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In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field
confinement originally identified by Silveirinha and Engheta �Phys. Rev. Lett. 97, 157403 �2006��, where we
demonstrated the possibility of using materials with permittivity � near zero to drastically improve the trans-
mission of electromagnetic energy through a narrow irregular channel with very subwavelength transverse
cross section. Here, we present additional physical insights, describe applications of the tunneling effect in
relevant waveguide scenarios �e.g., the “perfect” or “super” waveguide coupling�, and study the effect of metal
losses in the metallic walls and the possibility of using near-zero � materials to confine energy in a subwave-
length cavity with gigantic field enhancement. In addition, we systematically study the propagation of electro-
magnetic waves through narrow channels filled with anisotropic near-zero � materials. It is demonstrated that
these materials may have interesting potentials, and that for some particular geometries, the reflectivity of the
channel is independent of the specific dimensions or parameters of near-zero � transition. We also describe
several realistic metamaterial implementations of the studied problems, based on standard metallic waveguides,
microstrip line configurations, and wire media.

DOI: 10.1103/PhysRevB.76.245109 PACS number�s�: 78.66.Sq, 52.40.Db, 52.40.Fd, 42.70.Qs

I. INTRODUCTION

In recent years, there has been a growing interest in the
development of technologies or approaches that potentially
allow confining and guiding electromagnetic energy with
mode sizes below the diffraction limit. This may have key
applications in several fields such as telecommunications
�e.g., realization of compact cavities or waveguides1,2�, im-
aging with subwavelength resolution,3,4 devices with in-
creased storage capacity, delivery and concentration �nano-
focusing� of the optical radiation energy on the nanoscale,5–7

and realization of compact optical resonators.8 Most of these
proposals rely on the excitation of surface plasmon polari-
tons supported by metallic structures with negative permit-
tivity. In our recent work,9 we proposed a different paradigm
to break the diffraction limit and squeeze light through chan-
nels and bends with subwavelength cross section. We theo-
retically demonstrated that if a narrow channel is filled with
a near-zero � �ENZ� material, then, in the lossless limit, its
reflectivity only depends on the volume of the channel, being
independent of its specific geometry and of the transverse
cross section �relatively to the direction of propagation�.
Moreover, in a counterintuitive way, our results establish that
the transmission through the ENZ channel is improved when
the transverse cross section is made more and more narrow.
These properties suggest that ENZ materials may have inter-
esting potentials in efficiently transmitting energy through
subwavelength regions and effectively providing “supercou-
pling” between two ports and/or waveguides.

In Ref. 10, we have further shown that by loading the
ENZ material with dielectric or metallic particles, it is pos-
sible to tailor the magnetic permeability of the material. In
this way, by suitably designing the inclusions, it is possible
to tune the permeability of the ENZ filling material, without
changing its electric properties. In particular, it may be fea-
sible to design a matched zero-index metamaterial having

both permittivity and permeability near zero, and thus im-
proved transmission characteristics. A remarkable property
of such matched zero-index materials is that the way they
interact with electromagnetic waves is independent of the
granularity of the composite material or of the specific lattice
arrangement.

The objective of the present work is to study in more
detail the theory of the supercoupling, field confinement, and
tunneling effect reported in Ref. 9, giving physical insights
of this phenomenon and describing its emergence and poten-
tial applications in different configurations and scenarios.
Namely, here we investigate the group velocity of the wave
as it travels through the ENZ channel, evaluate the effect of
losses in the metallic walls, and demonstrate the possibility
of concentrating and confining the electromagnetic fields in a
very small subwavelength air cavity with enormous electric
field enhancement. Moreover, we propose a realistic
�metamaterial� emulation of the studied propagation sce-
narios at microwaves using standard “empty” metallic
waveguides or alternatively using a microstrip line configu-
ration. We report results obtained with a full wave electro-
magnetic simulator that demonstrate the emergence of a
similar tunneling and supercoupling effect in these very re-
alistic, and arguably simple, setups.

In addition, following the ideas of Ref. 9, we exploit the
possibility of using anisotropic ENZ materials to create an
analogous tunneling effect. In fact, as referred to in Ref. 9,
while at infrared and optical frequencies �isotropic� materials
with ��0 may be readily available in nature �e.g., some
metals,11 semiconductors,12 or polar dielectrics13�, at micro-
waves these materials are not readily accessible �an excep-
tion is the electron gas, of which the ionosphere is a well-
known example at radiowaves�. Nevertheless, these materials
may, in principle, be fabricated as artificial microstructured
materials. However, nowadays the fabrication of isotropic
ENZ materials is still relatively more challenging due to the
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complexity of the required isotropic microstructure of the
material. To circumvent this problem, in Ref. 9 we suggested
using anisotropic ENZ materials—which are comparatively
simpler to synthesize—in order to obtain the same tunneling
effect. In this work, we further develop these concepts and
develop a detailed theory for the propagation of electromag-
netic waves through narrow channels filled with anisotropic
ENZ materials. We also discuss the design of wire-medium-
based implementations of these anisotropic materials at mi-
crowaves.

This paper is organized as follows. In Sec. II, we investi-
gate the supercoupling properties of metallic channels filled
with isotropic ENZ materials. The effect of metallic and di-
electric losses is discussed, as well as possible applications
�e.g., for waveguide coupling� and specific features of the
tunneling phenomenon. It is also described how to emulate
the studied propagation scenarios at microwaves using real-
istic three-dimensional �3D� configurations based on the con-
cept of artificial plasma. In Sec. III, we study the propagation
of waves through anisotropic ENZ materials. It is shown that
for some configurations, the scattering parameters may be
independent of the specific geometry of the structure. The
design of anisotropic ENZ slabs using wire media is dis-
cussed in detail, enlightening unique features and character-
istics of such metamaterials in propagation scenarios of in-
terest. Finally, in Sec. IV, the conclusions are drawn.

The time variation of the electromagnetic fields is as-
sumed of the form e−i�t, where � is the angular frequency
and i=�−1.

II. SUPERCOUPLING AND SQUEEZING ENERGY
THROUGH ENZ ISOTROPIC CHANNELS

In this section, we present physical insights related with
the propagation of electromagnetic waves through metallic
channels filled with ENZ isotropic materials. Important as-
pects such as the group velocity and the effect of losses in
the metallic walls are analyzed. The possibility of concen-
trating the electric field in a small air cavity with gigantic
enhancement is suggested.

A. Overview and physical insights of the tunneling effect

Here, we briefly review the main results derived in Ref. 9
and describe the emergence of the tunneling effect in several
propagation scenarios. In Ref. 9, we studied a generic two-
dimensional problem �with geometry invariant along the z
direction�, and we assumed that the polarization of the fields
is such that H=Hz�x ,y�ûz. We studied the properties of the
electromagnetic fields inside a material with ��0. It was
demonstrated that in order that the electric field is finite in-
side the ENZ material, it is necessary �in the lossless limit�
that Hz=const inside the material. We used this fundamental
result to characterize the transmission of energy through a
generic ENZ transition in a waveguide scenario. More spe-
cifically, we examined a configuration in which two parallel-
plate waveguides are interfaced by a ENZ channel of arbi-
trary shape. We found out that when a transverse
electromagnetic mode �TEM� impinges on the ENZ channel,

the reflection coefficient �for the magnetic field� is given by
�in the ��0 lossless limit and assuming that the walls of the
metallic waveguides are perfectly electric conducting �PEC�
materials�

� =
�a1 − a2� + ik0�r,pAp

�a1 + a2� − ik0�r,pAp
, �1�

where k0=� /c is the free-space wave number, a1 and a2
define the spacing between the metallic plates of the input
and output waveguides, respectively, �r,p is the relative per-
meability of the ENZ material, and Ap is the area of the cross
section of the ENZ channel �contained in the x-y plane�. The
transmission coefficient is given by T=1+�. The geometry
of the problem is depicted in Fig. 1 for a very specific ENZ
channel in which the transition is shaped as a “U,” but we
underline here that Eq. �1� is valid independent of the precise
geometry of the ENZ transition. As discussed in Ref. 9 Eq.
�1� demonstrates that in the case a1=a2�a, it may be pos-
sible to squeeze more and more energy through the channel,
as the transverse section of the channel �relative to the direc-
tion of propagation� is made more and more tight, i.e., as
Ap /a is made increasingly small. Such effect was demon-
strated in Ref. 9 for the case of a waveguide with a 180°
bend.

Next, we further explore some alternative possibilities,
namely, we present results of full wave simulations com-
puted with CST MICROWAVE STUDIO™,14 which demonstrate
the emergence of the same tunneling effect in the geometry
of Fig. 1 �“U-shaped” transition channel�. We will assume
that a1=a2�a since this situation favors the transmission of
energy through the channel. It is clear that for such U-shaped
channel, the area of the cross section is Ap= �L1+L2�a
+Lach. Thus, for a and L arbitrarily fixed, it is evident that
�in the lossless limit� we can make Ap /a arbitrarily small
�and consequently make the reflection coefficient approach
zero� by reducing more and more the transverse section of
the channel ach and by making the transition regions L1 and
L2 more and more thin. Thus, even though the impedance
contrast between the free-space region and the ENZ material
is infinite, the wave may effectively tunnel through the nar-
row channel with high transmissivity. Note that the previous

ach� �0
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FIG. 1. �Color online� Geometry of the two-dimensional prob-
lem: Two parallel-plate metallic waveguides are interfaced by a
U-shaped channel filled with a ENZ material. The incident wave is
the fundamental TEM mode. The structure is uniform along the z
direction.
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discussion holds independently of the electrical size of the
channel, i.e., of the value of k0L.

In practice, in a realistic physical system, such an effect is
limited by finite losses in the ENZ material and/or by dielec-
tric breakdown. In Fig. 2, we illustrate the effect of losses in
the ENZ material. The simulations were obtained for a struc-
ture with L1=L2=ach=0.1a and L=1.0a. The ENZ material
is characterized by a Drude-type model with relative permit-
tivity �=1−�p

2 /���+ i��, where �p is the plasma frequency
and � is the collision frequency �rad/s�. In the simulations,
we have taken �pa /c=� /2. Note that at �=�p, the permit-
tivity of the channel is given by �� i� /�p. In this simula-
tion, the effect of losses in the metallic walls was neglected
and will be discussed later in the paper.

