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The spin conductivity in the integrable spin-1 /2 XXZ chain is known to be infinite at finite temperatures T
for anisotropies −1���1. Perturbations, which break integrability, e.g., a next-nearest neighbor coupling J�,
render the conductivity finite. We construct numerically a nonlocal conserved operator J� which is responsible
for the finite spin Drude weight of the integrable model and calculate its decay rate for small J�. This allows
us to obtain a lower bound for the spin conductivity �s�c�T� /J�2, where c�T� is finite for J�→0. We discuss
the implication of our result for the general question how nonlocal conservation laws affect transport
properties.
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I. INTRODUCTION

The behavior of transport properties of integrable systems
have attracted considerable interest in the recent past.1–21 In
such models due to the presence of conservation laws, the
currents do not decay.1 As a consequence, the dc conductiv-
ity is infinite and characterized by a finite Drude weight D,
Re ����=�D����+�reg���, where �reg is the regular part of
the conductivity.

In real systems, those conservation laws are violated by
perturbations which often can be considered to be small. In
these situations, the conductivity becomes finite1–6 but re-
mains very large as long as the perturbations are small.

A both theoretically6–15,22 and experimentally18–20 well
studied example is the XXZ Heisenberg chain which is
equivalent to a model of spinless Fermions with nearest
neighbor interactions.

The XXZ Heisenberg chain is integrable and therefore an
infinite number of constants of motion exist for this model.
All eigenstates can be uniquely labeled by a complete set of
commuting operators, Qn with �Qn ,Qm�=0 for all n ,m. The
first two of these operators are given by the total magnetiza-
tion Q1=�kSk

z and the Hamiltonian

H0 = Q2 = �
i

hi, �1�

hi = J�Si
xSi+1

x + Si
ySi+1

y + �Si
zSi+1

z � . �2�

All other Qn can be constructed by a simple recursive
formula,22 Qn+1= �B ,Qn�, with the so-called boost operator
B=1 / �2i�� j jhj. All these conservation laws have a property
which is important for the following discussion: they are
local operators in the sense that each Qn can be written in
terms of a local “density” qn,i at site i,

Qn = �
i

qn,i, �3�

where qn,i is local as it contains only spin operators Sj
� on

maximally n adjacent sites, i	 j� i+n.
Besides the Qn, there exist a huge number of other con-

servation laws Ci which can in principle be constructed from
the exact eigenstates �j�, �H0 , �j�	j� � �=0 for Ej =Ej�. In gen-
eral, these operators are highly nonlocal objects in the sense

that they cannot be written in the form �Eq. �3�� for finite n.
Only local conservation laws are associated with a conti-

nuity equation �tqn,k+ jn,k+1− jn,k=0, where jn,k is the corre-
sponding current density, and therefore only for local conser-
vation laws a hydrodynamic description can be formulated.
A main motivation for the present work is the question to
what extent nonlocal conservation laws are relevant in the
sense that they lead to experimentally observable conse-
quences in real materials. We therefore study the role of local
and nonlocal conservation laws for transport in XXZ Heisen-
berg chains perturbed by weak next-nearest neighbor cou-
plings J�.

For J�=0, both the heat conductivity 
 and the spin con-
ductivity �s �or, equivalently, the electric conductivity in the
Fermionic language� are infinite and have a finite Drude
weight. However, there is a main conceptual difference be-
tween those two cases: the heat current JE is conserved �and
actually given by Q3 as defined above�, while the spin cur-
rent Js does not commute with the Hamiltonian. Neverthe-
less, the presence of a finite Drude weight implies that a
certain fraction of the spin current does not decay in time:
part of the spin current is “protected” by conservation laws.
This has been formalized many years ago by Mazur23 and
later generalized by Suzuki.24 Suzuki showed that the Drude
weight can be expressed in terms of correlators of the current
with the conservation laws Ci,

Ds =
�

N
�

i

	JsCi�2

	Ci
2�

, �4�

where �=1 /T, N is the number of sites, and the Ci have been
chosen such that 	CiCj�=0 for i� j. Note that in Eq. �4�, the
sum runs over a basis of all conservation laws, local and
nonlocal, commuting and noncommuting.

