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We present a quantum mechanics �QM�/molecular mechanics �MM� formalism for coupling density func-
tional theory �DFT� based quantum simulations to classical atomistic simulations for metals. The multiscale
methodology is applicable to systems where important quantum phenomena are confined to a small region, but
their impacts could be felt over much larger scales. The concurrent coupling between QM and MM regions is
treated quantum mechanically via the orbital-free density functional theory �OFDFT�. We propose two ener-
getic formulations for the QM region: one is based on OFDFT and the other based on the Kohn-Sham �KS�
DFT. In the first case, the degree of freedom is the electron charge density in the QM region, and the total
energy functional is directly minimized with respect to the charge density. In the second case, the degrees of
freedom are KS orbitals in the QM region. An embedding potential representing the influence of the larger MM
region onto the QM region is included in the KS Hamiltonian for the QM region, which is solved self-
consistently. Calculations for a perfect lattice and vacancy clusters of aluminum demonstrate that the present
QM/MM approaches yield excellent results both in terms of energetics and electron density.
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I. INTRODUCTION

The challenge in simulations of materials science and en-
gineering is that real materials usually exhibit phenomena at
one scale, which require a very accurate and computationally
expensive description, and phenomena at another scale, for
which a coarser description is satisfactory and, in fact, nec-
essary to avoid prohibitively large computations.1 For ex-
ample, quantum mechanics �QM� is required for a proper
treatment of bond breaking, bondforming, charge transfer,
electron excitation, magnetism, etc., in materials. However,
due to the demanding computational cost, the application of
QM is limited to relatively small systems consisting of up to
a few hundreds of atoms. On the other hand, atomistic simu-
lations based on empirical interatomic potentials are often
capable of describing small-amplitude vibrations and tor-
sions, elastic deformation and electrostatic interactions, etc.,
in many materials and biological systems.2 Termed as mo-
lecular mechanics �MM� methods, these empirical atomistic
approaches can treat millions of atoms, with simpler poten-
tials, even billions of atoms.3

Multiscale approaches that combine methods specialized
at different scales, effectively distributing the computational
power where it is needed most, are the answer to the chal-
lenge. In recent years, many concurrent multiscale ap-
proaches have been developed in materials simulations,
across several length scales.4–19 In this paper, we focus on
the so-called QM/MM coupling algorithms,2,14–17 which
combine the accuracy of QM descriptions with the low com-
putational cost of MM simulations to deal with large systems
with desired accuracy.

QM/MM coupling schemes can be divided into two
categories—mechanical coupling and quantum coupling, de-
pending on how the interaction energy between QM and MM
is formulated. With the mechanical coupling, the interaction
energy between the QM region �region I� and MM region
�region II� is calculated at the MM level. On the other hand,

the interaction energy between regions I and II is calculated
at the QM level in quantum coupling. Although the mechani-
cal coupling is computationally much simpler than the quan-
tum coupling, it has many drawbacks, the most important
one being the electronic interaction of the two regions ig-
nored. For example, in the mechanical coupling, the electro-
static and exchange-correlation interactions between the nu-
clei and the electrons in regions I and II are not considered
explicitly. As a consequence, the electronic properties of re-
gion I are not accurately captured. Another drawback of the
mechanical coupling, which is of practical importance, is the
rather limited availability of empirical potentials for treating
the coupling.2 In contrast, the quantum coupling is more ac-
curate as it treats the interaction between the two regions
quantum mechanically. Depending on the level of quantum
descriptions, the extent of the electronic coupling is varied,
from merely long-range electrostatic interaction to a full
Coulomb interaction, including short-ranged exchange corre-
lations.

In this paper, we present a QM/MM coupling that is for-
mulated based on the so-called orbital-free density functional
theory �OFDFT�. OFDFT is an efficient implementation of
density functional theory �DFT� that approximates the ki-
netic energy of noninteracting electrons in terms of their
density.20–22 We propose two methods for treating the pri-
mary subsystem or region I: one is based on OFDFT and the
other based on Kohn-Sham �KS�-DFT.23 The first method
follows closely the original work of Choly et al.,11 but with
significant improvement over the original method in terms of
coupling accuracy. The second method is an important ex-
tension to the first method, which allows the treatment of
much more complex systems than the first method could. As
it will become clear later, the coupling in the first method is
achieved via electron density, whereas in the second method,
the coupling is realized in terms of KS orbitals. Both meth-
ods involve self-consistent determination of a single-particle
embedding potential that represents the full quantum me-
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chanical effects of region II �including both nuclei and elec-
trons� onto the electrons of region I.2,10 The embedding po-
tential is then included in the single-particle KS Hamiltonian
of region I, for which a quantum mechanical problem is
solved.

