxation rates in the two
most physically relevant regimes considered in this work.
For low magnetic field ��kBT, E�� but with E /kBT arbi-
trary we have simply

�±↑ = �±↓ � �± � A2r±. �23�

Hence when the spin-orbit coupling parameter satisfies A
�1, the cross-relaxation spin flips are much less frequent
than the spin-preserving TTLS switching events. The oppo-
site high magnetic field regime with E�� and E�kBT with
� /kBT arbitrary leads to

�+↑ � �−↑ � �↑ � 4a
�3A2�2

E2 �nph��� + 1� , �24�

with the reverse rate �↓ given by �nph���+1�→nph���. Note
that these �↑↓ rates are still much larger than the direct rates,
since D /�↑↓��� /��2.

Finally, we discuss how the cross-relaxation rates are af-
fected by the presence of phonon broadening in a noncrys-
talline material. In this case we generalize our theory by
including a complex part to the phonon spectra, �q=sq
+ i�ph. The modified Eq. �22� becomes

M± =
A��

E2 ��2 + �ph
2 /2

�2 + �ph
2

��E ± ��2 + �ph
2

+
�

�E ± ��
�E ± ��2 + �ph

2 /2
��E ± ��2 + �ph

2  . �25�

For amorphous Si we estimate �ph�0.01sq.25 For E��,
�ph�0.01E may be comparable to �, and we see that M± is
reduced by a factor of 2, and an additional B field depen-
dence results.
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IV. DANGLING-BOND SPIN RELAXATION: ENSEMBLE
AVERAGE

In order to evaluate the ensemble averages over TTLS
parameters we must first determine the time-dependent cor-
relation function for the four-level relaxation network de-
scribed in Figs. 3�b� and 3�c�. Using the notation of Eq. �3�,
the magnetic dipolar field produced by a single DB spin
maps into a c number �̂z=2hdipSz

DB→hdipsi, with si= +1 �DB
spin up� or si=−1 �DB spin down�. In the four-level system
notation ��↓, �↓, �↑, �↑� the vector x of dipolar fields
assumes the values x=hdip�−1,−1, +1, +1�. In Appendix B
we prove the convenient identity

Sz�t� = ���z�t� − �̄z���z�0� − �̄z�� = x · p�t� · xw. �26�

Here xw= �x1w1 ,x2w2 , . . . �, with wi the equilibrium probabili-
ties for the ith level of the DB+TTLS network. The matrix
p�t�=e−�t describes the occupation probability for each level,
and decays according to the relaxation tensor �. Below we
discuss the important analytic solutions for Sz�t� in the limit
of small spin-orbit coupling, A�1.

A. Case Eš�, �™kBT, E ÕkBT arbitrary

In this regime the TTLS and cross-relaxation rates are
simply related by Eq. �23�. The time correlation function for
the DB spin may be calculated exactly from Eq. �26�, but for
simplicity we show the result to lowest order in powers of A
as follows:

Sz�t� � hdip
2 ��e−�r++r−−�̄�t + �1 −��e−�̄t� , �27�

with a visibility loss given by

� =
tanh2�E/2kBT�
cosh2�E/2kBT�

A4, �28�

and a thermalized DB spin relaxation rate given by

�̄ =
2r−

r+ + r−
�+ +

2r+

r+ + r−
�− � 2aA2�2 E

sinh�E/kBT�
, �29�

where we used ��E. Interestingly, Eq. �27� shows that DB
spin relaxation happens in two stages: In the first stage the
DB spin decays abruptly to a small visibility loss �, with a
rate set by the TTLS switch. During this first stage the TTLS
levels ±E /2 achieve thermal equilibrium. In the second stage
the DB spin relaxes fully with a much slower “thermalized”

cross-relaxation rate �̄. For A�1 we may drop the ��A4

contribution to Eq. �27�.
The theory developed above can be generalized to a

single DB coupled to an ensemble of TTLSs, provided the
TTLSs are not coupled to each other. In this case the rate
equations �29� and �37� are generalized to a sum of rates �i
relating to the ith TTLS. Each exponential in Eq. �27� be-
comes �e−	i�it. This happens whenever the DB+TTLS net-
work can be separated into disconnected four-level sub-
spaces as in Figs. 3�b� and 3�c�.

We now proceed to average over disorder realizations of
the amorphous material. We assume the following two-
parameter distribution:

P��,E� =
P̄v
�max

� E

Emax
��, �30�

for �� �0,�max�, and E� �Emin,Emax�; P�� ,E�=0 otherwise.
Note that the uniform distribution in � leads to a broad dis-
tribution of TTLS tunneling parameters �=�0e−�. To our

knowledge there are no estimates available for P̄ ,Emax,Emin
close to an interface, only for bulk SiO2. For the latter ma-

terial the energy density of TTLSs per unit volume P̄ has

been estimated as P̄=1020–1021 eV−1 cm−3, and typical val-
ues for the TTLS energy range are Emin /kB�0.1 K, and
Emax /kB�10 K.21 Here we introduce a parameter v with
units of volume, denoting the effective range for TTLSs to
couple to each DB spin �for a SiO2 layer of 10 nm we esti-
mate v�103 nm3�. The exponent � is material dependent:
While ��0 seems to be appropriate for bulk SiO2,21 it was
found that bulk amorphous Si can be described by �
=0.1–0.4 or �=1.2–1.5 depending on sample preparation
method �see Ref. 13 and Sec. IV C below�.