The results of Fig. 2 confirm that at �=�p, the wave does,
in fact, tunnel through the narrow channel, especially when
dielectric losses are small, and that the transmission is still
quite significant for moderate losses. In Fig. 2, we also show
�dashed line� the transmission coefficient when the U-shaped
channel is empty �i.e., filled with air�. It is seen that at �
=�p, the wave is unable to propagate around the obstacle and
is strongly reflected at the interface. It is worth noting that
the transmissivity of the unfilled channel can be quite signifi-
cant around � /�p�1.5. This happens due to a geometrical
resonance characteristic of the U-shaped geometry, i.e., for
certain very specific frequencies related with the very precise
values of L1, L2, L, and ach, it may be possible to squeeze
energy through the U-shaped channel, even though it is filled
with air �Fabry-Perot-type transmission�. However, such an
effect is conceptually very different from the effect that can
be obtained using a ENZ material. In fact, for a channel filled
with a ENZ material, the energy can, in principle, be
squeezed through the channel independent of its specific ge-
ometry �e.g., the exact electrical length of the channel�.
Moreover, Eq. �1� predicts that provided Ap /a is kept small,
the transmitted power is nearly unchanged, even if the pre-
cise shape of the channel is radically modified. Thus, in that
regard, ENZ materials are indeed unique solutions to squeeze

energy through obstructed paths because they effectively cre-
ate a zero-order resonance �electrical length of the channel is
zero� that enhances the transmission of energy, independent
of the exact geometry of the transition. We also note that
below the plasma frequency �in particular, for Re��	�−1,
i.e., around � /�p�0.7�, the transmission can also be greatly
enhanced due to the excitation of “quasistatic” localized
resonances �local plasmon resonance� characteristic of sys-
tems with objects with negative permittivity.15 These reso-
nances are further analyzed in the Appendix.

It is also interesting to characterize the behavior of the
ENZ material in a waveguide configuration with a 90° bend.
The geometry is illustrated in the upper panel of Fig. 3. The
incoming wave propagates along the negative y direction.
The distance between the parallel metallic plates is a �in both
the input and output waveguides�. The transition between the
two waveguides is filled with two thin perpendicular �and
connected� ENZ layers with thickness a−aimp. In the simu-
lations, we assumed that aimp=0.9a and that the plasma fre-
quency of the ENZ material is such that �pa /c=3� /4. In the
lower panel of Fig. 3, we plot the S21 parameter �transmis-
sion coefficient� as a function of frequency. It is seen that
around �=�p, the wave transmission is greatly enhanced as
compared to the case in which the transition is unfilled
�empty channel�. The upper panel of Fig. 3 depicts the real
part of Poynting vector lines, clearly showing that the ENZ
material forces the Poynting vector lines to bend and follow
the path defined by the shape of the ENZ transition.

At this point, it is interesting to discuss why ENZ mate-
rials may, in fact, help enhancing transmission through nar-
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FIG. 2. �Color online� Amplitude of the transmission coefficient
�S21 parameter� as a function of normalized frequency for the
U-shaped ENZ transition depicted in Fig. 1 and different values of
the losses � /�p. The dashed line represents the transmission coef-
ficient when the U-shaped transition is filled with air �empty
channel�.
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FIG. 3. �Color online� Upper panel: Real part of the Poynting
vector lines in a waveguide with a 90° bend filled with a ENZ
material at �=�p and negligible losses. Lower panel: Amplitude of
the transmission coefficient �S21 parameter� as a function of normal-
ized frequency and different values of � /�p. The dashed line rep-
resents the transmission coefficient when the 90° bend is filled with
air �empty channel�.
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row openings. Consider again the U-shaped geometry of Fig.
1. It is reasonable to suppose that the electric field Ey is
essentially constant across each transverse section of the
channel with height ach �i.e., to a first approximation, Ey is
constant at each x=const cut with L1�x�L+L1�. Thus, us-
ing Faraday’s law and the fact that in the �=0 limit the
magnetic field is constant inside the ENZ channel9 �Hz

=Hz
int=const�, it is evident that for 0�d�L, Ey�d+L1�

=Ey�L1�+ i��0�r,pHz
intd, with �r,p the relative permeability

of the ENZ region, or in other words, Ey varies linearly along
the channel. Thus, defining the transverse wave impedance
as ZT=Ey /Hz, we find that

ZL

�0
−

Zin

�0
�

	ZT

�0
� + i�r,pk0L , �2�

where �0=��0 /�0 is the free-space impedance and Zin and
ZL are the transverse wave impedances at x=L1 and x=L
+L1 �see panel �a� of Fig. 4�. Hence, the wave impedance
variation 	ZT between the planes x=L1 and x=L+L1 is pro-
portional to the electrical length of the narrow channel.

Let Zin� and ZL� be the transverse wave impedances at the
input and output planes �x=0 and x=L1+L+L2, respec-
tively�, as shown in Fig. 4. Note that in the �=0 limit, these
impedances can be defined unambiguously because the wave
in the air regions is a superimposition of TEM waves9 �in
particular, ZL�=�0�. It is also evident that in order that the
incoming wave can tunnel through the ENZ material, it is
necessary that Zin� �ZL�. However, Eq. �2� shows that the
transverse impedance may vary appreciably inside the nar-
row channel. So, why is it possible to ensure good transmis-
sion, even though 	ZT /�0 may be very large? To find the
relation between Zin and Zin� , we use again Faraday’s law and
the relation Hz=Hz

int=const. Supposing that k0L1
1, we eas-
ily find that Zin� ��ach /a1�Zin. Similarly, it can be verified that
ZL��a2 /ach�ZL�. Thus, the ENZ transition with thickness L2

scales up the load impedance by a factor of a2 /ach, and con-
sequently, in general ZL /�0 is very large. Moreover, by mak-

ing the channel more and more narrow, we can always
achieve the condition 
	ZT

 
ZL
 �even though 	ZT /�0 may
also be large�, and in this way ensure that Zin /ZL�1. Finally,
the ENZ transition with thickness L1 scales down the imped-
ance Zin by a factor ach /a1. The previous discussion shows
that a series of three wave impedance transformations occurs
inside the ENZ channel �see panel �a� of Fig. 4�: first, the
output impedance �ZL�� is transformed into a very large im-
pedance ZL; next, ZL is transformed into Zin=ZL−	ZT; fi-
nally, Zin is scaled down to the input impedance Zin� . In the
case a1=a2, it is clear that the first and third transformations
are the inverse of each other. Thus, in these conditions, the
wave may tunnel through the channel only when Zin /ZL�1.
As explained before, this condition may be ensured by mak-
ing the channel sufficiently narrow and consequently 
	ZT


 
ZL
, i.e., by making ZL sufficiently large, the whole system
becomes insensitive to the specific �possibly large� value of
	ZT. This clarifies why the wave may, in fact, tunnel through
the ENZ channel.

The fact that the transmission may be improved when the
transverse cross section of channel is made tighter can also
be explained using the theory and concepts proposed in our
previous work,10 where we showed that by loading a ENZ
material with metallic or dielectric inclusions, it is possible
to tailor its magnetic permeability. In fact, for TEM wave
incidence and assuming a1=a2�a, the U-shaped waveguide
problem is equivalent to the scattering problem depicted in
panel �b� of Fig. 4, which shows an infinite ENZ slab peri-
odically loaded with metallic �PEC� inclusions. The ENZ
slab is illuminated by a plane wave that propagates along the
normal direction. It can easily be verified that the electro-
magnetic fields in the configuration of panel �b� of Fig. 4 are
unaffected �under the previously referred conditions� if PEC
walls are placed along the dashed lines that define the con-
tour of the U-shaped geometry. Following Ref. 10, the peri-
odically loaded ENZ slab �in the ��0 lossless limit� is
equivalent to an ideal continuous material with effective rela-
tive permittivity �ef f =0 and relative permeability �ef f =1
− fV, where fV is the volume fraction of the metallic inclu-
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FIG. 4. �Color online� Panel
�a�: Illustration of the wave im-
pedance transformations inside the
U-shaped channel. Panel �b�: A
ENZ slab periodically loaded with
metallic implants is illuminated by
a plane wave that propagates
along the normal direction.
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sions. Note that because the wavelength inside the ENZ ma-
terial is extremely large, the incoming wave is insensitive to
the granularity of the composite material and to the specific
lattice arrangement.10 Hence, it is clear that by increasing
more and more fV �i.e., by making the ENZ region more and
more narrow�, the effective permeability of the equivalent
composite becomes more and more near zero, i.e., �ef f →0
as fV→1. This happens because in the static limit, good
metals have a diamagnetic response. Hence, it is clear that as
fV→1, the composite medium behaves almost as a matched
zero-index material with both �ef f =0 and �ef f =0, and thus
the impedance mismatch with free-space becomes less and
less significant, and consequently the transmission is in-
creased.

Another fundamental property of ENZ materials that
gives a different perspective of the tunneling phenomenon is
discussed next. As mentioned before, for the two-
dimensional �2D� problem under study, Hz=Hz

int=const. in-
side the ENZ material. This result has a very important im-
plication: since the electric current density over the metallic
plates is Jc= �̂�H, where �̂ is the unit normal vector �di-
rected to the ENZ region�, it follows that Jc=Hz

intt̂, where t̂
= �̂� ûz is the vector tangent to the metallic surface. Thus,
the amplitude of the current density is constant and indepen-
dent of the specific shape of the plates. Hence, the ENZ
material forces the current to follow the path defined by the
shape of the metallic plates, and thus the current injected into
each PEC plate �left-hand side interface; see Fig. 1� appears
undisturbed on the right-hand side interface. That is, the
ENZ material, independent of the specific geometry of the
channel, preserves the current along the metallic plates. Note
that the current flows in opposite directions along the two
PEC plates. From a physical point of view, these effects are

easy to understand. Indeed, the density of electric charge on
the metallic surfaces is �c=�E · �̂. Since ��0 in the ENZ
material, it follows that �c=0, and thus, from the conserva-
tion of charge, it follows that the amplitude of Jc in this 2D
problem must, indeed, be invariant along the ENZ channel.
In other words, independent of the shape of the PEC surface
�which can be rather complex inside the ENZ channel�, the
current is forced to follow the path of the winding PEC foot-
print without any phase variation since the density of charge
on the PEC surface is necessarily zero, and thus �Jc /�t̂=0.
This property is clearly the physical foundation of the tun-
neling phenomenon. These results can be generalized to the
three-dimensional case, and this will be reported in a future
communication.