In Sec. II, we present the OFDFT formalism for treating
the interaction energy, embedding potential and their contri-
butions to the ionic force. The details of implementation of
both methods are described In Sec. III. Various tests are per-
formed to validate and contrast the coupling methods. In Sec.
IV, we present an application of the first coupling method for
calculating the binding energy of vacancy clusters in alumi-
num followed by a summary in Sec. V.

II. QUANTUM COUPLING FORMALISM

In general, the entire system of a QM/MM simulation is
partitioned into two regions: region I treated by QM and
region II treated by MM. In the present approaches, the in-
teraction energy between regions I and II is computed by
OFDFT. Although different levels of QM simulations could
be employed in region I, we focus on KS-DFT and OFDFT
in the present work. Similarly, while many empirical poten-
tials could be used in region II, we choose embedded-atom
method �EAM�24 as an example of MM calculations in the
paper. The total energy of the QM/MM system can be ex-
pressed as

Etot��tot;Rtot� = min�I�EQM��I;RI� + EOF
int ��I,�II;RI,RII��

+ EMM�RII� , �1�

where Rtot�RII�RII, RI and RII denote atomic coordinates
in regions I and II, respectively. The total charge density of
the system �tot consists of two contributions: �tot=�I+�II,
where �I and �II represent the charge density from regions I
and II, respectively. While �I is determined self-consistently
by minimizing the total energy functional �Eq. �1��, �II is
defined as the superposition of atomic-centered charge den-
sities �at via �II�r�=�i�II�

at�r−Ri�. Noted that �at is spheri-
cally symmetric and can be constructed a priori. Therefore,
�II�r� is fixed for a given ionic configuration of region II, and
it changes only upon the motion of region II ions. In other
words, the electronic degree of freedom in the formulation is
�I only, and �II is fixed during the electronic relaxation. The
interaction energy formulated by OFDFT is written as fol-
lows:

EOF
int ��I,�II;RI,RII� = EOF��tot;Rtot� − EOF��I;RI�

− EOF��II;RII� . �2�

The corresponding embedding potential �emb�r� is defined as

�emb�r� �
�EOF

int ��I,�II;RI,RII�
��I , �3�

which represents an effective single-particle potential that
region I electrons feel due to the presence of region II.

A basic ansatz of the present formulation is that �I must
be confined within a finite volume ��I� that is necessarily
larger than region I but much smaller than the entire system.

As shown schematically in Fig. 1, �I should include region I
and extend several angstroms into region II. As a key com-
putational parameter in the present formulation, �I needs to
be carefully determined before simulations. Physically
speaking, the overlap between �I and �II is a manifestation of
the quantum coupling between the two regions.

According to OFDFT, the energy of an electronic system
can be expressed as an explicit functional of electron density,

EOF��� = Ts��� + EH��� + Ee-i��� + Exc��� + Ei-i . �4�

The various terms in Eq. �4� represent noninteracting kinetic
energy, Hartree energy, electron-ion Coulomb energy,
exchange-correlation energy, and ion-ion Coulomb energy,
respectively. Here, Ts which is an explicit functional of elec-
tron density represents an approximation to the exact nonin-
teracting kinetic energy. The state of the art of kinetic energy
functionals is used in the present formulation which includes
three contributions Ts���=TTF���+TvW���+Tker��� �Refs. 22
and 25�: Thomas-Fermi contribution TTF, exact for a uniform
electron gas,26,27 von Weizsacher contribution TvW, exact for
a single electron orbital,28 and a density-dependent convolu-
tion term Tker which ensures the correct linear response of
the electron gas.22,29 Ee-i��� is given by �i	��r�Vpsp�r
−RI�dr, and Vpsp is a local pseudopotential with a spherical
symmetry. Local density approximation30 is used for Exc���.
Finally, Ei-i is given as �i�j

ZiZj


Ri−R j

.

With Eqs. �2�–�4�, one can express the interaction energy
and the embedding potential as follows:

EOF
int = TTF

int + TvW
int + Tker

int + �EH
int + Ee-i

int + Ei-i
int� + Exc

int,

�emb = �TF
emb + �vW

emb + �ker
emb + �H,e-i,i-i

emb + �xc
emb, �5�

with various � terms being the functional derivative of the
corresponding interaction energy with respect to �I. As first
pointed out by Choly et al.,11 in addition to its computational
efficiency, the OFDFT formulation of the interaction energy

FIG. 1. �Color online� The schematic diagram of the partitioned
system. Blue and magenta spheres represent the atoms belonging to
region I and region II, respectively. The dashed box represents �I,
and the solid box represents the periodic box �B used for the evalu-
ation of the kernel terms of the interaction energy.
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allows EOF
int to be evaluated over �I rather than over the entire

system as Eq. �2� appears to suggest. This represents a sig-
nificant computational saving, thanks to the cancellation in
evaluating the first and the third terms of Eq. �2� which is
rendered by the orbital-free nature of OFDFT and the local-
ization of �I �i.e., �I vanishes beyond �I�.