The average number of TTLSs coupled to each DB spin is
given by

N =
 d�
 dEP��,E� �
P̄vEmax

� + 1
. �31�

This is also the number of thermally activated TTLSs at high
temperatures, kBT�Emax. For lower temperatures satisfying
Emin�kBT�Emax, Eq. �31� is divided by cosh2�E /2kBT�,
leading to

NT � P̄vEmax�2kBT

Emax
�1+�

. �32�

This is the number of thermally activated TTLSs interacting
with each DB spin. For extremely low temperatures kBT
�Emin this number will be exponentially small.

We now turn to computations of the ensemble averaged

DB spin relaxation rate, ��̄�. At shorter times satisfying

�̄Maxt�1, the DB spin magnetization �Sz�t�� decays linearly
in time.26 The rate for this linear decay is equivalent to the
�1 /T1

DB� rate measured for bulk amorphous silicon samples
in Ref. 13. This is given by

��̄� = � 1

T1
DB� =
 d�
 dEP��,���̄��,E� . �33�

At high temperatures kBT�Emax Eqs. �33� and �29� lead
to

��̄� = aA2�0
2kBT

N
�max

. �34�

The average DB spin relaxation scales linearly with tempera-
ture times the number of TTLSs surrounding the DB.

At lower temperatures satisfying Emin�kBT�Emax we
have instead

ROGERIO DE SOUSA PHYSICAL REVIEW B 76, 245306 �2007�

245306-6



��̄� =
aA2�0

2P̄v

�maxEmax
� �kBT�2+�


0

�

dx
x�

sinh2 x
=

3aA2�0
2kBT

�max2
1+� NT,

�35�

showing that the DB spin relaxation rate will scale propor-
tional to T2+�.

At the very lowest temperatures kBT�Emin there are no
thermally activated TTLSs; therefore, the mechanism of DB
cross relaxation is exponentially suppressed. Here other
sources of DB spin relaxation may dominate �e.g., direct
relaxation as in Eq. �17��, or the DB spin may not relax at all
within the characteristic time scale of the experiment.

Askew et al. measured average DB relaxation rates in
bulk amorphous silicon at low temperatures �T=0.3–5 K�.13

Two different preparation methods, silicon implanted with
28Si, and silicon sputtered in a substrate, led to the experi-

mental fit ��̄��T2.35. Two other preparation methods, silicon
implanted with 20Ne, and silicon evaporated on a substrate
led to T3.3 and T3.5 fits, respectively. Two different values of
the magnetic field were studied �0.3 and 0.5 T�, and no mag-
netic field dependence could be detected. The T and B de-
pendence predicted by our model agrees with experiment
provided �=0.35 for the 28Si implanted and sputtered
samples, and �=1.3,1.5 for the 20Ne implanted and the
evaporated samples. It is perhaps expected that � is different
for each of these because the density of TTLSs should de-
pend on the way they were created. At high temperatures, the
linear in T behavior has been observed in amorphous silicon
grown by evaporation.27

B. Case E™�, E™kBT, � ÕkBT arbitrary

From Eqs. �24� and �26� we get

Sz�t� �
hdip

2

cosh2��/2kBT�
e−��↑+�↓�t. �36�

For E�� the DB relaxation rate becomes

�↑ + �↓ � 4aA2�
2

E2�
3 coth� �

2kBT
� . �37�

Its ensemble average is given by

��↑ + �↓� �
2aA2

�max
� �0

2

EmaxEmin
�


�Emax

Emin
���1 + �

1 − �
�N�3 coth� �

2kBT
� , �38�

where we assumed ��1. For ��1, the prefactor in Eq. �38�
is modified, but the scaling �N�3 coth�� /2kBT� remains.

C. Comparison to Reference 13

We now compare our results to the theoretical model pro-
posed by Askew et al.13 In their Eq. �5� the authors wrote the

expression for �̄ in the E�� regime using free parameters
D, M, C, and N. In our work these are explicitly related to
microscopic parameters: D=��� /E, M =−��� /E, C=� / �2E�,

and N=� / �2E�. In Ref. 13 it is claimed that when the in-
equality ND /E�−CM /� is satisfied, the average DB relax-
ation rate scales as �T1

DB�−1�T2+��0 �the so called Lyo and
Orbach regime after Ref. 12�. When this inequality is re-
versed, they obtained �T1

DB�−1�T4+��−2 �Kurtz and Stapleton
regime, Ref. 11�. Nevertheless, our result shows that these
parameters are related by ND=−CM�0, so this inequality is
equivalent to ��E. Because Eqs. �7� and �8� of Ref. 13 are
based on two conflicting approximations, ��E for the ma-
trix element squared and ��E for the phonon density of
states, their result needs to be corrected. We showed above
that the average DB relaxation scales instead as
�3 coth�� /2kBT� for ��E and T2+��0 for ��E �the latter
holds for Emin�kBT�Emax�. For high temperatures kBT
�Emax we get T�0. The corrected results are in excellent
qualitative agreement with the experimental data in Ref. 13.

Reference 13 assumes �=�=E /�2 and averages E ac-
cording to a density �E�. This is in contrast to our averaging
prescription that assumes instead �=�0e−�, with �0��min
and as a consequence ��E. We assume � is uniformly dis-
tributed and the � density varies as ���. This assumption is
motivated by the wide distributions of TTLS relaxation rates
observed in glasses, and is usually employed to explain
charge and current noise in semiconductors.10 As we show
below, the broader distribution of DB relaxation times leads
to 1 / f magnetic noise and nonexponential relaxation for an
ensemble of DBs.