Interestingly, it can be shown1 by simple symmetry argu-
ments that the spin current is orthogonal to all known local
conservation laws, 	JsQn�=0 for all n. Therefore, it seems
that nonlocal conservation laws are responsible for the infi-
nite conductivity of the integrable model. What will happen
to the spin current when the system is weakly perturbed, e.g.,
by a next-nearest neighbor coupling J� with J��J? For local
conservation laws, e.g., the heat current Q3, the answer is
known:6 for small J�, Q3 decays only slowly implying a large
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dc conductivity proportional to the lifetime of Q3. Our
present goal is to investigate whether the spin conductivity
shows a similar behavior.

An example which shows that perturbation theory for lo-
cal and nonlocal quantities can be drastically different has
been discussed in Ref. 25. In this paper, it has been shown
that an arbitrarily small interchain coupling can destroy a
nonlocal order parameter �e.g., the string order of a spin-1
Haldane chain� in a gapped system. Formally, the perturba-
tions turn out to be proportional to the length of the system.
In contrast, local order parameters are always robust against
small perturbations for all gapped systems.

In principle, one can try to investigate the transport prop-
erties for small J� directly by calculating the spin conductiv-
ity from an exact diagonalization of the XXZ chain in the
presence of finite J�. In such a calculation, Heidrich-Meisner
et al.3 were able to show that the spin Drude weight vanishes
in the thermodynamic limit, but a reliable determination of
the resulting finite spin conductivity is rather difficult even
for large J�. Furthermore, finite size effects grow rapidly3 for
small J�.

In the following, we will therefore use a different ap-
proach based on a perturbation theory in J�. We construct
numerically a nonlocal operator J� which is conserved for
J�=0 and responsible for the finite Drude weight of the un-
perturbed XXZ Heisenberg chain. In a second step, we derive
a lower bound for the spin conductivity of the perturbed
system using results of Ref. 5 and show that the spin con-
ductivity is proportional to 1 /J�2. Finally, we analyze to
what extent J� is a nonlocal operator and discuss how the
result can be interpreted. The Appendix investigates the role
of special values of the anisotropies where the Heisenberg
model possesses extra symmetries.

II. MODEL

We consider the following Hamiltonian:

H = H0 + H1, �5�

where the XXZ Heisenberg chain H0 has been defined in Eq.
�1� and

H1 = J��
k

Sk
xSk+2

x + Sk
ySk+2

y + �Sk
zSk+2

z �6�

describes the �small� next-nearest neighbor coupling. For this
model, the spin current Js is given by

Js =
i

2
J�

k

�Sk
+Sk+1

− − Sk
−Sk+1

+ � + O�J�� , �7�

and we have omitted terms linear in J� as they give only
subleading contributions to our final result.

For J�=0 and −1���1, the Drude weight defined by

Re �s��� = �D���� + �reg��� �8�

is finite9,10,17 at T0 as discussed above. Equation �4� im-
plies that the finite Drude weight is associated with constants
of motion Ci of H0 with 	CiJs��0, which we need to identify
for our further analysis. More precisely, one can split the
current operator into two pieces,

Js = J� + J�, �9�

with

J� = �
i

	JsCi�
	Ci

2�
Ci. �10�

J� can be interpreted as the projection of the the spin current
to the space of conserved quantities, i.e., the conserved part
of Js and, indeed, one obtains directly from Eq. �4�,

Ds =
�

N
	J�

2� . �11�

As described above, the known local conservation laws
Qn do not contribute to Js, i.e., 	J�Qn�=0. J� is a very com-
plex nonlocal operator which is difficult to construct and
handle analytically. For finite size systems with up to 20
sites, however, one can construct J� numerically using the
exact eigenstates of H0. As the Ci span the space of energy
diagonal operators, we just keep the energy diagonal part of
Js, i.e.,

	n�J��m� = �EmEn
	n�Js�m� . �12�

For a finite value of the perturbation J�, the Drude weight
�Eq. �11�� is absent, as is known from numerical studies3,16

which were, however, not able to investigate the regime of
small J� due to large finite size effects in this limit.

In Ref. 5, we have shown that a lower bound for the
leading order contribution to the conductivity �s can be ob-
tained in the limit of small J� by evaluating the correlation

function �̃ with respect to H0,

Re �̃��� =
1

N



0

�

dtei�t	�J̇��t�, J̇��0���0. �13�

As �J� ,H0�=0, �̃��� is proportional to J�2. The inequality for
the spin conductivity reads

�s �
�2

�̃�0�
, �14�

where �=�	J�Js� /N=Ds is the generalized �spin current� sus-

ceptibility and �̃��� /� can be interpreted as a scattering rate
of J�, see Ref. 5 for details. Next, we will present our analy-
sis of the correlation function �Eq. �13��.
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III. NUMERICAL RESULTS

We investigate �̃��� and the generalized susceptibility �
numerically in the T→� limit via exact diagonalization for
system sizes up to L=20 and for various anisotropies � us-
ingperiodic boundary conditions. In this high temperature
limit, the spin-spin correlation length vanishes and therefore
finite size effects are smallest. Results for finite T�J �not
shown� are essentially identical.