To see the cancellation explicitly, let us first consider the
local terms of EOF

int : TTF
int , TvW

int , and Exc
int. We take TTF

int as an
example to demonstrate the cancellation and the other local
terms work the same way.

TTF
int =� fTF��tot�dr −� fTF��II�dr − �

�I
fTF��I�dr

= �
�I

�fTF��tot� − fTF��II� − fTF��I��dr , �6�

where fTF���= 3
10�3�2�2/3�5/3, and we have used the fact that

�tot�r�=�II�r�, when r is beyond �I. Therefore, the calcula-
tion of TTF

int involves an integral over �I rather than over the
entire system.

Next, we examine the nonlocal terms of EOF
int : electrostatic

terms �EH
int+Ee-i

int +Ei-i
int� and the kernel term Tker

int of the kinetic
energy. For the electrostatic terms, the long-range 1 /R Cou-
lomb interactions in electron-electron, electron-ion, and ion-
ion contributions are cancelled identically for a charge-
neutral system. Thus, it is convenient to group the three
terms together when evaluating the electrostatic terms. The
sum of the three terms can be expressed as

�EH
int + Ee-i

int + Ei-i
int� = �

�I
�I�r���

j

Velec
at �r − R j

II�
dr

+ �
i,j

��Ri
I − R j

II� ,

�H,e-i,i-i
emb = �

j

Velec
at �r − R j

II� , �7�

where we define

Velec
at �r� � � �at�r��


r − r�

dr� + Vpsp�r� ,

��Ri
I − R j

II� � � Vpsp�r − Ri
I��at�r − R j

II�dr +
ZiZj


Ri
I − R j

II

.

�8�

Here, Velec
at �r−R j

II� represents the Coulomb potential at r in
�I due to the jth atom in region II, and ��Ri

I−R j
II� represents

the Coulomb interaction between the ith ion in region I and
the jth atom in region II. Thanks to the spherical symmetry
of �at and Vpsp; Velec

at and � are functions of distance. Due to
Velec

at �r� which is the electrostatic potential of a neutral atom
and ��R� which is the interaction between an ion and a neu-
tral atom, both of them are short-ranged functions. There-
fore, similar to the local terms, the calculation of the electro-
static terms is also confined to a smaller volume than the
entire system. The extend of the volume is determined by a
cutoff distance beyond which the 1 /R relation is exact. The

actual calculation of the electrostatic terms is performed in
real space.

However, the kernel term of the kinetic energy has a com-
plicated nonlocal form which requires a close scrutiny,

Tker
int = �

�I
F�r��K � G��r�dr + �

�I
F�r��K � g2��r�dr

+ �
�I

G�r��K � f2��r�dr − �
�I

f1�r��K � g1��r�dr ,

�ker
emb = F��r��K � G��r� + G��r��K � F��r�

+ F��r��K � g2��r� + G��r��K � f2��r�

− f1��r��K � g1��r� − g1��r��K � f1��r� , �9�

where the convolution integral is defined as �K*G��r�
�	K�r−r��G�r��dr�, etc., and

f1�r� � f��I�r��, f12�r� � f��I�r� + �II�r�� ,

g1�r� � g��I�r��, g12�r� � g��I�r� + �II�r�� ,

F�r� � f12�r� − f2�r�, G�r� � g12�r� − g2�r� . �10�

The details of the density-dependent kernel terms can be
found elsewhere.22,25 As shown in Eq. �9�, although Tker

int is
expressed as integrals over �I, the time-consuming convolu-
tion terms, such as �K* f2��r�, are actually integrated over
the entire space. The efficient treatment of these convolution
terms will be discussed in Sec. III A.

The ionic force is calculated by varying the total energy
with respect to the ionic displacement. At the ground state of
the electrons, �min

I satisfies 
�Etot /��I
�min
I =0; therefore, the

ionic force in region I �Fi�I� and region II �F j�II� can be
written as

− Fi�I =
�EQM

�Ri
+

�EOF
int

�Ri
,

− F j�II =
�EOF

int

�R j
+

�EMM

�R j
. �11�

Here, −
�EQM

�Ri
and −

�EMM

�R j
can be calculated by standard atom-

istic methods. The force on the ith ion in region I due to the
interaction energy is given by

− Fi�I
int =

�EOF
int

�Ri

= �
j�II

�Ri
��Ri − R j�

= �
j�II

���
Ri − R j
�
�Ri − R j�

Ri − R j


. �12�

Moreover, Fi�I
int is short ranged, and only the region II ions

which are adjacent to the QM/MM interface have appre-
ciable contributions. The force expression on region II ions,
on the other hand, is much more complicated because its
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energy is not minimized with respect to �II, and thus, there
are force contributions from the variation of �II. The force on
the jth ion in region II due to the interaction energy is given
by