V. MAGNETIC NOISE

The total noise power for each DB spin is independent of
the specific relaxation process and may be calculated exactly
using elementary Boltzman statistics. The noise must satisfy
the following sum rule:



−�

�

S̃z���d� = ��z
2� − ��z�2 =

�hdip
2 �

cosh2��/2kBT�
. �39�

This shows that the noise spectrum is exponentially small in
the high magnetic field regime ��kBT. For the opposite re-
gime ��kBT the total noise power is independent of tem-
perature. However, as we show below, the spectral density

S̃z��� may be temperature dependent when its upper fre-
quency cutoff is temperature dependent.

A. Case Eš�, �™kBT, E ÕkBT arbitrary

In order to determine the noise spectrum, we must first

extract the distribution of relaxation rates P��̄� from Eqs.
�29� and �30�. Under the assumption that each DB spin is
coupled to only one TTLS on average �i.e., N�1 or NT
�1, see Eqs. �31� and �32�� we have

P���� =
�d��dEP��,E����̄��,E� − ���

�d��dEP��,E�
. �40�

Note that this is normalized to 1 according to �d��P����
=1. It is straightforward to extend Eq. �40� to a larger num-
ber of TTLSs E1 ,E2 , . . ., but the explicit calculation of P����

DANGLING-BOND SPIN RELAXATION AND MAGNETIC 1/… PHYSICAL REVIEW B 76, 245306 �2007�

245306-7



becomes difficult. Below we will derive explicit results for
the case of a DB spin coupled to a single TTLS on average.

Using Eqs. �29�, �30�, and �40� we may evaluate the inte-
gral over � explicitly as follows:

P���� =
1

N 
 dEP�0,E� 
 d�
��� − �0�E��

� d�̄

d�
�
�=�0�E�

=
1

2��

1

N 
 dEP�0,E��� 2aA2E

sinh�E/kBT�
− �� .

�41�

Here �0�E� is the solution of �̄��0 ,E�=��. The step function
results from the fact that the delta function will “click” only
when �0�E�� �0,�max�, or simply ���2aA2E /sinh�E /kBT�.

1. High temperature, kBTšEmax

In this case the theta function in Eq. �41� is always 1 for

��� ��̄min,�max�, with �̄max=2aA2kBT and �̄min

=e−2�max�̄max. Therefore we have simply

P���� =
1

2�max ��
, �42�

for ��� ��̄min, �̄max�, and P����=0 otherwise. As a check,
note that �d��P����=1 implies the relationship �max

= 1
2 ln� �̄max

�̄min
�, as expected.

The magnetic noise is given by

S̃��� = �hdip
2 � 
 d�P���

�/
�2 + �2 =

�hdip
2 �

4�max

1

���
, �43�

for �̄min����̄max, and S̃���=0 for ���̄max. For ���̄min

it saturates at S̃��̄min�. Hence at the highest temperatures we
have temperature independent magnetic 1 / f noise.

The 1 / f frequency dependence shows that the average
magnetization of an ensemble of DB spins out of equilibrium
will decay nonexponentially with time t. At intermediate

times satisfying �̄max
−1 � t��̄min

−1 , we may show that the time
correlation function �or equivalently the ensemble average of
the DB z magnetization� satisfies10

�Sz
DB�t��

�Sz
DB�0��

� 1 −
CE + ln��̄max t�

2�max
. �44�

This expression is valid after neglecting terms O�1 / �̄maxt�.
Here CE=0.5772 is the Euler-Mascheroni constant.

2. Intermediate temperature, Emin™kBT™Emax

In this case Eq. �41� becomes

P���� =
1

2��

1 + �

�max
� kBT

Emax
�1+�


0

xmax

dxx����̄max
x

sinh x
− ��� .

�45�

The upper limit of the integral is determined from x
sinh x

=�� / �̄max. We solved this equation numerically, and showed
that the result is well approximated by the analytic expres-
sion xmax� 3

2 �ln� ��

2�̄max
��. Using this approximation we get

P���� =
1

2�max ��
� kBT

Emax
�1+�� 3

2
ln� ��

�̄max
��1+�

. �46�

The distribution of relaxation rates has the same temperature
dependence as the number of thermally activated TTLSs �see
Eq. �32��, and possesses an interesting logarithmic correction
with respect to the usual 1 /�� behavior.

The logarithm correction in Eq. �46� increases the weight
for smaller rates ��, at the expense of decreasing the weight
for higher rates. As a result the noise spectrum is better de-
scribed by a 1 / fp relation, with p�1. Figure 4 shows nu-

merical calculations of S̃��� for �=0,0.35,1.5 �we assumed

�̄min=1 s−1 and �̄max=104 s−1�. For �=0, the noise is de-
scribed by a 1 / f1.2 fit, while for �=1.5 a fit of 1 / f1.5 is more
appropriate. Therefore at intermediate temperatures we have

S̃��� =
�hdip

2 �
4�max�

� kBT

Emax
�1+� 1

���p
. �47�

Note that �max� is determined from the normalization condi-

tion �d�S̃���= �hdip
2 � for given �̄max / �̄min.

3. Extremely low temperature, kBT™Emin

In this case �̄�� ,E� is exponentially suppressed, and there
will be no magnetic noise due to the DB+TTLS mechanism.
If spin relaxation is dominated by the direct process �Eq.