B. Field concentration and confinement in a subwavelength
cavity

As pointed out in Ref. 9, when an electromagnetic wave is
squeezed through a ENZ channel, the electric field inside the
ENZ material may be greatly enhanced. This phenomenon is
easy to understand using the principle of conservation of
energy. In fact, in the lossless limit, the flux of the real part
of the Poynting vector through an arbitrary transverse cross
section of the channel must be invariant. Thus, since the
magnetic field is constant inside the ENZ material, this re-
quires that the electric field inside the channel is roughly
inversely proportional to the height of the channel. This
property is also consistent with the discussion of Sec. II A,
where we showed that for the U-shaped geometry, the trans-
verse wave impedances at the x=0 and x=L1 planes are such
that Zin� ��ach /a1�Zin �see panel �a� of Fig. 4�. This result
implies that the electric field Ey must be such that 
Ey
x=0
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FIG. 5. �Color online� Panel
�a�: Real part of the Poynting vec-
tor for ach=0.1a and � /�p=0.001.
Panel �b�: Electric field �normal-
ized to the amplitude of the in-
coming wave� along the line y
=0.5ach for different values of the
loss parameter and of the channel
height.
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��ach /a1�
Ey
x=L1
�since Hz is constant inside the ENZ ma-

terial�. In order to illustrate this property, we computed the
amplitude of the electric field inside the ENZ channel using
CST MICROWAVE STUDIO™.14 The parameters characteristic
of the U-shaped channel are the same as in Sec. II A. In
panel �a� of Fig. 5, we depict the Poynting vector lines inside
the U-shaped channel. It is seen that consistent with our pre-
vious discussion, the real part of the Poynting vector is sig-
nificantly enhanced inside the narrow channel. In panel �b�
of the same figure, we plot the amplitude of the electric field
along the line y=0.5ach for different values of ach. It is seen
that inside the ENZ channel �in particular, for 0.1�x /a
�1.1�, the electric field is amplified by a factor of a /ach,
confirming the results of our theoretical analysis. Specifi-
cally, for ach /a=0.1, the field is enhanced about ten times
inside the ENZ material. Note that even when moderate ma-
terial losses are taken into account �� /�p=0.05�, the ampli-
fication factor may be as large as 6.

The previous results suggest the possibility of using ENZ
materials to concentrate the electric field inside a small sub-
wavelength air cavity placed inside the ENZ material. To
explore this opportunity, we computed the electromagnetic
fields inside the U-shaped channel with an air cavity defined
by 0.55a�x�0.65a �see the inset of Fig. 6�. The geometry
of the channel is as in the previous example and ach=0.1a. In
Fig. 6, we plot the electric and magnetic fields along the line
y=0.5ach. The dashed vertical lines correspond to the inter-
faces between the air regions and the ENZ material.

The results of Fig. 6 demonstrate that the electric field
may be significantly concentrated inside the air cavity �and
also in the ENZ material�. It is seen that the electric field
inside the cavity is about nine times �five times� larger than
the incoming field for � /�p=0.001 �� /�p=0.05� �these val-
ues are only marginally smaller than those reported in Fig. 5
for the case where the transition is completely filled with the
ENZ material�. It is also worth noting that the magnetic field
is nearly constant inside the two sections of the ENZ mate-
rial for the case � /�p=0.001, consistent with the theory of

Ref. 9. Inside the air cavity, the magnetic field may vary
appreciably, and to a good approximation is a linear function
of x. Figure 5 also shows that when the losses become mod-
erate �� /�p=0.05�, the magnetic field is not anymore uni-
form inside the ENZ material.

In the ��0 lossless limit, it is possible to calculate the
electric field inside the air cavity in closed analytical form.
The approach is similar to that of Ref. 9 and so the details are
omitted here. We only mention that in the ��0 lossless
limit, the field inside the air cavity is a superimposition of
TEM waves, and that the magnetic field inside each ENZ
region is constant. Detailed calculations show that the elec-
tric field evaluated at the right-hand side interface of the air
cavity with the ENZ material is given by

Ey = 
Ey
inc
x=02a1�a2 − ik0�r,pAp2�/�cos�k0d�ach��a1 + a2�

− ik0�r,p�Ap1 + Ap2�� − i sin�k0d��ach
2 + a1a2

− ik0�r,p�Ap1a2 + Ap2a1� − �k0�r,p�2Ap1Ap2�	 , �3�

where Ey
inc is the amplitude of the electric field of the incom-

ing wave, d is the thickness of the air cavity, and Ap1 �Ap2� is
the area of the cross section of the ENZ section at the left-
hand �right-hand� side of the air cavity. It can easily be
checked that when a�a1=a2, ach /a
1, and k0�r,pAp,i /a

1 �i=1,2�, the above formula simplifies to

Ey � 
Ey
inc
x=0

1

cos�k0d�
ach

a
− i

1

2
sin�k0d�

. �4�

Thus, provided the cavity is electrically small, k0d
1, the
electric field inside the cavity is enhanced by a factor of
a /ach as compared to the amplitude of the incoming wave,
consistent with the results of Fig. 6. These results confirm
that ENZ materials may have interesting potentials in con-
centrating the electric field in a very small subwavelength
cavity.

C. Effect of losses in the metallic walls

In the previous examples, it was assumed that the metallic
walls were perfect electric conductors. However, all metals
have losses, and these can be significant at terahertz, infra-
red, and higher frequencies. Thus, it is crucial to evaluate the
inevitable effect of metallic losses in the proposed tunneling
mechanism. In what follows, we generalize the theory intro-
duced in our previous work9 so that it can describe the effect
of the finite conductivity of the metallic walls.

Here, we consider that the metallic walls are characterized
by the bulk conductivity �. Thus, the effective permittivity
of the metal is of the form

�metal

�0
� �r,metal = 1 −

�

i��0
. �5�

We assume that � /��0
1 so that the metals are at least
fairly good conductors. We also suppose that 	
R, 	
D,
and 	
�ENZ /2�, where 	=�2 /���0 is the skin depth of the
metal, D is the thickness of the metallic plates, R is the
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FIG. 6. �Color online� Electric field �solid lines� and magnetic
field �dashed lines� along the line y=0.5ach for different values of
the loss parameter. The fields are normalized to the amplitude of the
corresponding incoming wave. The inset represents the geometry of
the ENZ channel with an air cavity defined by the region 0.55a
�x�0.65a, where a�a1=a2.
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radius of curvature of the plates at a generic point, and �ENZ
is the wavelength in the ENZ material. In these circum-
stances, the interaction of electromagnetic waves with the
metallic plates can be described by the Leontovitch imped-
ance boundary condition.16 The Leontovitch boundary con-
dition assumes that

Et = �metalJc, �metal = �0
1

��r,metal

, �6�

where Jc= �̂�H is the density of current along the metallic
walls ��̂ is the unit normal vector directed outward of the
metallic region�, Et is the tangential component of the elec-
tric field, and �0 is the free-space impedance. As proved
next, within such an approximation, it is possible to calculate
in closed analytical form the reflection and transmission co-
efficients in the �=0 lossless limit, and for a generic wave-
guide scenario.

To begin with, consider a generic waveguide configura-
tion as in Ref. 9 where a ENZ filled channel is illuminated by
the fundamental TEM waveguide mode �the geometry of
Fig. 1 corresponds to the particular case in which the ENZ
transition has the U shape�. As proved in Ref. 9, in the �
=0 lossless limit, the magnetic field is necessarily constant in
the ENZ material, Hz=Hz

int, and thus, as discussed in the end
of Sec. II A, the density of current along the metallic walls
also has constant amplitude: Jc=Hz

intt̂, where t̂= �̂� ûz is the
unit vector tangent to the metallic surface. As in Ref. 9, next
we apply Faraday’s law to the counterclockwise contour that
encloses the ENZ region. We obtain that

�interfaces

with air

E · dl + �
metal walls

E · dl = + i��0�r,pHz
intAp,

�7�

where Ap is the cross-sectional area of the ENZ channel, and
the first line integral is over the interfaces with air �x=0 and
x�=0 in Fig. 1�, whereas the second line integral is over the
metallic walls. Using the Leontovitch boundary condition �6�
and Jc=Hz

intt̂, it is clear that �metal wallsE ·dl=�metalHz
intLtot,

where Ltot is the total length of the metallic plates enclosing
the ENZ material �i.e., the sum of the lengths of the two
plates; for the particular geometry of Fig. 1, we have Ltot
=2�L1+L+L2�+ �a1+a2−2ach��. On the other hand, follow-
ing Ref. 9, it is simple to verify that �

with air
interfacesE ·dl=�0Hz

inta2

−�0Hz
int��1−�� / �1+���a1, where � is the reflection coeffi-

cient for the magnetic field. Substituting these results into
Eq. �7�, we readily obtain that