− F j�II
int =

�ETF+vW+ker
int

�R j
+

��EH
int + Ee-i

int + Ei-i
int�

�R j
+

�Exc
int

�R j
,

�13�

where the various contributions of the first term are given as

�TTF
int

�R j
= �

�I
�Rj

�at�r − R j���TF��I + �II� − �TF��II��dr ,

�TvW
int

�R j
= �

�I
�Rj

�at�r − R j���vW��I + �II� − �vW��II��dr ,

�Tker
int

�R j
= �

�I
�Rj

�at�r − R j��f12� �r��K � G��r� + g12� �r��K � F�

��r� + F��r��K � g2��r� + G��r��K � f2��r��dr . �14�

The second term is given by

��EH
int + Ee-i

int + Ei-i
int�

�R j

= �
i�I

�Rj
��Ri − R j� + �

�I
�I�r��Rj

Velec
at �r − R j�dr ,

�15�

and the third term is given by

��Exc
int�

�R j
= �

�I
�Rj

�at�r − R j���xc��I + �II� − �xc��II��dr .

�16�

All the integrations are performed within �I, and F j�II
int is

nonzero only for the region II ions which are adjacent to the
interface.

Since region I requires a much longer computation than
region II, the following algorithm allows for an efficient
ionic relaxation:11 we denote RI� the set of region I ions plus
all region II ions RII for which the interaction force
�EOF

int /�R j
II is not negligible, and we denote RII� the rest of

region II ions. The relaxation algorithm is as follows:
�i� Minimize Etot with respect to RII� while holding RI�

fixed. This only involves the MM calculation.
�ii� Perform one step of conjugate-gradient minimization

of Etot with respect to RI� with RII� fixed.
�iii� Repeat until the entire system is relaxed.
In this manner, the number of QM calculations performed

is greatly reduced, albeit at the expense of more MM calcu-
lations.

III. IMPLEMENTATIONS

In this section, we will discuss the implementation of the
present QM/MM method, focusing on several crucial com-

ponents of the method. In specific, we have implemented two
QM methods for the calculations of EQM��I ;RI�: OFDFT and
KS-DFT. While the degree of freedom in the first method
�OFDFT� is electron density �I, the degrees of freedom in the
second method �KS-DFT� are KS orbitals. Since the compu-
tational cost of OFDFT is much smaller than that of KS-
DFT, the first method can deal with a much larger QM re-
gion. However, the application of the first method is limited
by the applicability of the kinetic energy functionals and lo-
cal pseudopotentials. Reliable kinetic energy functionals and
local pseudopotentials exist only for a handful of elements.
The second method, although cannot treat a very large QM
region, it could be used for a wide variety of materials sys-
tems.

In this paper, we use aluminum as a test material for
which excellent kinetic energy functional and local pseudo-
potential do exist. In the first method, the parameters of the
density-dependent kernel are chosen from Ref. 22, and Al
ions are represented by Goodwin-Needs-Heine local
pseudopotential.31 In the second method, we use the Vienna
ab initio simulation package �VASP�32–34 which is based on
KS-DFT for QM calculations. The “force-matching” empiri-
cal EAM, potential of Al35,36 is used for MM simulations.
The potential has been scaled to yield precisely the same
lattice constant and bulk module as those determined by the
corresponding KS-DFT and OFDFT calculations. This pro-
cedure is important for reducing coupling errors.

A. Orbital-free density functional theory for region I

In this section, we first examine the plausibility of em-
ploying periodic boundary conditions for computing the ker-
nel terms in Tker

int . We then discuss how atomiclike charge
density �at�r� can be constructed to ensure satisfactory cou-
pling. Finally, we propose a method to eliminate the so-
called “ghost” force on region II ions.

1. Fourier transformation for the kernel terms

As seen in Eq. �9�, the most time-consuming part of the
calculation is the convolution integrals. If fast Fourier trans-
formations �FFTs� could be invoked to evaluate the convolu-
tion integrals, the computational saving could be significant:

F̂��K� f2��r��= F̂�K�r��F̂�f2�r��. However, application of
FFT requires that periodic boundary conditions be employed
over a finite domain or a periodic box. This leads to potential
problems because the convolutions in question should be
performed over the whole space. Therefore, it appears that
FFT operations on the kernel terms could lead to errors. In
the following, we will examine whether the errors are small
enough to warrant the FFT calculations of the convolutions.
We will use �K� f2��r� as an example. The integration over
the whole space can be divided into two parts:

�K � f2��r� � � K�r − r��f2�r��dr�

= �
�B

K�r − r��f2�r��dr�

+ �
�B�

K�r − r��f2�r��dr�, �17�
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where �B represents the periodic box over which FFT is
performed. �B� denotes the space beyond the periodic box.
Let us compare two ways of calculating the convolution:
exact versus FFT. In the exact calculation, the space of inte-
gration should be �B��B�, while with FFT, the space be-
comes �B along with its periodic images. Therefore, al-
though the first term of Eq. �17� is calculated correctly by
FFT, the calculation of the second term is in error. Since r
��I �see Eq. �9�� and r���B� in the second term, the error
associated with FFT is dictated by the decaying property of
K�r�. If K�r� decays fast enough, the error in the second term
could become negligible.