10-1 100 101 102 103 104 105
10-7

10-6

10-5

10-4

10-3

10-2

10-1

2
~

1/f noise
α=0
α=0.35
α=1.5

ω (rad/s)

S
(ω

)/
<

h di
p>

(s
)

FIG. 4. Magnetic noise at intermediate temperatures kBT�� and
Emin�kBT�Emax, for �=0,0.35,1.5 �TTLS energy density expo-
nents�. The distribution of relaxation rates �Eq. �46�� contains a

logarithmic correction, leading to S̃����1 / fp, with p=1.2–1.5.
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�17��, the noise spectra may still have the 1 / f dependence.
Otherwise paramagnetic DBs may not contribute to magnetic
noise at all.

4. Calculation of Šhdip
2

‹

Finally, we calculate the total noise power by averaging
the DB distribution over the interface plane. We choose a
coordinate system with origin at the interface immediately
above the donor spin. Define d as the donor depth, and ri, �i
the coordinates of the ith DB with respect to the interface
�see Fig. 3�d��. The dipolar frequency shift produced by a
DB spin aligned along the same direction as the donor spin is
given by

�hdip�i =
�e

2�

4�d2 + ri
2�3/2 �1 – 3 cos2 �i� . �48�

hdip is sensitive to the orientation of the external magnetic
field B= �sin � ,0 ,cos ��B with respect to the interface. This
enters through

cos2 �i =
�d cos � + ri cos �i sin ��2

d2 + ri
2 . �49�

For �=0, the average hdip
2 over a uniform DB area density

	DB is given by

�hdip
2 � = 	DB


0

2

d�

0

�

rdrhdip
2 �r,�� =

3

64
	DB

�e
4�2

d4 .

�50�

VI. HAHN ECHO DECAY DUE TO 1 Õ f NOISE:
COMPARISON TO EXPERIMENT

The discussion above concluded that the following model
for the noise spectrum is valid at high temperatures �kBT
�� and kBT�Emax�:

S̃��� = �C/�min, 0� �����min

C/��� , �min� �����max

0, �max� ����� .
� �51�

The prefactor C is given by

C =
�hdip

2 �
4�max

�
3

256

	DB

�max

�e
4�2

d4 . �52�

We may calculate the Hahn echo response due to 1 / f
noise using Eq. �5� with the filter function Eq. �7�. If the
interpulse time � is neither too long �so that cmin
=��min /2�1� nor too short �so that cmax=��max /2�1�
we get

�	+�2��� = exp�− C�2��4 ln 2 −
2

3
cmin

2 �
−

1

4cmax
2 �3 – 4 cos�2cmax� + cos�4cmax���� ,

�53�

after neglecting terms of order cmin
3 and 1 /cmax

3 . When cmin

 0.1 and cmax!10 the echo envelope saturates and is well
approximated by the simpler expression

�	+�2��� � exp�− 4 ln�2�C�2� , �54�

which is independent of the low and high frequency plateaus
assumed in Eq. �51�.28,29

In the experiment of Ref. 3, each implanted Sb donor is a
probe of magnetic noise from the interface. Because the im-
planted profile is inhomogeneous, the parameter C is differ-
ent for each layer of donors a distance d below the interface.
The experimental data were taken at � /kBT=0.3 /5=0.06
�1. From Eq. �52� we obtain

�	+�2��� � e−"�2�/#�d��2
, �55�

#�d� =
6.25 nm

�e
2�

d2, �56�

" =
	DB
 �nm�2

�max
. �57�

In this approximation we may fit the experimental data using
a single dimensionless parameter ", provided the distribution
of Sb donors is well known.

We used Eq. �55� together with the donor distribution
measured by secondary ion mass spectroscopy �SIMS� to
obtain theoretical estimates of Hahn echo decay relevant to
the experiment of Ref. 3. Figures 5 and 6 compare the theory
with the 120 and 400 keV implanted samples, respectively,
both with a Si /SiO2 surface. A value of "�0.2 for the the-
oretical curves seems to be consistent with the experimental
data. However, in the short time range the theoretical curve
seems to decay slower than the experimental data, while at
longer time intervals the theory seems to decay faster. This
lack of agreement may be due to deviations from the mea-
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FIG. 5. Theoretical calculations �solid lines� and experimental
data �circles� �Ref. 3� for Hahn echo decay of Sb donors in the
120 keV implanted sample with the Si /SiO2 surface. The theory is
in reasonable agreement with the data when the theoretical param-
eter "�0.2 �Eq. �57��. The inset shows the Sb donor distribution
measured by secondary ion mass spectroscopy �SIMS�.
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sured SIMS distribution. The ultralow donor densities were
at the sensitivity threshold for the SIMS technique; hence,
the donor distribution is quite noisy �see insets of Figs. 5 and
6—we used a numerically smoothed version of the SIMS-
annealed data of Figs. 1�a� and 1�b� of Ref. 3�. A higher
probability density near the interface could in principle ex-
plain the faster decay at shorter times, while a deeper tail in
the distribution could be responsible for the slower decay at
longer times.

The value for �max may be estimated from �max

= 1
2 ln� �̄max

�̄min
�� 1

2 ln� 106

10−1 ��10. Combining this with "�0.2 we

get 	DB�1014 cm−2.
We use Eq. �54� and the value "�0.2 extracted from ex-

periment to estimate the coherence time of a single donor
located a distance d below the interface. This results in

T2�d� � 4
 10−8 s � d

nm
�2

, �58�

with T2�d� inversely proportional to the square root of the
DB area density. The 1 / f noise affecting a local magnetic
probe a distance d from the interface is estimated as

S̃��� � �6.5
 1011 s−2 �10nm

d
�4 1

���
, �59�

and is directly proportional to 	DB.