� =

�a1 − a2� − 
− ik0�r,pAp +
1

��r,metal

Ltot�
�a1 + a2� + 
− ik0�r,pAp +

1
��r,metal

Ltot� . �8�

The transmission coefficient is given by T=1+�. The above
formula is the generalization of Eq. �1� to the case where the
metallic walls have finite conductivity. We underline that the
formula is completely general �valid for channels with nearly

arbitrary geometry� and only assumes the conditions implicit
in the Leontovitch boundary condition approximation and
that �=0 in the ENZ material. Equation �8� predicts that for
the case a�a1=a2, a wave may tunnel through the ENZ
channel only if k0�r,pAp /a
1 �which was the condition de-
rived in our previous work9� and if Ltot / �a�
�r,metal
�
1. The
latter condition is very interesting because it establishes that
the effect of losses depends mostly on the ratio Ltot /a, but
not specifically on the distance between the two metallic
plates. This result implies that compressing the transverse
section of the ENZ channel more and more does not, in
principle, affect the loss in the metallic walls. This somewhat
unexpected property can be understood by noting that the
magnetic field �and consequently Jc� is not enhanced inside
the ENZ channel as compared to the amplitude of the inci-
dent wave �indeed, only the electric field is greatly enhanced
in the channel, as illustrated in Fig. 5�. Thus, since the losses
in the metal are proportional to Jc, it is clear that squeezing
the transverse cross section of the ENZ channel �with respect
to the direction of propagation� does not necessarily result in
an increase of metallic losses. Moreover, the condition
Ltot / �a�
�r,metal
�
1 also demonstrates that for values of

�r,metal
 moderately large, the effect of metallic losses may be
negligible. For example, if Ltot /a=5, the effect of losses in
the metallic walls may be negligible for 
�r,metal
�100. To
give an idea of the possibilities we suggest here, we note
that, for example, aluminum �Al� may satisfy this condition
for �0�850 nm.17

In order to confirm the proposed theory, we used CST

MICROWAVE STUDIO™ to compute the S parameters of a
U-shaped channel �Fig. 1� with walls with finite conductivity
�. The geometry of the channel is as in the first example of
Sec. II A �in particular, L=1.0a, ach=L1=L2=0.1a, and
�pa /c=� /2�. To fully assess the effect of loss in the walls,
we considered � /�p=0.001 in the ENZ material �i.e., the
dielectric losses are negligible�. In Fig. 7, the transmission
coefficient is depicted as a function of frequency for different
values of �. The star symbols represent the results yielded by
Eq. �8� �the transmission coefficient is T=1+� at �=�p�. It
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FIG. 7. �Color online� Amplitude of the transmission coefficient
�S21 parameter� as a function of normalized frequency for a
U-shaped ENZ channel and different values of the conductivity of
the walls. The “star” symbols along the vertical line �=�p repre-
sent the results computed using formula �8�.
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is verified that the star symbols agree well with the full wave
results, even for values of � moderately small. This validates
our theory and the use of the Leontovitch impedance bound-
ary condition. The results also illustrate that the transmission
coefficient is not very much affected by metallic losses, even
for � /�p�0=13.9, which corresponds to 
�r,metal
�13.9.
Hence, we conclude that in practice, the effect of losses in
the metallic walls may be of second order, and that in prin-
ciple, the loss in the ENZ material �discussed in Sec. II A� is
the most relevant source of loss in the system under study.

D. Group velocity

It is interesting to analyze the group velocity for a packet
of electromagnetic waves that tunnels through a ENZ filled
channel. We consider for simplicity that the dielectric permit-
tivity � of the ENZ material is characterized by a Drude-type
dispersion model, �=1−�p

2 /���+ i��. It is well known that
in the lossless case ��=0�, the phase velocity is vp=c /��,
whereas the group velocity in the unbounded medium is vg

=��c �c is the speed of light in vacuum�. Thus, in the loss-
less �=0 limit, the phase velocity is vp=�, whereas the
group velocity is vg=0. This result seems to contradict the
possibility of transmitting a signal through a ENZ filled
channel. However, a more careful analysis shows that, in
fact, that is not the case. The key point is that vg=��c rep-
resents the group velocity of a packet of waves that propa-
gates in an unbounded ENZ material, and thus this formula
does not necessarily apply for propagation in a finite thick-
ness ENZ sample, where significant coupling between the
two interfaces may effectively permit that a packet of waves
is squeezed through the ENZ channel.

In fact, consider again the geometry of Fig. 1 where the
TEM fundamental waveguide mode illuminates a U-shaped
ENZ channel. In general, the transmitted wave �after it
emerges from the ENZ transition� may consist of a superpo-
sition of waveguide modes. However, as proved in Ref. 9,
when �=0 no evanescent modes are excited in the region
x��0, and thus it is a good approximation to consider that in
the ENZ limit the transmitted wave consists only of a TEM
mode. Let T=T��� be the corresponding transmission coef-
ficient so that the amplitude of the transmitted magnetic field
at x�=0, Hz

tx���, is related with the incident field at x=0,
Hz

inc���, through the relation Hz
tx���=T���Hz

inc���. Let A���
and ���� be the amplitude and phase of the transmission
coefficient so that T���=A���ei����. Using a Taylor expan-
sion for the phase around �=�0 we can write that

T��� � A��0�ei�0ei�d�/d���, �0 = ���0� −
d�

d�
�=�0

�0.

�9�

Suppose now that the incoming plane wave is of the form

H̃z
inc�t�=H�t�cos��0t�, where H�t� is a slow-varying function

of time �i.e., the Fourier transform of H̃z
inc�t�, Hz

inc���, corre-
sponds to a packet of waves with spectrum concentrated
around �=�0�. A straightforward analysis shows that within
approximation �9�, the magnetic field at the output plane x�
=0 is given by

H̃tx�t� � A��0�H�t − td�cos��0�t − td� − �0�, td =�d�

d�
�

�=�0

.

�10�

Thus, the envelope of the incoming field is reproduced at the
output plane with a delay of td unities of time �i.e., td is the
time necessary for the packet of waves to travel across the
ENZ channel, which is also known as the “group delay” and
is a well-known quantity in wave transport theory�. We de-
fine the group velocity as vg=d / td, where d is the length of
the ENZ channel �e.g., for the geometry of Fig. 1, d=L1
+L+L2�. Hence, we find that vg=d
�d� /d��−1
�=�0

, which
can be rewritten as

vg

c
= d�
 d�

dk0
�-1�

�=�0

, �11�

where k0=���0�0 is the free-space wave number. We will
use the above formula to calculate vg inside the ENZ chan-
nel. Again, we stress that Eq. �11� is not equivalent to the
result vg=��c, which represents the group velocity inside an
unbounded medium. For a more detailed discussion on the
concept of group velocity, the reader is referred to Ref. 19.

In order to estimate the group velocity for a U-shaped
channel �Fig. 1�, we computed the transmission coefficient
T��� using a full wave electromagnetic simulator,14 and then
we evaluated vg using Eq. �11�. In the simulations, it was
assumed that L1=L2=0.1a and �pa /c=� /2, consistent with
the parameters chosen in Sec. II A. The results for ach
=0.1a and L=1.0a are depicted in Fig. 8 for � /�p=0.001
�curve a� and � /�p=0.05 �curve b�. It is seen that the group
velocity has a minimum around the plasma frequency �
=�p. For � /�p=0.001, the group velocity can be as small as
vg=0.08c. It is also verified that the group velocity is im-
proved �around �=�p� when the losses are increased to
� /�p=0.05 �curve b� and also for ���p. However, we
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FIG. 8. �Color online� Group velocity as a function of the nor-
malized frequency. The collision �damping� frequency is such that
� /�p=0.001, except for curve b where � /�p=0.05. Curves a �solid
black line� and b �dashed black line�: ach=0.1a and L=1.0a. Curve
c �blue line, dark gray in gray scale�: ach=0.2a and L=1.0a. Curve
d �red line, light gray in gray scale�: ach=0.1a and L=2.0a.
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should point out that the group velocity may lose its meaning
if the amplitude of the transmission coefficient becomes
close to zero �Ref. 18, p. 325� and thus the results for �
moderately below �p may not be applicable �see Fig. 2�.

The results of Fig. 8 also demonstrate that increasing the
channel height ach �curve c� results in an increase of the
group velocity around �=�p, even though the transmissivity
of the channel is slightly worsened. On the other hand, in-
creasing the channel length L �curve d� results in a decrease
of the group velocity as one could intuitively expect.

E. Plasma simulation at microwaves

The simulations and results presented in the previous sec-
tions consider that the problem under study is intrinsically
2D and that the ENZ material is readily available in nature.
In what follows, we prove that it is possible to emulate such
propagation scenarios at microwaves and reproduce the su-
percoupling, field concentration, and tunneling effects using
a realistic 3D setup that only requires using standard dielec-
trics and metals with an empty section.

The idea is to emulate the 2D artificial plasma using two
parallel metallic plates parallel to the electric field and to the
plane of propagation �i.e., parallel to the x-y plane�. It is
known20–22 that such configuration may mimic the behavior
of a plasmonic material with the Drude-type dispersion as
�=�d,r− �� /k0s�2, where �d,r is the relative permittivity of the
dielectric between the plates and s is the distance between
the plates. Such concepts were used in our previous work10

to emulate a medium with � and � simultaneously near zero
at microwaves. Here, we use similar concepts to demonstrate
the supercoupling, field confinement, and tunneling effect
under study at microwaves.

In the first example, we analyze a closed 3D metallic
waveguide environment. We consider that the cross section
of the waveguide �contained in the x-y plane� is as shown in
Fig. 1, i.e., the metallic walls have the U shape. In order to
simulate an artificial plasma, two parallel plates are inserted
at the planes z=0 and z=s. As discussed in Ref. 10, the 3D
metallic waveguide is filled with two different dielectrics, so
that the artificial plasma may emulate �at the design fre-
quency� a dielectric with �ef f,air=1.0 in the “free-space re-
gions” �x�0 or x��0 in Fig. 1� and a ENZ material with
�ef f,ENZ=0 in the ENZ transition. Let us first discuss the de-
sign of the ENZ transition. As in the previous sections, we
choose the plasma frequency such that �pa /c=� /2. Thus,
supposing that the region that mimics the behavior of the
ENZ transition is filled with air, i.e., an empty region with
��d,r=1�, from �ef f,ENZ=0=�d,r− �� /k0s�2 we find that the re-
quired distance between the plates �along the z direction� is
s=2a. Let us now discuss the design of the waveguide re-
gions that are supposed to behave as a medium with �ef f,air
=1.0. At the normalized frequency �pa /c=� /2 and for s
=2a, the effective permittivity of the simulated plasma is
�ef f,air=�d,r−1. Thus, in order that �ef f,air=1.0 �at the design
frequency�, we must choose �d,r=2.0 in the region x�0 or
x��0 of Fig. 1. In conclusion, in order to emulate the be-
havior of the 2D waveguide configuration depicted in Fig. 1,
we consider a 3D closed metallic waveguide with the same

cross section in the x-y plane and with metallic walls at z
=0 and z=2a. The region that is supposed to behave as the
ENZ transition is filled with air ��d,r=1.0�, whereas the re-
gions that are supposed to mimic the behavior of the free-
space sections in Fig. 1 are filled with a dielectric with �d,r
=2.0. The 3D waveguide is excited with the fundamental
TE10 mode with electric field in the xoy plane. This mode
effectively emulates the behavior of the TEM in 2D configu-
ration of Fig. 1 around ���p. Note that the TE10 mode is
cut off for ��0.7�p �for �=0.7�p, the 3D waveguide sec-
tions filled with �d,r=2.0 emulate a ENZ material, while the
unfilled region with �d,r=1.0 emulates a material with nega-
tive permittivity�.