Let us now consider the decaying property of K�r�, which
is a nontrivial Fourier transform of K�q�. By using the nu-
merical results of Herring,37 we plot K�r� versus r in Fig. 2,
which suggests that K�r� decays as r−3. In principle, one
should keep 
r−r�
 large enough so that the error in the sec-
ond term becomes negligible. However, this demands a very
large periodic box �B which could render the calculation
intractable. We thus need to optimize the size of the periodic
box so that the computation is both accurate and efficient.

For this purpose, we perform the following test in a perfect
Al lattice. If the QM/MM coupling were perfect, the force
and displacement on each ion in the test system would be
identically zero since regions I and II have the same lattice
constant. In other words, any nonzero force or displacement
is indicative of coupling errors. One can thus estimate the
coupling errors by examining the magnitude of force or dis-
placement on each ions in the test system. We denote Fmax

I

�Fmax
II � as the maximum force on region I �II� atoms, and dmax

I

�dmax
II � as the maximum displacement on region I �II� atoms,

respectively. The relaxation for all ions is performed until the
maximum force on any ion is less than 0.01 eV /Å. In the
test, we select two different periodic boxes with sizes of
6a0�6a0�a0 and 5.5a0�5.5a0�a0, respectively �a0 is the
lattice constant�. The first case corresponds to a “correct”
choice of �B since it is an integer multiple of the lattice
constant. The total charge density constructed with the peri-
odic boundary conditions matches well the real total charge
density of the test system. On the other hand, the second case
represents an “incorrect” �in fact, the “worst”� choice of �B

because it is an half-integer multiple of the lattice constant;
thus, the error of �II�r��B�� reaches maximum for the test
system. In this way, we intentionally introduce large errors of
charge density around the edge of �B, and we want to ex-
amine how the errors due to the periodic boundary condi-
tions are translated to the coupling errors.

The test results of Fmax
I , Fmax

II , dmax
I , and dmax

II are summa-
rized in Table I. From the comparisons of system No. 3 and
No. 4, we find that the two cases produce the identical cou-
pling errors, which are very small. The test results strongly
suggest that �1� the size of �B is large enough to yield small
coupling errors for the test system; �2� for a sufficiently large
�B, the errors in convolution terms due to FFT are essen-
tially zero, thanks to the fast decaying property of K�r�.
Therefore, we establish that FFT could be used to evaluate
Tker

int for a modest value of �B. The present FFT approach
represents a significant improvement over the original
method of Choly et al. in two aspects: �1� it allows for a
much more efficient calculation of the time-consuming term
Tker

int ; �2� it allows for more accurate computation of Tker
int than

FIG. 2. Kernel function K�r� versus r �Å�. Inset: the plot of
K�r�r3 versus r.

TABLE I. Test results of Fmax
I and Fmax

II �ev/Å� and dmax
I and dmax

II �Å�. The details of calculations are
summarized in the column of remark as a, the first coupling method; b, the second coupling method; c, entire
system consisting of 14a0�14a0�a0 with the innermost 2a0�2a0�a0 as region I; d, entire system con-
sisting of 14a0�14a0�14a0 with the innermost 2a0�2a0�2a0 as region I; e, the periodic box size chosen
as 6a0�6a0�a0; f, the periodic box size chosen as 6a0�6a0�6a0; g, the periodic box size chosen as
5.5a0�5.5a0�a0; h, atomic charge density is constructed by SSTO; i, atomic charge density is constructed
by MSTO; j, with optimized volume of �I; k, with the correction force; and l, the best results from Ref. 11.

System Remark Fmax
I Fmax

II dmax
I dmax

II

1 a ,c ,e ,h , j 0.013 0.132 0.044 0.116

2 a ,c ,e , i , j 0.03 0.132 unconverged unconverged

3 a ,c ,e ,h , j ,k 0.013 0.000 0.002 0.000

4 a ,c ,g ,h , j ,k 0.013 0.000 0.002 0.000

5 a ,d , f ,h , j ,k 0.024 0.000 0.009 0.002

6 b ,c ,e ,h , j ,k 0.065 0.000 0.009 0.004

7 a ,d , l 0.09 0.37 0.22 0.26
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the original method which was formulated approximately in
real space.