VII. MAGNETIC FLUX NOISE IN SQUIDs

The SQUID is probably the most sensitive probe for mag-
netism at the nanoscale. It consists of a superconducting loop
interrupted by two insulating barriers �Josephson junctions�.
In this way it works as a magnetic flux-to-voltage transducer.
SQUIDs are usually grown on top of a Si /SiO2 substrate;
therefore, magnetic noise due to dangling bonds within the
SQUID loop will affect their performance as sensitive mag-
netometers.

Our results on magnetic dipolar noise are easily translated
to flux noise in SQUIDs by substituting �hdip

2 � for ��total
2 � in

Sec. V above. In order to get an order of magnitude estimate
for ��total

2 �, we consider the flux produced by a single mag-
netic dipole moment m0 located at the center of a disk of
radius R �the area enclosed by the SQUID loop�. In Gaussian
units this is given by �i=2m0 /R. Each dangling bond con-
tributes a dipole moment equal to m0=��e /2=�e / �2mec�.
Assuming an area density 	DB for the DBs leads to the fol-
lowing estimate for the mean flux squared:

��total
2 � � 3	DB�

2�e
2 = 2.49
 10−11�0

2�	DB
 �nm�2� ,

�60�

where �0=hc /2e is the flux quantum. The SQUID operates
at very low magnetic fields �B 1 G�, so the spin quantiza-
tion direction is set by local inhomogeneities and is different
for each DB. The angular average of spin quantization direc-
tion reduces Eq. �60� by a factor of 3. Moreover, taking
account of spins close to the superconducting wire and ori-
ented along the SQUID plane increases Eq. �60� by �3.7 As
a result, Eq. �60� has the same order of magnitude as the
calculation of Koch et al. for loop sizes 10–500 $m.7

At high temperatures �kBT�� and kBT�Emax�, the flux
noise due to the presence of DBs in the plane enclosed by the
SQUID loop is obtained by substituting �hdip

2 �→ ��total
2 � in

Eq. �43�. The result is

S̃���� = �	DB
 �nm�2

�max
6.2
 10−12�0

2

���
. �61�

The value in brackets equals the parameter " used to fit our
electron spin resonance �ESR� experiment �Fig. 5�. Using "
�0.2 we get an estimate for the flux noise contribution from
an untreated Si /SiO2 substrate as follows:

S̃���� � 1.2
 10−12�0
2

���
. �62�

Interestingly, this result has the same order of magnitude as
the measurements of Ref. 6 using a small flux qubit as a
probe of magnetic noise. A compilation of measurements of
flux noise in SQUIDs was given recently by Ref. 7, where

we see that S̃�1 Hz� lies in the range �0.1–100�
10−12�0
2

for a wide variety of samples.
Note that the high temperature condition kBT�� implies

T�0.1 mK for the low magnetic fields ��1 G� in SQUIDs.
Unfortunately, there are no estimates of Emax for a Si /SiO2
interface. For bulk SiO2 the values Emax�10 K and Emin
�0.1 K were estimated.21 We emphasize that Eq. �62� is the
maximum value for the noise, which saturates at kBT
�Emax. For kBT�Emax, Eq. �62� will be reduced by a factor
�kBT /Emax�1+�, and the frequency dependence will change to
1 / ���p with p=1.2–1.5, see Eq. �47�.

VIII. NUCLEAR SPIN NOISE FROM A HYDROGEN
PASSIVATED SURFACE

Surface passivation with hydrofluoric acid drastically re-
duces the amount of dangling bonds. Nevertheless this oc-
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FIG. 6. Same as Fig. 5 for the 400 keV implanted sample, with
the Si /SiO2 surface. As pointed out in Ref. 3, the experimental data
suffered from external field noise for ��500 $s.
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curs at the expense of adding a large amount of hydrogen
nuclear spins. Here we investigate the magnetic noise
mechanism arising due to the dipolar fluctuation of hydrogen
nuclear spins at a perfect passivated SiuH surface.

It is well established that spin decoherence of donors in
bulk natural silicon is dominated by nuclear spin noise from
the 4.67% 29Si nuclear spins.14,20 The samples studied here3

are known to have less than 0.1% of 29Si isotopes, leading to
a contribution of the order of 1

T2
�10 Hz. For a Si /SiO2

sample, the fraction of oxygen isotopes with nonzero nuclear
spin is even lower �0.038%�; hence, oxygen nuclear spins
should be a minor contributor to magnetic noise at oxidized
samples.

We carry out a model calculation for the Si�100�H surface
under the assumption that the hydrogen atoms are arranged
in a canted-row dihydride phase with no orientation disorder,
see Fig. 7.30 The truncated Hamiltonian for a single donor
electron spin interacting with the hydrogen nuclear spin lat-
tice at the surface is given by

H =
1

2
�eB	z − �nB	

i

Iiz +
1

2	
i

DiIiz	z

+ 	
i�j

bij�Ii+Ij− − 2IizIjz� , �63�

where Ii is the nuclear spin operator for the hydrogen atom
located at position Ri with respect to the electron ��n=2.66

104 �sG�−1 is the gyromagnetic ratio for the hydrogen
nuclear spin�. Note that in Eq. �63� we have neglected the
nonsecular contribution of the electron-nuclear dipolar inter-
action. This approximation is valid only at higher external
magnetic fields, �eB��	iDi

2. For d=10 nm, B�0.1 T is
necessary to satisfy this criterion. One can show numerically
that the nonsecular interactions produce a loss of visibility
for the Hahn echo envelope scaling as �	iDi

2 / ��eB�2.31 The
electron-nuclear dipolar coupling is given by

Di =
�n�e�

Ri
3 �1 – 3 cos2 �i� , �64�

where �i is the angle between Ri and the direction of the
external magnetic field. Each pair of hydrogen nuclear spins

labeled by i and j are mutually coupled by the dipolar inter-
action

bij = −
1

4

�n
2�

Rij
3 �1 – 3 cos2 �ij� , �65�

where �ij is the angle between the B field and the vector Rij
linking the two nuclear spins.