The results for an intermediate �=0.75 are shown in Fig.

1. �̃��� drops rapidly for small frequencies but saturates at a

finite value. This saturation value lim�→0 �̃��� is almost in-
dependent of system size �see inset�. This indicates that finite
size effects are small despite the fact that J� is expected to be
a nonlocal operator. We therefore conclude that for small J�,

�s �
c�T�
TJ�2 �15�

in the thermodynamic limit. This is the main result of this
paper: the spin conductivity of a slightly perturbed XXZ
Heisenberg chain is very large, despite the fact that the spin
current is not protected by any local conservation law. For
�=0.75, we obtain, for example, c�T→��=0.92J3. For any
finite temperature, we expect that the same result holds: in
the limit of small J�, the spin conductivity is proportional to
1 /J�2.

In Fig. 2, the behavior of the scattering rate �̃ /� as a
function of � is shown. Interestingly, the scattering rate

seems to vanish in the isotropic limit �→1, �̃�J�2�1−��2.
We have previously6 observed the same effect for the scat-
tering rate of the heat current, which turns out to be propor-
tional to 1 /J�4 at the isotropic point. The reason for this
unexpected result is that for the isotropic case, one can con-
struct an operator Q3�=Q3+J��Q3 such that the commutator

�Q3� ,H0+H1� is of order J�2 rather than linear in J�. As a
consequence, the decay rate of the heat current at the isotro-
pic point is proportional to J�4. Very likely, the same mecha-
nism applies to J�, too. A subtle and controversial issue3,10,17

is the value of the Drude weight, Ds=�, for �=1. Both from
numerics and from Bethe ansatz, there is evidence pointing
either to a finite3,17 or vanishing10,17 Drude weight in the
thermodynamic limit. If the Drude weight vanishes for �
=1, our results are only of relevance for ��1.

In the Appendix, we discuss a further effect: the Drude
weight Ds appears to be a discontinuous function of � as for
special values of the anisotropies �=cos�� /��, �=3,4 ,5. . .,
one obtains different values for Ds compared to anisotropies

slightly away from these points. For the scattering rate �̃ /�,
these effects are much smaller and possibly absent in the
thermodynamic limit.

IV. NONLOCALITY OF J¸

As stressed in the Introduction, the spin current Js is or-
thogonal to all known local conservation laws Qn of the XXZ
Heisenberg chain. This suggests that J�, the conserved part of
Js, is a nonlocal operator which cannot be written in the form
of Eq. �3�. To quantify this statement, we expand the numeri-
cally constructed J� in local operators Ani which contain
products of spin operators on n adjacent sites,

J� = � ani
Ani

	Ani
2 �1/2 , �16�

where the Ani define a complete orthogonal basis in the space
of operators, 	AniAmj�=0 for n�m or i� j. The Ani are writ-
ten as sums of products of spin operators, where each prod-
uct contains spins on n adjacent sites. Here, we use—as
above—the �T=�� expectation value as the scalar product in
the space of operators. In Eq. �16�, obviously only transla-
tionally invariant Hermitian operators contribute which also
conserve Sz. For n=1, there is just one such operator,
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FIG. 1. Leading order contribution to the spin current relaxation
rate for �=0.75 and system size L=20 for T→�. Finite size effects

are small and �̃��� is finite at �=0, as can be seen in more detail in
the inset �thick line L=20, dotted line L=18, thin line L=16, and
dashed line L=14�.
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FIG. 2. Scattering rate �̃�0� /� as a function of the anisotropy

parameter � for L=18, T=�. For the isotropic system, �=1, �̃�0�
is zero, see text. The errors are comparable to the size of the sym-
bols and are discussed in more detail in the Appendix.
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A11=�iSi
z, and for n=2, one finds three such terms A21

=�iSi
zSi+1

z , A22=�iSi
+Si+1

− +H.c., and A23= i�i�Si
+Si+1

− −H.c.�.
The ten operators of range 3, A3i, contain both products of
two spin operators, e.g., �iSi

zSi+2
z , and products of three spin

operators, e.g., �iSi
zSi+1

z Si+2
z .