In Fig. 9, we depict the calculated S21 parameter as a
function of frequency for several waveguide configurations
with L1=L2=0.1a and ach=0.1a. The solid lines associated
with curves �a� and �c� correspond to 3D setups with artificial
plasmas with L=1.0a and L=3.0a. The corresponding
dashed lines are the results obtained for the equivalent 2D
geometry, where the narrow channel is filled with an ideal
low-loss ENZ material. It is seen that around �=�p, the
transmission characteristic associated with the artificial
plasma �emulated with a 3D metallic waveguide filled with
standard dielectrics and empty region� mimics closely �apart
from a slight shift in frequency� the transmission character-
istic of the corresponding 2D-ENZ filled narrow channel. In
particular, it is confirmed that around �=�p, the wave tun-
nels through the narrow channel, independent of its specific
length. For comparison, we also plot in curve �b� the trans-
mission characteristic of a 3D waveguide with the same ge-
ometry as in curve �a�, but uniformly filled with a dielectric
with �d,r=2.0. This setup is supposed to emulate the behavior
of the associated 2D waveguide �Fig. 1� when the narrow
channel is filled with air. The results of Fig. 9 indeed dem-
onstrate that the transmission characteristics of both configu-
rations are very similar at ���p. As mentioned before, for
frequencies significantly different from �p the simulated
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FIG. 9. �Color online� S21 parameter as a function of normalized
frequency for an artificial plasma �solid lines� emulated using a 3D
metallic waveguide and for the corresponding 2D setup of Fig. 1
�dashed lines�. �a� U-shaped transition with L=1.0a. �b� 3D wave-
guide uniformly filled with �d,r=2.0 �solid line� and the correspond-
ing 2D setup with the narrow channel filled with air �dashed line�.
�c� Similar to �a� but with L=3.0a.
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plasma is not expected to emulate the configuration of Fig. 1
so well, because the effective permittivity of the regions
filled with �d,r=2.0 is not anymore �ef f,air=1.0 due to the
dispersive behavior of the equivalent material.

In a second example, we demonstrate a similar supercou-
pling and tunneling effect in a 3D microstrip line configura-
tion. The geometry of the problem is shown in panel �a� of
Fig. 10. The microstrip line consists of a conducting ground
plane, a dielectric slab with thickness a, and conducting strip
with width W. It is well known that for low frequencies, such
open waveguide structure supports a quasi-TEM wave, with
a modal structure similar to the TEM supported by a parallel-
plate 2D waveguide. We consider that the permittivity of the
dielectric slab is �s=2.2 and W=4a so that the line imped-
ance of the microstrip line is Zc=43 � �calculated using CST

MICROWAVE STUDIO™ �Ref. 14��. It is supposed that the mi-
crostrip conductor has an abrupt U-shaped transition �Fig.
10�. The transverse cross section of the line �relative to the z
direction� has geometry similar to that of Fig. 1. As in pre-
vious simulations, we choose L1=L2=ach=0.1a and L
=1.0a.

From the results of previous sections, it is expected that if
the U-shaped transition is filled with the same material as the
dielectric substrate ��s=2.2�, most of the energy is reflected
at the U transition for moderately large frequencies. This is
confirmed in panel �b� of Fig. 10, where we plot the calcu-
lated S11 �reflection� and S21 �transmission� parameters as a

function of frequency �black dashed and solid lines, respec-
tively�. In order to improve the transmissivity of the micros-
trip configuration, we may fill the U-shaped transition with a
ENZ material, as illustrated in panel �a� of Fig. 10. In the
simulations, we chose the plasma frequency such that
�pa��s /c=1.16 �this value was chosen to simplify the de-
sign of the artificial plasma, as described ahead� and the
damping frequency �=0.01�p. The corresponding S param-
eters calculated using the full wave simulator14 are depicted
in Fig. 10 �red lines�. It is seen that consistent with the re-
sults obtained for the geometry of Fig. 1, the wave may
tunnel through the narrow channel around the plasma fre-
quency. As described next, an artificial plasma realization of
the ENZ material may also enable a similar tunneling phe-
nomenon. As in the first example of this section, the simu-
lated plasma is designed using a parallel-plate configuration.
In this way, the microstrip conductor is short circuited to the
ground plane through two parallel metallic plates �normal to
the z direction� placed at the U-shaped transition. The metal-
lic plates are located at the planes z=−W /2 and z= +W /2,
supposing that the conducting strip is defined by the region
−W /2�z�W /2. The length of the metallic plates �along the
x direction� is L1+L+L2 �see Fig. 1�. The space in between
the two metallic plates �U-shaped transition� is filled with a
dielectric with permittivity �d,r. It is expected that this simple
structure emulates an artificial plasma characterized by
�ef f,ENZ=�d,r− �� /k0W�2. Choosing, for example, �d,r=1.0,
we find that �ef f,ENZ=0 for �p such that �pa��s /c=1.16 �this
justifies our choice for the plasma frequency�. The corre-
sponding S parameters calculated for a microstrip line with
an artificial plasma �metamaterial� transition are depicted in
Fig. 10 �blue lines�. The results demonstrate that consistent
with our theory, the wave may completely tunnel through the
U-shaped artificial plasma transition. It is worth noting that
the results for the artificial plasma realization are even
slightly better than those obtained for the ideal ENZ mate-
rial, perhaps because the effect of losses in the simulated
plasma is negligible. These results confirm that the described
supercoupling tunneling effect may be demonstrated at mi-
crowave frequencies using a realistic 3D setup, which only
involves standard dielectric and conducting materials with
arguably lower material losses.

III. SUPERCOUPLING AND SQUEEZING ENERGY
THROUGH ENZ ANISOTROPIC CHANNELS

As discussed in the Introduction and in Ref. 9, even
though ENZ materials may readily be available in nature at
certain specific frequencies of the electromagnetic spectrum,
in the general case, we may need to synthesize them as mi-
crostructured materials �metamaterials�. Since anisotropic
materials may be easier to fabricate as compared to isotropic
materials, in this section, we investigate the potentials of
anisotropic materials with permittivity near zero. In addition,
we discuss the realization of these artificial materials using
wire media.

A. Characterization of near-zero � anisotropic channels

In this section, we extend the theory developed in Ref. 9
to the case in which the ENZ material is anisotropic. We will
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FIG. 10. �Color online� Panel �a�: Microstrip line with a
U-shaped transition filled with a ENZ metamaterial. The microstrip
line is illuminated with the quasi-TEM transmission line mode with
electric field along y and magnetic field along z. The cut of the
structure along the center of the microstrip conductor has geometry
similar to that of Fig. 1. Panel �b�: S11 parameter �dashed lines� and
S21 parameter �solid lines� as a function of normalized frequency for
a transition filled with �i� dielectric with �=�s �black lines�, �ii�
low-loss ENZ material �blue lines, dark gray in gray scale�, and �iii�
artificial plasma that emulates ENZ material �red lines, light gray in
gray scale�.
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prove that when the metallic channel is filled with an aniso-
tropic material such that the permittivity component normal
to the interface is near zero, then, in certain conditions, the
scattering problem may be solved in closed analytical form.
Moreover, we will show that for certain geometries, the scat-
tering parameters may be made independent of the specific
geometry of the channel, in analogy with the results obtained
in Ref. 9.

The geometry of the problem is depicted in panel �a� of
Fig. 11. Two parallel-plate metallic waveguides are inter-
faced by an abrupt transition filled with a ENZ anisotropic
material. We suppose that the structure is invariant to trans-
lations along the z direction and that � /�z=0, so that the
problem is effectively two dimensional. In the region 0�x
�d, the profile of the upper metallic plate is defined para-
metrically by �x ,yu�x��, whereas the profile of the lower plate
is defined by �x ,yl�x��. The angles between the associated
tangent vectors and the x direction are �u�x� and �l�x�, as
illustrated in Fig. 11. The incident wave �propagating in the
region x�0� is the fundamental TEM mode. The ENZ ma-
terial is characterized by the �relative� permittivity dyadic:

�� = �xxûxûx + �yyûyûy + �zzûzûz. �12�

The objective is to characterize the reflection and transmis-
sion parameters in the regime where �xx�0, with �yy not
necessarily near zero �the �zz component is not relevant here
since for the geometry under study the electric field is con-
fined to the x-y plane�. The electromagnetic fields are as-
sumed H polarized with H=Hzûz. The corresponding electric
field is given by

E =
1

− i��0

 1

�xx

�Hz

�y
,−

1

�yy

�Hz

�x
,0� . �13�

It is straightforward to verify that Hz satisfies the equation

�

�x

1

�yy

�Hz

�x
+

�

�y

1

�xx

�Hz

�y
+ k0

2�r,pHz = 0, �14�

where �r,p is the relative permeability �along the z direction�
of the ENZ material and k0=���0�0. Next, we prove that in
the �xx=0 limit, the magnetic field inside the ENZ material is
such that