The Hamiltonian equation �63� is directly mapped into the
effective model Eq. �1� through the prescription �z=	iDiIiz.
The noise spectrum �Eq. �3�� is then calculated using a “flip-
flop” approximation, i.e., assuming a model that considers
only flip-flop transitions between pairs of nuclear spins. In
this approximation, the noise spectrum becomes14

S̃��� = 	
i�j

bij
2�ij

2

bij
2 + �ij

2 ���� + Eij� + ��� − Eij�� , �66�

with �ij = �Di−Dj� /4, and Eij =2�bij
2 +�ij

2 . We dropped the
inhomogeneous broadening term proportional to ���� in Eq.
�66� because it does not contribute to Hahn echo decay.

Using Eqs. �5� and �66� the Hahn echo envelope becomes

�	+�2��� = �
i�j

e−4bij
2
�ij

2 �4 sinc4���bij
2 +�ij

2 �, �67�

where sinc x=sin x /x. This result is identical to the lowest
order cluster expansion derived in Ref. 20 through direct
calculation of the spin echo response. Another way to derive
Eq. �67� is to assume that the nuclear spin pair transitions are
quasiparticle excitations with infinite lifetime.32 Equation
�67� is able to predict the Hahn echo decay without any
phenomenological fitting parameter, in contrast to the tradi-
tional “Brownian motion” models developed previously.33

Note that the magnetic noise due to nuclear spins is a
linear combination of sharp peaks �delta functions�, reflect-
ing the mesoscopic nature of the nuclear spin bath. Each
delta function is a transition between discrete nuclear spin
energy levels. This is in contrast to the continuous �Lorentz-
ian� noise due to a single dangling-bond spin interacting with
the phonon continuum.

In order to plot a continuous noise spectrum we represent
the delta functions in Eq. �66� by normalized Gaussians with
linewidth 	=102 s−1. Note that the Hahn echo decay is inde-
pendent of the particular choice of 	 or the Gaussian line
shape provided � remains much smaller than 1 /	 �in this
case the Hahn echo envelope calculated by Eqs. �5� and �7�
with a coarse grained noise spectrum is very well approxi-
mated by the zero broadening expression Eq. �67�.

Figure 8 shows the nuclear spin noise spectrum from the
point of view of a probe �a donor spin� lying 10 nm below
the surface. Interestingly, we find that the noise spectrum is
sensitive to the relative orientation of the external magnetic
field with respect to the surface. The noise has a global mini-
mum for ��50°. As shown in Fig. 9, this effect translates
into a variation of about 50% in the electron spin decoher-
ence time T2 �T2 is obtained as the 1 /e decay of the Hahn
echo given by Eq. �67��. This orientation dependence is sur-
prisingly different than the one in bulk Si:P, see, e.g., Fig. 8
of Ref. 14. Figure 9 shows that T2 is minimized when �=0
and maximized when ��50°, in contrast to bulk Si:P where

FIG. 7. A hydrogen terminated silicon surface is obtained after
immersing an oxidized sample in a hydrofluoric acid solution. Here
we show a Si�100�H surface with the hydrogen atoms forming a
canted-row dihydride structure �Ref. 30�. The SiH2 groups form a
square lattice of side 5.43 /�2=3.84 Å.
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precisely the opposite was found. This special orientation
dependence is the fingerprint of nuclear spin noise in a
Si�100�H surface, allowing a clear identification of this
mechanism in pulse spin resonance.

Figure 10 shows T2 as a function of the donor distance
from the surface. Note that we find T2�10 ms for
d�30 nm, suggesting that this mechanism should not be
playing a dominant role in the shallow implanted sample of
Ref. 3 �120 keV sample�. For d�100 nm, T2 is hundreds of
milliseconds, so hydrogen nuclear spins are not affecting the
400 keV implanted sample either. The nuclear spin noise in a
passivated surface may be further reduced by a factor of �4
by using deuterium instead of hydrogen �the deuterium gy-
romagnetic ratio is 3.28 times smaller than hydrogen�. This
results in donor T2’s greater by a factor of 2.

For a perfect hydrogen passivated surface the theoretical
T2’s are much longer than the values measured in Ref. 3. It is
well known that chemical passivation of a Si�100� surface
cannot remove all dangling bonds, in contrast to Si�111� that
usually removes nearly all dangling bonds.35 Therefore the
dangling-bond mechanism might still be playing a role in the
passivated samples. Repeating the experiment for the Si�111�
surface could possibly yield even longer coherence times.

The finite Sb density in these samples implies that the mutual
interaction between donor spins �donor-donor dipolar cou-
pling� might play a role, a mechanism of decoherence re-
ferred to as “instantaneous diffusion.”36 We have confirmed
this expectation by showing that the contribution to T2 due to
instantaneous diffusion is of the order of 0.3 and 1 ms for the
120 and 400 keV samples, respectively. Therefore instanta-
neous diffusion might explain a fraction of the measured
echo decay rates. References 36 and 37 discuss a method for
completely removing the instantaneous diffusion mechanism
in a doped sample.