2. Atomic charge density

Since �II provides the boundary conditions for which the
OFDFT equation of �I is solved, it is crucial to construct an
appropriate representation of �II. In fact, constructing an ap-
propriate charge density distribution in region II is a com-
mon challenge to many QM/MM methods.2 In this paper, we
represent �II as a superposition of spherical atomiclike
charge densities centered on each ions in region II, which is
a good approximation for metallic systems. Ideally, the su-
perposition of �at�r� should reproduce the bulk charge den-
sity obtained by a QM calculation of the perfect lattice. That
is to say, one needs to determine �at�r� by minimizing the
following function:

�
Vu
��

�

�at�r − R�� − �latt�r�
2
dr , �18�

here, Vu represents the volume of the unit cell and �latt is the
charge density obtained by an OFDFT calculation for the
bulk reference system. R� denotes the coordinate of the �th
ion.

By Fourier transform of Eq. �18�, Choly et al. obtained
the atomic charge density in reciprocal space as �at�q�
= ��q

latt�q / �Sq�q. Here, Sq is the structure factor, and �. . .�q rep-
resents an average over all reciprocal lattice vectors of the
same length q. �at�q� was then used to construct the radial
charge density �at�r�. However, for a fcc structure, Sq van-
ishes for many q. Therefore, only a handful of q could be
included in the calculation, and thus the numerical error was
considerable. In this work, we employ a parametrized Slater-
type orbital to expand �at�r�. One could use either single
Slater-type orbital �SSTO� or multiple Slater-type orbitals
�MSTOs� for the expansion. The SSTO is given by

�at�r,np� = Ar2�np−1�e−	r, �19�

where np is the principle quantum number and A and 	 are
parameters to be determined. The MSTO38 is given by
�at�r�=�s�r�+�p�r�, and for Al, the spherically averaged
s-like density is given by

�s�r� = ��
i

Ai
�2	i�ni+1/2

��2ni�!
rni−1e−	ir�2� 4� , �20�

where Ai, 	i, and ni are also unknown parameters to be de-
termined. Similar equation for �p�r� is skipped here in the
interest of space. All the unknown parameters are determined
by solving Eq. �20� with the constraint of preserving the
correct number of valence electrons. The results of �at�r� for
both choices are shown in Fig. 3. Due to the unphysical
kinks in �at�r�, MSTO gives a poor result in test �see Table I
for system No. 2�. By comparing the results for system No. 1
and No. 7, we conclude that SSTO is a better choice for
expanding �at�r�.

Next, we touch upon the selection of the all-important
computational parameter �I: it should be large enough to
accommodate �I completely, but it cannot be too large; oth-

erwise the correct �I may not be obtainable with local mini-
mization techniques. For Al, we find an optimal value of
2.81 Å for the distance between the boundaries of region I
and �I.

In Fig. 4, we present the total charge density with �at

expanded by SSTO. The total charge density reproduces very
well the correct charge density for the entire system, and
there is a smooth transition across the QM/MM boundary—
there is no visible interface between the two regions in terms
of electron density.

Finally, we comment on the possibility of using Wannier
functions to construct �II. Since under normal conditions,
region II should be defect-free; Wannier functions39 or their
maximally localized cousins40 should be a good choice for
constructing �at�r�. One can first obtain the Bloch wave func-
tions 
n�k ,r� �n is band index� from a plane-wave KS-DFT
calculation for a unit cell. The Wannier functions are then
given by

FIG. 3. Atomic charge density �at�r� as a function of radial
distance by using SSTO �solid line� and MSTO �dashed line�. The
result from Ref. 11 is also included here �dotted line� for
comparison.

FIG. 4. �Color online� Total charge density �tot �in Å−3� for Al
perfect lattice obtained by using the first coupling method. Contour
scale ranges from 0.0027 �blue� to 0.0336 �red�. Blue and red
spheres represent ions belonging to regions I and II, respectively.
The dashed box denotes the boundary of �I.
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Wn�R,r� =
V

�2��3 � dk
n�k,r�e−ik·R, �21�

where R is the ionic position and V is the volume of the unit
cell. Finally, the atomiclike charge density can be calculated
as

�w
at�r − R� = �

n


Wn�R,r�
2. �22�

Notice that �w
at is no longer spherically symmetric. The de-

sirable �II can thus be constructed by the superposition of �w
at,

and �II would be exact for a perfect lattice.

3. Ghost force correction

From Table I, we find that for system No. 1, Fmax
II is much

larger than Fmax
I . The reason for the marked difference is as

follows: the energetic formulation for region I is OFDFT,
which is the same for the interaction energy; for region II,
however, the energetic formulation is EAM, different from
that of the interaction energy. This disparity in energetic for-
mulation of region II leads to a disparity in force formula-
tion, which causes additional coupling errors. The force er-
rors due to disparate energetic formulations in a multiscale
system are sometimes referred as “ghost force” in
literature4—the terminology we will use in the paper.