Hz = Hz�x� in the �xx = 0 anisotropic material, �15�

i.e., the magnetic field is independent of the y coordinate. In
fact, from Poynting’s theorem �Ref. 18 p. 265�, we may eas-
ily obtain that

i��0�
�AENZ

��̂ � E� · ûzHz
*dl = �

AENZ

1

�yy
� �Hz

�x
�2

+
1

�xx
� �Hz

�y
�2

− k0
2�r,p
Hz
2d2r ,

�16�

where AENZ represents the ENZ region, �AENZ is the corre-
sponding boundary �a closed contour�, and �̂ is the outward
unit vector. Next, it is noted that since the tangential electro-
magnetic fields are continuous across the ENZ material-air
interface, it is reasonable to admit that the left-hand side
integral is uniformly bounded in the �xx=0 limit �i.e., the
electromagnetic fields in the air region are expected to re-
main uniformly bounded, independent of �xx�. On the other
hand, supposing that �r,p and �yy are different from zero and
have a positive imaginary component that takes into account
small losses �which may be negligibly small�, it follows that
�calculating the imaginary part of both members of Eq. �16��
the integrals corresponding to the first and third terms in the
integrand of the right-hand side member are uniformly
bounded in the �xx=0 limit. Thus, we conclude that both the
left-hand side member and the integrals corresponding to the
first and third terms in the integrand of the right-hand side
member are uniformly bounded in the �xx=0 limit. Hence,
multiplying both sides of Eq. �16� by �xx and letting �xx
→0, it follows that �AENZ


�Hz /�y
2d2r→0, and consequently
�Hz /�y vanishes inside the ENZ material. This implies that
Eq. �15� holds, as we wanted to prove. It is also worth point-
ing out that condition �15� is necessary in order that the
electric field inside the ENZ material may be finite in the
�xx=0 limit. Note that if the material was isotropic and �xx
=�yy =0, then using a similar reasoning we would obtain
�Hz=0, which would imply Hz=const, consistent with the
results of Ref. 9.

Note that Eq. �15� implies that the ENZ anisotropic chan-
nel “freezes” the field variations along the y direction, and
thus enforces that the wave fronts inside the ENZ channel are
parallel to the interfaces with air. In particular, for TEM in-
cidence with Hz

inc=H0
ince+ik0x, it follows that the reflected and

transmitted waves must also be TEM �i.e., in the �xx=0 limit,
it is not possible to excite evanescent TMx modes inside the
air regions�. Thus, it is found that

�xx �0
�yy �0

Metallic
walls

a1Einc

Hinc

x

y

z
x=0

x=d

a2

�l(x)

�u(x)a) b)

a1

a2

�xx �0
�yy �0

x=0

d

ach

a1
ach

x=0 x=�

FIG. 11. �Color online� Panel �a�: Geometry of a metallic wave-
guide with an abrupt transition filled with an anisotropic ENZ ma-
terial. The incident wave is the fundamental TEM mode. �u�x� and
�l�x� define the angles between the vector tangent to the upper and
lower metallic plates and the x direction. Panel �b�: Similar to panel
�a� but for the case of a transition with two 90° bends and thickness
d. The small inset in panel �b� represents the detail of the interface
x=0 where the profile of the upper plate is varied continuously over
an infinitesimal length 	 �see the text�.
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Hz = H0
inc�eik0x + �e−ik0x�, x � 0, �17a�

Hz = H0
incTe+ik0�x−d�, x � d , �17b�

where � and T are the reflection and transmission coefficients
for the magnetic field, respectively. In order to calculate the
scattering parameters, it is necessary to determine Hz inside
the ENZ material. To this end, we integrate both sides of Eq.
�14� over y� �yl ,yu�. Because of Eq. �15�, both Hz and its
derivatives in x are independent of y in the �xx=0 limit.
Thus, it is found that

�

�x

1

�yy

�Hz

�x
+ k0

2�r,pHz = −
1

yu − yl
� 1

�xx

�Hz

�y
�

yl

yu

. �18�

Note that the term �1 /�xx���Hz /�y� is indeterminate in the
�xx=0 limit. However, noting that the tangential electric field
must vanish at the metallic walls, it is clear that for arbitrary
�xx, we must have 
�1 /�xx���Hz /�y�
y=yi�x�= 
�1 /�yy�
���Hz /�x�
y=yi�x� tan �i, i=u, l �see panel �a� of Fig. 11�.
Thus, we conclude that in the �xx=0 limit, Hz=Hz�x� satisfies
the following ordinary differential equation:

�

�x

1

�yy

�Hz

�x
+

tan �u − tan �l

yu − yl

1

�yy

�Hz

�x
+ k0

2�r,pHz

= 0 for �xx = 0. �19�

By solving the differential equation �which, in general, de-
pends on the specific geometry of the problem�, we can ob-
tain Hz=Hz�x� inside the ENZ anisotropic region, and after-
ward using Eq. �17� the unknown scattering parameters �
and T.

In order to illustrate this procedure and the application of
the formalism, let us consider the particular case in which the
two metallic plates are parallel so that yu�x�−yl�x�=a inside
the ENZ anisotropic channel, where a�a1=a2 �the inset of
Fig. 12 represents the particular case in which yu�x� and yl�x�
vary linearly with x�. It is obvious that when yu�x�−yl�x�
=a, we have that �u�x�−�l�x�=0. Hence, using Eq. �19�, it is
found that for this very generic family of geometries, the
magnetic field inside the ENZ channel is given by

Hz�x� = c1 cos�kxx� + c2 sin�kxx�,

kx = k0
��yy�r,p ��u = �l� , �20�

where c1 and c2 are unknown coefficients. Next, we match
the magnetic field Hz and the electric field Ey at the inter-
faces x=0 and x=d. Thus, from Eqs. �13� and �17�, we ob-
tain the following equations with respect to the unknowns �,
T, c1, and c2: Hz�0�=H0

inc�1+��, Hz�d�=H0
incT, H�z�0�

=�yyik0H0
inc�1−��, and H�z�d�=�yyik0H0

incT, where Hz�x� is
given by Eq. �20�. Solving for the unknowns, it is straight-
forward to obtain that in the �xx=0 limit,

� =
− i��yy − �r,p�k0d sinc�kxd�

2 cos�kxd� − i��yy + �r,p�k0d sinc�kxd�
, �21a�

T =
2

2 cos�kxd� − i��yy + �r,p�k0d sinc�kxd�
, �21b�

where sinc�x��sin�x� /x. It can be verified that 
T
2=1− 
�
2,
consistent with the conservation of energy theorem. Also, if
we let �yy→0, the above formulas reduce to Eq. �1�, i.e., to
the result obtained in our previous work9 for a channel filled
with an isotropic ENZ material. We stress that the above
formulas are valid independent of the specific geometry of
the ENZ channel, provided yu�x�−yl�x�=a �i.e., only the dis-
tance between the metallic plates along the y direction must
be invariant�.

Remarkably, Eq. �21� predicts that when the permittivity
of the anisotropic channel along the y direction is chosen
such that �yy =�r,p, then the reflection coefficient vanishes,
independent of the specific dimensions or parameters of the
channel. Thus, a ENZ anisotropic material with such param-
eters may allow bending the waveguide at will �independent
of its length� without affecting the transmission efficiency.
Note that the profile y=yu�x� is completely arbitrary and may
have very abrupt or curvy variations. This result confirms
that ENZ anisotropic materials may have interesting poten-
tials in improving the transmission characteristic along
“bendy” channels. In order to verify the proposed results, we
used CST MICROWAVE STUDIO™ �Ref. 14� to calculate the S
parameters of the structure for the particular geometry shown
in the inset of Fig. 12 where yu�x� and yl�x� vary linearly
with x. In the simulations, we considered that �=45°, d
=0.77a, and �r,p=1 and assumed that �xx follows a Drude-
type model with plasma frequency �p such that ��p /a�c
=� /2 and negligible losses ��=0.001�p�. Using Eq. �21�, it
can be verified that �=0 if either �yy =1 or kxd=n� with n
=1,2 , . . ., which for n=1 corresponds to �yy =6.3 �for the
considered geometry�. These results are completely sup-
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FIG. 12. �Color online� Reflection characteristic of a waveguide
filled with a ENZ anisotropic material as a function of normalized
frequency. The star symbols at �=�p represent the theoretical val-
ues computed using Eq. �21�. The distance between the upper and
lower plates is uniform in the ENZ section. The inset represents the
geometry of the structure.
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ported by the full wave simulations depicted in Fig. 12,
which confirm the validity of Eq. �21�. We also calculated
the reflection characteristic for �yy =3.4, and consistent with
Eq. �21�, it was found that 
�
=0.46 at the plasma frequency
�p. Note that the values of �yy that guarantee complete trans-
mission are independent of the � angle. As mentioned in Sec.
II, the irregular behavior of � below �p is due to the excita-
tion of quasistatic plasmonic resonances. It is also worth
mentioning that a ENZ anisotropic material with �xx=0 may
be synthesized at infrared and optical frequencies by alter-
nately stacking �along the y direction� slabs of a material
with positive permittivity �standard dielectrics� and slabs of a
material with negative permittivity �e.g., semiconductor or a
noble metal�.

B. Waveguides with sharp walls

An interesting geometry that caught our attention is de-
picted in panel �b� of Fig. 11. It consists of an abrupt transi-
tion with thickness d and two 90° bends. In what follows, we
study the effect of filling such waveguide transition with a
ENZ anisotropic material. To begin with, it is important to
point out that Eq. �21� is not valid for the geometry of Fig.
11�b�. In fact, Eq. �21� was derived under the hypothesis that
yu�x�−yl�x�=const and �u�x�−�l�x�=0 inside the ENZ chan-
nel. Even though it may be apparent that these conditions are
fulfilled for this geometry, in fact, as explained next, they are
not. Indeed, at the interfaces x=0 and x=d, the walls of the
waveguide have sharp transitions with �u�0�=�l�d�=90°,
and thus at these points the second term of Eq. �19� has a
singularity. Hence, to obtain the correct limit solution, one
needs to proceed with special care.