With respect to SQUIDs, we remark that the nuclear spin
flip-flop mechanism considered in this section does not con-
tribute to magnetic flux noise �a flip-flop preserves the value
of the magnetic moment for two nuclear spins, leaving the
total flux unchanged�. The statistical fluctuation of individual
hydrogen nuclear spins �due to a finite T1

H� should be ex-
tremely small because T1

H is usually hundreds of seconds or
more. The nuclear spin noise due to ensemble fluctuations of
nuclear spins may be detected by SQUIDs under optimal
circumstances, see Ref. 38.

IX. DISCUSSION

In summary, we developed a theory of magnetic noise due
to spin flips of paramagnetic centers at an amorphous
semiconductor-oxide interface. The mechanism of dangling-
bond spin relaxation due to its interaction with tunneling
two-level systems and phonons of the amorphous interface
was discussed in detail. We also showed how these effects
may be greatly reduced by surface passivation with hydro-
gen. Substituting the paramagnetic dangling bonds with a
monolayer of hydrogen nuclear spins reduces the magnetic
noise level by many orders of magnitude, as seen in Fig. 11.
We related these results to decoherence of spin qubits in
silicon as a function of their distance from the interface and
flux noise in SQUID qubits.

Our work generalizes and extends the model of dangling-
bond spin-lattice relaxation in amorphous materials origi-
nally proposed in Refs. 11–13. Particularly, we clarified the
different temperature and magnetic field dependence as a
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FIG. 8. Magnetic noise spectrum due to the Si�100�H surface as
probed by a single donor spin 10 nm below the surface. We show
the noise spectrum for four different angles �, labeling the relative
orientation of the external magnetic field with respect to the surface.
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spin located 10 nm below a hydrogen terminated surface. � is the
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The resulting orientation dependence is quite distinct from the one
due to 29Si nuclear spins in bulk natural silicon �Refs. 14 and 34�.
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FIG. 10. Spin decoherence time T2 as a function of the donor
distance from the surface, for a passivated Si�100�H surface con-
taining no dangling bonds �squares� and for a Si /SiO2 interface
containing a dangling-bond density equal to 1014 cm−2 �Eq. �58��.
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function of the ratio between TTLS energy splitting E and
DB spin Zeeman energy �.

The theory of paramagnetic DB spin relaxation is signifi-
cant for two recent proposals of single spin measurement
based on spin-dependent recombination of conduction elec-
trons with dangling bonds close to the Fermi level.39,40 In
these experiments the time scale T1

DB sets the limit on single
spin measurement fidelity. To our knowledge there is yet no
experimental study of T1

DB at the Si /SiO2 surface. We pro-
pose the measurement of magnetic field and temperature de-
pendence of DB spin relaxation at short times �Eq. �35�� and
the nonexponential decay at longer times �Eq. �44�� in order
to validate our theoretical results and give a full character-
ization of the free parameters.

Our calculations provide benchmark values for the ulti-
mate coherence times of group V donor spin qubits im-
planted in an actual device structure made from nuclear-spin-
free silicon. Although the longest coherence times are in
principle achievable with a perfect oxidized surface without
dangling bonds, the inevitable presence of a large density of
these defects in real devices makes surface passivation an
attractive alternative. Since each donor must be positioned
close to an insulating interface in order to allow gate control
of exchange,2 hyperfine couplings,41,42 as well as electron
shuttling,43 the interface effects described here will play an
important role in the material optimization of silicon devices
exploiting spin coherence.

Recently, 29Si nuclear magnetic resonance experiments in
polycrystalline silicon at room temperature were interpreted
using a model of magnetic 1 / f noise.4 The proposed mecha-
nism was related to the charge fluctuation of trapping centers
at the surface of the microcrystals. Our work suggests that it
is the spin flip of paramagnetic DBs, not trapping centers,
that probably account for most of the 1 / f noise observed in
Ref. 4.

Koch et al. proposed a model of 1 / f flux noise in
SQUIDs based on electron hopping to localized defect sites,
and concluded that a quite high trapping-center area density
�5
1013 cm−2� was required to explain flux noise in SQUID
qubits.7 Our work suggests that the spin flip of paramagnetic
centers from the substrate may provide an alternative expla-
nation, based on a more physical paramagnetic dangling-

bond density similar to the one estimated in their work.
We remark that a C-V analysis of an unannealed Si /SiO2

interface leads to an energy density equal to ��
�1013 eV−1 cm−2 �see Fig. 4 of Ref. 9�. This implies that the
SQUID substrate is contributing at most kBT���1010 cm−2

of trapping-center area density at T=0.1–4 K. Nevertheless,
the area density for paramagnetic DBs should correlate with
U���1013 cm−2. The value obtained here �1014 cm−2� is a
factor of 10 higher.

Scanning tunneling microscopy experiments provide an-
other way to estimate the trap energy density. In Ref. 44, a
clean Si�100� surface was exposed to low pressure oxygen in
order to produce approximately a single oxygen monolayer.
When the tip to surface voltage was �1 V, 10–100 trapping
centers could be detected in a 65
65 Å2 region. This leads
to an energy density in the range 1013–1014 eV−1 cm−2,
higher than the C-V measurements.