To eliminate the ghost force on region II ions, we remove
the energetic disparity by replacing the OFDFT calculation
of the interaction energy by EAM. Note that this change of
formulation is only applied to force calculation on region II
ions; the total energy of system and the force calculation on
region I ions remain the same. With this modification, the
force on region II ions becomes F j�II

* which defined as

− F j�II
* =

�EEAM
int

�R j
+

�EEAM

�R j
. �23�

Associated with this modification, we introduce a correction
force �F j�II

corr as

�F j�II
corr = F j

* − F j =
��EOF

int − EEAM
int �

�R j
. �24�

Finally, we modify the total energy expression so that it is
consistent to the force correction introduced above,

Etot
* �Rtot� = min�I�EOF��I;RI� + EOF

int ��I,�II;RI,RII��

+ EEAM�RII� − �
j�II

�F j
corr · �R j , �25�

where �R j is the ionic displacement in region II during the
relaxation, and the last term in the equation represents the
work done by the correction force. With the ghost force cor-
rection, the coupling errors on region II ions are significantly
reduced, as shown in Table I, by comparing the results be-
tween system No. 1 and No. 3.

B. Kohn-Sham density functional theory for quantum
mechanics region

For many material systems, KS-DFT is more desirable
than OFDFT for QM calculations of region I despite much

less computational expense offered by OFDFT. KS-DFT is
superior to OFDFT in several aspects: �1� the kinetic energy
is calculated more accurately by KS-DFT; �2� the external
potential energy can be calculated more accurately by KS-
DFT by using nonlocal pseudopotentials; �3� KS-DFT allows
standard electronic structure analysis to be carried out,
thanks to the access of KS orbitals. Because of these advan-
tages, we have also implemented KS-DFT in region I for
QM calculations. In the following, we demonstrate how a
plane-wave pseudopotential KS-DFT approach can be
adapted to perform QM/MM calculations. To set the stage
for the discussion, we first review the key ingredients of the
KS-DFT approach as implemented in VASP.32–34 The KS total
energy functional is written as32–34

EKS��
�;�R�� = �
n

fn�
n
T + VNL
ion

n� + EH��� + Exc���

+� drVloc
ion�r���r� + �Ewald��R�� , �26�

where n is the index of KS orbitals 
n and fn is the occupa-
tion number. �R� denotes the position of the ions. k index is
dropped for simplicity. EH and Exc is the Hartree energy and
the exchange-correlation energy, respectively. Vloc

ion and VNL
ion is

the local and nonlocal parts of the ionic pseudopotential,
respectively, and �Ewald is the Madelung energy. The varia-
tion of the KS energy functional with respect to KS orbitals
leads to the generalized eigenvalue equations,

H

n� = 
nS

n� . �27�

Here, S is the overlap matrix, and H is the KS Hamiltonian
given as

H = T + Vloc + VNL. �28�

The local potential is given by Vloc=Vloc
ion+VH���+Vxc���,

with VH���, Vxc���, and VNL being the Hartree potential,
exchange-correlation potential, and nonlocal potential, re-
spectively. For a given charge density �, one can determine
the band-structure energy 
n and the KS orbitals 
n from the
KS eigenvalue equations. The total energy is thus calculated
as

Etot = �
n

fn
n + Ed.c.��� + �Ewald, �29�

with the double counting energy term,

Ed.c.��� = − EH��� + Exc��� −� drVxc�r���r� . �30�

The quantum coupling of QM/MM is achieved by mini-
mizing the sum, �EKS��I ;RI�+EOF

int ��I ,�II ;RI ,RII�� with re-
spect to �I, as shown in Eq. �1�. The variation of the sum
leads to an additional potential term �embedding potential� in
the KS Hamiltonian, and now, the local potential in Eq. �28�
becomes

Vloc = Vloc
ion + VH��I� + Vxc��I� + �emb��I,�II� . �31�

The double counting term in the total energy expression is
also modified accordingly,
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Ed.c. = − EH��I� + Exc��I� −� drVxc�r��I�r�

+ EOF
int ��I,�II;RI,RII� −� dr�emb�r��I�r� . �32�

Following the same numerical schemes as implemented in
VASP, �I can be self-consistently determined for a given ionic
configuration, and the total energy can be calculated. The
calculation of force −�EQM /�Ri

I is carried out in the same
way as implemented in VASP except an additional term from
the embedding potential being added,

� dr
��emb

��I

��atom
I �r�
�RI ��out

I �r� − �in
I �r�� . �33�

Here, �atom
I is the superposition of the atomic charge densities

in region I, �out
I is the converged charge density, and �in

I is the
charge density obtained from the previous iteration.