To this end, instead of considering sharp walls with an
abrupt transition, we will suppose that the profile of the me-
tallic plates varies continuously in some transition region. To
be specific, consider the interface x=0 in Fig. 11�b�, where
the upper metallic plate has an abrupt bend. In order to avoid
the singularity in the second term of Eq. �19�, we suppose
that the profile of the upper metallic plate, yu�x�, varies lin-
early from a1 to ach over some transition region with thick-
ness 	, as illustrated in the inset of Fig. 11�b�. Notice that the
thickness 	 may be arbitrarily small. In what follows, we will
obtain the solution of Eq. �19� in the limit 	→0+.

In the thin transition region 0�x�	 �filled with ENZ
material�, Eq. �19� can be rewritten as �using yl�x�=0,
�l�x�=0, and yu�x�=a1+tan �ux, with tan��u�= �ach−a1� /	�

�2Hz

�x2 +
tan��u�

a1 + tan��u�x
�Hz

�x
+ kx

2Hz = 0 for �xx = 0, �22�

where kx=k0
��yy�r,p. The general solution of the above

equation is

Hz = b1J0�kx�x + a1 cot �u�� + b2Y0�kx�x + a1 cot �u�� ,

�23�

where J0 and Y0 are Bessel functions of first kind and order
zero, and b1 and b2 are generic constants. Next, we impose
the initial boundary conditions Hz= p and �Hz /�x=q at x=0,
where p and q are generic values. Using Eq. �23�, we can

relate the unknown constants b1 and b2 with p and q: bi
=bi�p ,q ,	�, i=1,2. Finally, we replace bi=bi�p ,q ,	�, i
=1,2, in Eq. �23�, and in this way we obtain Hz�x�
=Hz�x , p ,q ,	�. In particular, using this procedure, Hz and
�Hz /�x can be evaluated at the plane x=	. In the limit 	
→0+, it can be proven that

lim	→0+ Hz�x = 	� = p , �24a�

lim	→0+
�Hz

�x
�x = 	� =

a1

ach
q . �24b�

Thus, this analysis shows that as the wave propagates
through the narrow transition region, the magnetic field is
nearly unchanged, whereas its derivative �proportional to the
electric field component Ey� varies extremely fast across the
very narrow transition. Note that the derived relations guar-
antee that the flux of power through the interfaces x=0 and
x=	 is invariant. Similar relations are obtained for the inter-
face at x=d, in particular, it is found that

lim	→0+
�Hz

�x
�x = d − 	� =

a2

ach

�Hz

�x
�x = d� .

We are now ready to calculate the scattering parameters
for this propagation problem. As in the previous section, it is
clear the magnetic field in the air region is given by Eq. �17�,
whereas the magnetic field in the ENZ region 0+�x�d− is
given by Eq. �20�. To compute the reflection and transmis-
sion coefficients, we need to match the tangential fields at the
interfaces. Using Eq. �24� to relate the fields inside the ENZ
channel �after the transition region� with the fields immedi-
ately after the interfaces with air, we obtain the following set
of equations: Hz�0�=H0

inc�1+��, Hz�d�=H0
incT, Hz��0

+�
=�yyik0H0

inc�1−��a1 /ach, and Hz��d
−�=�yyik0H0

incTa2 /ach,
where Hz�x� is given by Eq. �20�. Solving this system with
respect to unknowns �, T, c1, and c2, we obtain the following
expressions for the reflection and transmission coefficients
�valid in �xx=0 limit�:

� =

�a1 − a2�cos�kxd� − i
�yy
a1a2

ach
− �r,pach�k0d sinc�kxd�

�a1 + a2�cos�kxd� − i
�yy
a1a2

ach
+ �r,pach�k0d sinc�kxd�

,

�25a�

T =
2a1

�a1 + a2�cos�kxd� − i
�yy
a1a2

ach
+ �r,pach�k0d sinc�kxd�

.

�25b�

It can be verified that 1= 
�
2+
a2

a1

T
2, consistent with the con-

servation of the power flow. Considering the important case
a�a1=a2, the above formulas demonstrate that in the �xx
=0 limit, the wave may tunnel through the ENZ transition if
either �yy =�r,p�ach

2 /a1a2� or kxd=n� �n=1,2 , . . . �. Both
these conditions yield �=0 at the considered frequency and
correspond to geometrical resonances of the structure �i.e.,
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depend on the specific geometrical parameters of the ENZ
transition�. However, a simple analysis shows that the reflec-
tion coefficient may also be made negligibly small provided
�yya

2 /ach
2 
�r,p and k0�r,pAp /a
1, where Ap=achd is the

area of the plasmonic channel. The latter condition is pre-
cisely the one derived in our previous work9 for propagation
across isotropic ENZ channels, while the former condition is
easily satisfied for standard material values ��yy �1, �r,p=1�
and for long channels �ach
a�. Thus, we conclude that for
the geometry of panel �b� of Fig. 11 and for typical material
parameters, the transmissivity of a narrow long channel is
approximately independent of the channel being filled with
an isotropic ENZ material or an anisotropic ENZ material
�with �xx=0�. In particular, it may be possible to squeeze
more and more energy through the narrow channel provided
the thickness d is made increasingly small. In this regime,
the ENZ channel supports a zero-order resonance, consistent
with the discussion of Sec. II A. This result confirms that in
some propagation scenarios, ENZ anisotropic materials may
have potentials similar to those of ENZ isotropic materials.
�The results of Ref. 9 also support such conclusions for a
geometry analogous to that of Fig. 11�b�, but with a 180°
bend. The formula for the reflection coefficient presented in
Ref. 9 can be derived using arguments similar to those em-
ployed here�.

In order to illustrate some of the suggested potentials, we
have used CST MICROWAVE STUDIO™ �Ref. 14� to character-
ize a very narrow waveguide transition �Fig. 11�b�� with a
�a1=a2, d=0.05a, and ach=8a. The plasma frequency is
chosen such that �pa /c=0.4�. In Fig. 13, we plot the corre-
sponding transmission �S21� parameter supposing that the
channel is filled either with an anisotropic ENZ material with
�xx=0 �at the design frequency� and �yy =1.0 �solid red line�

or with an isotropic ENZ material �dashed red line�. For
simplicity, the losses are assumed negligible. Consistent with
our theoretical analysis, it is found that the transmitted power
is nearly independent of the material being isotropic or an-
isotropic at ���p. Moreover, it is seen that transmission is
greatly enhanced as compared to the case in which the tran-
sition is filled with air �black line�. It is important to note that
if the channel is filled with an anisotropic ENZ material with
parameters such that �xx=1 and �yy =0, then no tunneling
effect is observed �not shown here� and the transmission
level is similar to that of the empty channel.

As discussed in the beginning of this section, ENZ aniso-
tropic materials may be synthesized as metamaterials. As in,
Ref. 9, next we explore the possibility of using wire
media23,24 to simulate a continuous ENZ anisotropic mate-
rial. To this end, we consider that an array of PEC wires is
placed inside the ENZ transition. The wires stand in air and
are centered at the points �0,0.5+m ,n�a, where m
=0,1 , . . . ,7 and n=0, ±1, ±2, . . .. Note that the spacing be-
tween the wires is a, i.e., the lattice constant is equal to the
distance between the parallel plates in the air regions. The
wires are directed along the x direction �0�x�d� and have
length d and radius R. Note that the wires corresponding to
the indices m=1,2 , . . . ,6 have both extremities connected to
the metallic plates �the wires corresponding to indices m=0
and m=7 have only one extremity connected to a metallic
plate�. The radius of the wires is calculated so that the cor-
responding metamaterial plasma frequency also satisfies
�pa /c=0.4�. From Ref. 23, we know that to a first-order
approximation ���p /c�a�2= 2�

ln�a/2�rw�+0.5275 , and thus we find

that the required radius is R=0.005a. The S21 parameter dis-
persion calculated for such metamaterial is depicted in Fig.
13 �solid blue line�. It is seen that as predicted by our theory,
the transmission is significantly enhanced near �=�p, even
though there is a small downshift in frequency as compared
to the design specification. It is important to mention that
even though the electrical length of the wires is very small,
the array of wires emulates indeed a ENZ metamaterial slab.
The reason is that �with the exception of the wires associated
with the indices m=0 and m=7� the wires are physically
connected across the metallic plates, and this increases their
effective electrical length. Thus, at least in the region a�y
�ach−a, the wire medium behaves indeed as a ENZ aniso-
tropic material. We have also studied the effect of varying
the radius of the wires. For R=0.01a, it is expected that the
plasma frequency of the metamaterial increases about 9%:
�p�=1.09�p �marked with a dashed vertical line in Fig. 13�.
The transmission characteristic for a channel filled with such
metamaterial is shown in Fig. 13 �dashed blue line�. As seen,
the peak of transmission is moved to higher frequencies,
consistent with what one would expect from the previous
analysis. As in the case R=0.005a, for R=0.01a the peak of
transmission is also slightly downshifted with respect to the
design frequency. The reason for this property may be related
with the discreteness of the metamaterial design �note that
we use only eight rows of wires�, and probably also to the
fact that the wires corresponding to indices m=0 and m=7
are not able to emulate the ENZ property since one of their
extremities is unconnected.
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FIG. 13. �Color online� Amplitude of the transmission coeffi-
cient �S21 parameter� as a function of normalized frequency for a
waveguide with sharp walls �Fig. 11�b��. The parameters of the
waveguide are a�a1=a2, d=0.05a, and ach=8a. �i� Black line:
Empty transition. �ii� Red line �light gray in gray scale�: The tran-
sition is filled either with an anisotropic ENZ material �solid line� or
with an isotropic ENZ material �dashed line�. �iii� Blue line �dark
gray in gray scale�: Waveguide is filled with metallic wires �wire
medium metamaterial� with radius R=0.005a �solid line� or R
=0.01a �dashed line�.
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In conclusion, we have demonstrated theoretically and nu-
merically that ENZ anisotropic materials may have common
features with ENZ isotropic materials in some propagation
scenarios. The condition �xx=0 effectively freezes the wave
fronts inside the anisotropic ENZ material along the y direc-
tion �i.e., the wave fronts are normal to the x direction�. It
was discussed that for some geometries the transmission
along anisotropic ENZ channels may be independent of the
specific geometry of channel, and that a zero-order resonance
may enable a tunneling effect similar to that reported in. Ref.
9. In addition, we have further discussed the realization of
ENZ metamaterials using wire media and enlightened some
key features of such metamaterial implementations.