The frequency and temperature dependence of flux noise
in SQUIDs was measured a while ago in Ref. 5, using a wide
variety of samples. These included silicon oxide substrates
deliberately and not deliberately oxidized, as well as sap-
phire substrates. Some samples showed no temperature de-
pendence, and the frequency dependence appeared to fit
1 / fp, with p=0.58–0.80. This frequency dependence cannot
be explained by our model. Nevertheless, the absence of
temperature dependence may be explained by our model,
provided the majority of DBs are connected to one or more
thermally activated TTLS �or equivalently, Emax�kBT�. An
interesting question for future research is whether the inter-
action between DB spins can account for this discrepancy.

This work establishes an important connection between
flux noise in SQUIDs and ESR studies of implanted donor
impurities or dangling bonds. As a result, ESR characteriza-
tion may play an important role in the prescreening of mate-
rials for SQUID fabrication.
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APPENDIX A: MAGNETIC 1 Õ f NOISE DUE TO
DANGLING-BOND CHARGE TRAPPING CENTERS

Here we consider a mechanism of magnetic noise similar
to the McWhorter model of current noise in semiconductor
devices, which does not involve phonons.10

Dangling bonds with energy close to the Fermi level act
as charge trapping centers, capturing electrons from interface
states. Magnetic noise occurs because each time an interface
electron tunnels into the DB, it produces an effective dipolar
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FIG. 11. Magnetic noise spectrum for the oxidized interface as
probed by a single donor spin a distance d below the interface. For
comparison, we show the nuclear spin noise spectrum in a hydrogen
passivated surface.
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field in the donor spin, which is given by Eq. �48� divided by
2.

The tunneling rate for a trap located a distance z from the
interface is assumed to be ��z�=�maxe

−z/�. Here z measures
the depth of the charge trap into the SiO2 dielectric, and z
=0 refers to a trap at the Si /SiO2 interface. We have �
=��2 / �2m*E0� /2�1 Å, where E0�4 eV is half the gap dif-
ference between the two materials. �max�109 s−1 depends
on the cross section for electron capturing. Assuming a uni-
form distribution for z in the interval �0,zmax� leads to a
distribution of rates equal to

p��� =
p�z�

�d�

dz
� �

�/zmax

�
, �A1�

for �min����max, and zero otherwise. The noise spectrum
is readily calculated as

S̃��� =
1

4
�hdip

2 �

�min

�max

d�p���
�/
�2 + �2

=
3

512

�

zmax
���kBT�

�e
4�2

d4

1

�
. �A2�

Therefore we have C /� noise with parameter C
=��hdip

2 � / �8zmax�. In order to compare to Hahn echo decay
data we define a parameter " similar to Eq. �57�. This is
given by

" =
�

2zmax
��kBT �nm2� . �A3�

The area density for DBs with energy close to the Fermi
level is estimated as ��kBT, with ���1013 cm−2 eV−1.9 The
maximum possible value of " �at T=5 K� is estimated from
��kBT�1010 cm−2. Assuming zmax�10� we get "�10−5. We
remark that this maximum possible value for " is 4 orders of
magnitude smaller than the value required to explain the ex-
perimental data of Ref. 3 �see Figs. 5 and 6�.

APPENDIX B: CALCULATION OF THE DB SPIN TIME-
DEPENDENT CORRELATION FUNCTION

We are concerned with finite frequency fluctuations of the
DB spin magnetic moment along the B field �z direction�;
therefore, we will describe the dissipative kinetics of the
DB+TTLS network considering only diagonal density ma-

trix elements in the Bloch-Wangsness-Redfield theory.
We define the propagator matrix Pij�t� as the diagonal

density matrix element �ii�t� subject to the initial condition
�lm�0�=�lj�mj. This is just the probability that the DB
+TTLS will be at the state i at time t given that it was at state
j at time t=0. Note that here the index i label one of the four
DB+TTLS levels ��↓,�↓,�↑,�↑� �see Fig. 3�b��. Further-
more, we define the matrix pij�t�= Pij�t�−wi, with wi

=�ii��� the equilibrium probabilities for level i. The steady
state solution is then given by pij�t→��=0. With this defi-
nition the rate equations for the 4
4 matrix p becomes sim-
ply

d

dt
p�t� = − � · p�t� , �B1�

with initial condition pij�0�=�ij −wi, and a relaxation tensor
� defined as follows: For i�k, �ik=−�k→i, which is minus
the rate for entering level i from level k. For i=k, �ii
=	 j��i��i→j, or the sum of rates for exiting level i. The case
of our four-level system without direct transitions between
Zeeman sublevels is described by

� =�
r+ + �+↓ − r− 0 − �−↑

− r+ r− + �−↓ − �+↑ 0

0 − �−↓ r+ + �+↑ − r−

− �+↓ 0 − r+ r− + �−↑
� . �B2�

The vector for equilibrium probabilities w
= �w+↓ ,w−↓ ,w+↑ ,w−↑� is the eigenvector of � with eigen-
value zero, satisfying 	iwi=1.

In the four-level system notation ��↓,�↓,�↑,�↑� the
vector x of dipolar fields assumes the values x=hdip�−1,
−1, +1, +1�. The correlation function becomes

Sz�t� = ���z�t� − �̄z���z�0� − �̄z�� �B3�

=	
i,j

xi�Pij�t� − wi�xjwj �B4�

=x · p�t� · xw, �B5�

with xw= �x1w1 ,x2w2 , . . . �. Equation �B5� together with its
explicit solution p�t�=e−�t allows exact calculations of the
correlation function Sz�t�.
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