Since there are two different energy functionals �KS-DFT
and OFDFT� involved in the self-consistent calculation of �I,
attention must be paid to the different treatments of kinetic
energy and pseudopotential in order to ensure a seamless
coupling. For the former, one needs to adjust the parameters
for the kinetic energy functional in OFDFT to best match the
KS-DFT results. For the later, one needs to construct a local
pseudopotential that best reproduces the results of the non-
local pseudopotential used in KS-DFT. In the present work,
we use the same local pseudopotential as in VASP for a radial
distance beyond the core cutoff, but with a repulsive local
potential developed by Goodwin et al.31 elsewhere. The local
pseudopotential is constructed to minimize �EOF

tot ��� /�� with
��r� calculated by KS-DFT for a unit cell of a perfect lattice.

A plane-wave cutoff of 300 eV and a Monkhorst-Pack k
mesh of 1�1�9 �Ref. 41� are used for test system No. 6 in
Table I. The contour of total charge density for the test bulk
system is presented in Fig. 5, and the forces and atomic
displacement of the same system �No. 6� are summarized in

Table I. Although the coupling errors of the second method
seem slightly greater than the first one, the advantages of the
KS-DFT still render the second method attractive for certain
material systems.

IV. APPLICATION: BINDING ENERGY OF VACANCY
CLUSTERS IN AL

Next, we present an application of the first coupling
method to calculate the binding energy of vacancy clusters in
Al. Although ab initio calculations have been performed for
small vacancy clusters in Al,42–45 little effort has been de-
voted to QM calculations of relatively larger vacancy clus-
ters, which are the key for understanding void formation in
materials. By using the QM/MM multiscale approach, we are
able to carry out large scale calculations consisting of up to
ten vacancy in a cluster. First, we benchmark the first cou-
pling method by comparing the binding energy and charge
density of a divacancy to the previous ab initio results. We
then predict the binding energy of larger vacancy clusters.

At a constant pressure, the formation energy of an
n-vacancy cluster can be calculated as42–46

Env
F = Env

tot�N − n� −
N − n

N
Etot�N� , �34�

where Env
tot�N−n� is the total energy of the supercell contain-

ing N−n atoms with an n-vacancy cluster and Etot�N� is the
total energy of the supercell containing N atoms in the per-
fect lattice configuration. The binding energy of an
n-vacancy cluster is evaluated by

Env
B = nE1v

F − Env
F . �35�

Here, the first method �OFDFT for region I� is employed
to compute the binding energy of vacancy clusters with the
size ranging from 2 �divacancy� to 10. We choose a large
supercell of 14a0�14a0�14a0 for the calculations; it con-

FIG. 6. �Color online� Binding energy �eV� of n-vacancy clus-
ters versus number n. The negative �positive� value of Env

B indicates
the n-vacancy cluster is energetically unstable �stable� against the
simultaneous dissociation into n monovacancies. Inset: electron
density �Å−3� in a close-packed �111� plane in the presence of a
monovacancy. The vacancy induces an accumulation of charge den-
sity �a red ring� between the atoms in the first shell around the
vacancy.

FIG. 5. �Color online� Total charge density �tot �in Å−3� for Al
perfect lattice with KS-DFT for region I. Contour scale ranges from
0.0031 �blue� to 0.0342 �red�. Blue and red spheres represent the
ions belonging to regions I and II, respectively.
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tains N=109 76 atoms and is partitioned into region I �256
atoms� and region II �10720 atoms�. The results of binding
energy are shown in Fig. 6.

The binding energy of a divacancy in Al from the first
coupling method is −0.08 eV which is identical to the value
obtained from a stand-alone KS-DFT calculation.42–44 In ad-
dition, we find that there is a charge accumulation �or a
bonding ring� formed between the atoms in the first shell
around the vacancy �see the inset of Fig. 6�. This vacancy-
induced circular bonding has also been observed by others
from stand-alone KS-DFT calculations.42,44 The comparisons
here suggest that the present QM/MM method reproduces
the stand-alone KS-DFT results, a strong indication of the
success of the coupling method. We have recently applied
the method to study the electronic origin of void formation in
Al.47

V. CONCLUSION

We have presented a self-consistent quantum coupling
scheme that combines DFT and empirical atomistic simula-
tions concurrently. The coupling formalism is based on
OFDFT and represents a quantum mechanical formulation of

QM/MM coupling. Two energy functionals are used for re-
gion I: one is based on OFDFT and the other on KS-DFT.
The numerical implementations of the coupling methods, in-
cluding periodic boundary conditions, construction of atomic
charge density, and ghost force corrections, are described in
detail. We explain how a standard plane-wave pseudopoten-
tial KS-DFT code can be adapted to perform the proposed
QM/MM calculations. We use the perfect lattice of Al as the
test system from which the coupling errors can be evaluated
unambiguously. The tests indicate that the present QM/MM
schemes give excellent results in terms of coupling. We have
also applied the QM/MM method to compute the binding
energy of vacancy clusters in Al, which yields exactly the
same results for a divacancy compared to stand-alone KS-
DFT calculations. All these results strongly suggest that the
present QM/MM methods are excellent candidates for mul-
tiscale simulations of metallic systems.
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