IV. CONCLUSIONS

In this work, we have further investigated the applications
and properties of the supercoupling, field confinement, and
tunneling phenomenon identified in Ref. 9. It was shown that
waveguide channels filled with ENZ materials support a
zero-order resonance, which may enable anomalous trans-
mission and supercoupling of energy through very narrow
channels or abrupt bends, independent of their specific ge-
ometry. We demonstrated that the root of the tunneling effect
is the property that the current injected in a metallic plate
remains constant inside the ENZ channel. It was analytically
proved that the effect of metallic losses on the waveguide
walls may be of second order, and thus that, in principle, the
dielectric loss in the ENZ material is the dominant loss
mechanism. It was suggested that ENZ materials may enable
electric field concentration and confinement in a subwave-
length air cavity. Two realistic 3D configurations based on
the concept of simulated plasma were proposed to emulate
the studied propagation scenarios at microwaves. In addition,
we developed a theory to describe the propagation of elec-
tromagnetic waves through anisotropic ENZ materials. It
was proved that in some very generic propagation scenarios,
the scattering coefficients can be calculated in closed analyti-
cal form. Our analysis demonstrates that in some circum-
stances, the scattering coefficients may be made independent
of the specific geometry of channel. Furthermore, in some
cases, ENZ anisotropic channels may also enable the anoma-
lous transmission of energy through very narrow metallic
channels, independent of the specific dimensions of the chan-
nel �zero-order resonance�. Finally, we discussed some key
properties of anisotropic ENZ metamaterials made of an ar-
ray of microstructured wires.
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APPENDIX

Here, we discuss the singularities of electromagnetic
fields near a junction between metallic and dielectric materi-
als with real part of the permittivity positive or negative.25,26

Our results establish that near an edge, the fields may have
very strong singularities, and that in the lossless limit, the
fields may not be square integrable.

To begin with, we consider the geometry of panel �a� of
Fig. 14, which depicts a corner between a PEC region and
three dielectric wedges �uniform along z�. As in the previous
sections, it is supposed that the fields are H polarized, with
H=Hz�x ,y�ûz. The magnetic field satisfies

1

����
1

r

�

�r

r

�Hz

�r
� +

1

r2

�

��

1

����
�

��
Hz + k0

2Hz = 0, �A1�

where �r ,�� are associated with the system of polar coordi-
nates centered at the junction between the materials and �
=���� is the sectionally constant permittivity near the corner.
We are interested in the quasistatic regime, where the third
term �k0

2Hz� in the left-hand side of Eq. �A1� can be ne-
glected. In that case, Eq. �A1� becomes separable and admits
solutions of the form

H� = r�f����, H−� = r−�f���� �A2�

�for �=0, H−� should be defined as H−�=ln rf�����, where
−�2 is an eigenvalue �� is defined in such a way that
Re��	�0� and f� is the corresponding eigenfunction of the
differential operator:

L = ����
�

��

1

����
�

��
. �A3�

Thus, we have that Lf�=−�2f�. It is clear from Eq. �A2� that
the behavior of the fields near the corner is determined by the
eigenvalues of L. Next, we determine the characteristic
equation for the eigenvalues. For the geometry of Fig. 14, it
is simple to verify that �imposing f����=0 at �=0 and �
=�3 so that the tangential electric field vanishes at the PEC
plates�

f����

= �c1 cos���� , 0 � � � �1

c2 cos���� − �1�� + c3 sin���� − �1�� , �1 � � � �2

c4 cos���� − �3�� , �2 � � � �3,
�

�A4�

where c1 , . . . ,c4 are unknown coefficients. At the dielectric

�3
�2

�1�1

�2

�3PEC

a)

�3

�2

�1
�1

�2

b)

FIG. 14. Panel �a�: Corner between a PEC region and three
dielectric wedges. Panel �b�: Corner between three dielectric
wedges.
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interfaces, it is necessary that the tangential fields are con-
tinuous, and hence �f�=0 and �f�/��=0, where �¯� repre-
sents the jump discontinuity of the quantity inside brackets at
the interface. Imposing the conditions �f�=0 and �f�/��=0 at
�=�1 and �=�2, we obtain a homogeneous 4�4 linear sys-
tem for the unknown coefficients. A nontrivial solution can
exist only if the determinant of the corresponding matrix
vanishes. In this way, it is found that the eigenvalues must
satisfy the following characteristic equation:

�2
 sin���1�cos���2�cos���3�
�1�2

+
cos���1�cos���2�sin���3�

�2�3

+
cos���1�sin���2�cos���3�

�2
2

−
sin���1�sin���2�sin���3�

�1�3
� = 0, �A5�

where we put �1=�1−0, �2=�2−�1, and �3=�3−�2. Note
that �=0 is always an eigenvalue, independent of the con-
sidered materials. In general, the remaining eigenvalues have
to be computed using numerical methods.

Let us consider first that the materials have some losses so
that the corresponding � has a small positive imaginary com-
ponent. In order that the solutions yielded by Eq. �A2� have
physical meaning, it is necessary that the corresponding elec-
tromagnetic fields are square integrable near the corner �this
condition is necessary to ensure that the power dissipated
in the materials is finite�, i.e., �
Hz
2r dr d��� and
�
E
2r dr d���. The critical components of the fields are
E� and Er. It is simple to verify that the electric field associ-
ated with H�=r�f���� is square integrable only if Re��	�0
or �=0, while the field associated with H−� is square inte-
grable only if Re��	�0. Thus, it is clear that only one of the
solutions defined by Eq. �A2� may have physical meaning
�since we admit Re��	�0, that solution is necessarily H��.

We also note that by integrating the identity
�d /d���f*�1 /���df /d���= 1

� �
df /d�
2+ f*Lf� over the interval
�0,�3�, it is found that the eigenfunctions of L verify

�
0

�3 1

����

�df�

d�
�2

− �2
f�
2�d� = 0. �A6�

In particular, the previous equation clearly shows that if the
materials have losses �Im��	�0�, the operator L cannot have
an eigenvalue such that Re��	=0 and ��0, i.e., provided
the materials have some losses, � cannot be purely imaginary
�or equivalently �2 cannot be a negative real number�. This
means that in the lossy case �Im��	�0�, the eigenfunction
H�=r�f���� is always a physical solution of the problem, and
the corresponding electromagnetic fields are square inte-
grable near the corner.

What happens in the lossless limit? Are still all the eigen-
values such that �2 cannot be a negative real number?

If either �����0 �i.e., all the materials in Fig. 14�a� have
positive dielectric constant� or �����0 �all the materials in
Fig. 14�a� have negative dielectric constant�, it is evident
from Eq. �A6� that �2 cannot be real negative for a nontrivial
eigenfunction f�. Thus, when the permittivities of all mate-
rials have the same sign, we conclude that the electromag-
netic fields are still square integrable near the corner. How-
ever, as proved next, if the sign of the permittivity of the
materials in different dielectric regions is not the same, then
the situation changes drastically.

Let us consider, for example, that �3=�1 and �3=�1 in
Fig. 14�a�. In that case, it can be verified that the ��0 so-
lutions of the characteristic equation �A5� are such that

�2

�1
= − cot���1�tan
��2

2
� or

�2

�1
= + cot���1�cot
��2

2
� .

�A7�

Thus, in these circumstances, the eigenvalues are functions
�=���2,1� of the dielectric contrast �2,1=�2 /�1. Let us exam-
ine for which values of �2,1 may the characteristic equation
admit purely imaginary solutions for �, i.e., solutions of the
form �= i�, with � a real number. Substituting �= i� in Eq.
�A7�, it can be easily verified that for −�����, we obtain
that

− � �
�2

�1
� max�− 1,−

�2

2�1
� �A8�

Hence, we conclude that when the materials are lossless and
the permittivity contrast is such that the above condition is
verified, then the operator L has an eigenvalue � purely
imaginary. This means that in these conditions, the electro-
magnetic fields have a strong singularity near the corner and,
in particular, the fields are not square integrable. For ex-
ample, for the geometry of Fig. 3 �waveguide with a 90°
bend filled with a plasmonic material�, we have �1=�2

=90° and �1=1. Hence, Eq. �A8� predicts that for such ge-
ometry, the electromagnetic fields may have very strong sin-
gularities near the corner when the permittivity of the plas-
monic material is such that �2�−1 /2. This justifies the
resonant behavior of the transmission characteristic of the
waveguide for frequencies below the plasma frequency. Note
that even though for small losses the fields are square inte-
grable, the singularities can still be very significant, because
some eigenvalues are such that Re��	�0 with Im��	 very
large.

For the sake of completeness, next we briefly discuss the
singularities of the electromagnetic fields near a junction be-
tween three dielectric materials �panel �b� of Fig. 14�. Pro-
ceeding as in the previous case, we may easily find that the
characteristic equation for the eigenvalues of L is now
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�3�
 1

�2
2�1

+
1

�3
2�1

�cos���1�sin���2�sin���3�

+ 
 1

�1
2�2

+
1

�3
2�2

�sin���1�cos���2�sin���3�

+ 
 1

�1
2�3

+
1

�2
2�3

�sin���1�sin���2�cos���3�

+
2�1 − cos���1�cos���2�cos���3��

�1�2�3
� = 0, �A9�

where we put �1=�1−0, �2=�2−�1, and �3=2�−�2. It can

be verified that in the particular case �3=0 �i.e., when the
junction consists of only two materials�, the eigenvalues of L
may be such that � is purely imaginary when

�2

�1
� Interval�−

�1

�2
,−

�2

�1
� �for �3 = 0� . �A10�

For example, for �1=�2=180º, the above equation predicts
that the fields may have a strong singularity when �2 /�1=
−1, which is the well-known resonance condition for a planar
interface between two dielectric media.
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