The ratio,

cn =

�
i

�ani�2

�
i,m

�ami�2
, �17�

shown in Figs. 3 and 4 describes which fraction of the op-
erator J� can be expressed in terms of operators of range n.
For example, if one determines the cn for H, one obtains c2
=J2 / �J2+J�2� and c3=J�2 / �J2+J�2�. By construction, one
gets �n=0

N cn=1 for a system with N sites.
What types of behavior can be expected for cn? First, one

has to investigate whether cn is finite or zero in the thermo-
dynamic limit N→�. For example, for the square of a trans-
lationally invariant local operator �e.g., H0

2�, one finds that cn
drops proportionally to 1 /N, such that limN→� cn=0 for all

n0. Even if limN→� cn is finite for each n, one can ask how
rapidly limN→� cn drops for n→� and whether
�n=0

� limN→� cn equals 1 or is smaller.
As shown in Fig. 3, the cn converge to finite values for

N→�. For n=2, this is a necessary consequence of the fact
that the spin current is a range 2 operator and that the Drude
weight of the spin current is finite. As the latter is propor-
tional to 	JsJ��2, this implies that J� has a finite overlap with
a range 2 operator in the thermodynamic limit.

A qualitative result of Fig. 3 is, however, that even opera-
tors up to range 8 have less than 40% of the total weight of
J� �but c8�0.02 is already very small�. As �n=1

� cn=1, the cn
have to drop faster than 1 /n for large n in the thermody-
namic limit. Figure 4 shows that the cn decay extremely
slowly with n. In this sense, J� appears to be a rather nonlo-
cal operator but we cannot decide from our numerics
whether �n=0

� limN→� cn=1 or smaller.
Surprisingly, finite size correction both to � and � remain

small �see Appendix�, despite the fact that a large fraction of
the Drude weight is carried by operators of a range compa-
rable to the system size, see Fig. 3.

V. CONCLUSION

In this paper, we have shown that the spin conductivity of
a one-dimensional anisotropic spin chain is strongly en-
hanced close to the integrable point. It diverges �at least� as
1 /J�2 for J�→0. This is the expected behavior for a situation
where a local conservation law prohibits the decay of the
current at the integrable point. However, as emphasized by
Zotos et al.,1 the spin current is orthogonal to all known local
conservation laws of the XXZ chain.

There are two possible interpretations of this result. First,
the conserved part J� of the spin current could nevertheless
be “sufficiently” local to define a slow hydrodynamic mode.
Second, the theoretical prejudice that only local conservation
laws �i.e., those associated with a continuity equation� lead
to slow modes may be wrong. In this respect, the results of
sec. IV, where this question is investigated, are ambiguous.
On the one hand, we could prove that J� is a highly nonlocal
operator involving products of operators acting on widely
separated sites. On the other hand, the relative weight of
range-n operators, cn, is finite in the thermodynamic limit.

In this paper, we have shown that the transport properties
of simple one-dimensional problems depend quantitatively
and qualitatively on “exotic” and rather complex conserved
quantities. For the future, it would be interesting to gain a
more analytic understanding of these conservation laws.
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APPENDIX: SPIN CONDUCTIVITY
CLOSE TO AND AT �=cos„� Õ�…

In this appendix, we discuss the behavior of the spin con-
ductivity for anisotropies �=cos�� /�� for integer �. At these
special points, it is known that there are further symmetries
which, for example, simplify the Bethe ansatz equations
considerably.26,27 Interestingly, at these special points, ther-
modynamic quantities show unexpected logarithmic
corrections.27

In Ref. 7, Naef and Zotos found numerically that the
Drude weight at these special points differs for finite systems
significantly from the values obtained for slightly different
anisotropies. They concluded, however, that these differ-
ences vanish in the thermodynamic limit. Heidrich-Meisner
et al.3 pointed out that the Drude weight differs substantially
for even and odd system sizes for ��cos�� /��, while such
an effect is absent for �=cos�� /��. This is shown in the
upper panel of Fig. 5. It is therefore very difficult to draw a
definite conclusion on the value of D in the thermodynamic
limit. The observation that for odd system sizes the Drude
weight is a smooth function of � suggests3 that finite size
effects are less important in this case.

Fortunately, the above described ambiguities seem to be

absent for the scattering rate �̃�0� /�, as shown in the lower
panel of Fig. 5.
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