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We study magnetic ordering of an extended Kondo-lattice model including an additional on-site Coulomb
interaction between the itinerant states. The model is solved in the dynamical mean-field theory using the
numerical renormalization group approach of Wilson and coworkers �Phys. Rev. B 21, 1003 �1980�; Rev. Mod.
Phys. 47, 773 �1975�; R. Bulla, et al., arXiv:cond-mat/0701105 �unpublished�� as impurity solver. For a
bipartite lattice, we find at half-filling the expected antiferromagnetic phase. Upon doping, this phase is
gradually suppressed and hints toward phase separation are observed. For large doping, the model exhibits
ferromagnetism, the appearance of which can, at first sight, be explained by the Ruderman-Kittel-Kasuya-
Yosida interaction. However, for large values of the Kondo coupling J, significant differences from a simple
Ruderman-Kittel-Kasuya-Yosida picture can be found. We, furthermore, observe signs of quantum critical
points for antiferromagnetic Kondo coupling between the local spins and band states.
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I. INTRODUCTION

The Kondo-lattice model �KLM� is one of the most ana-
lyzed models in solid state theory due to its large variety of
applications. Quite generally, the KLM describes the interac-
tion between localized spins and a band of conduction elec-
trons. One particular class of systems, where such a situation
can be realized, is the transition metal oxides, which have
received considerable interest due to their rich phase diagram
comprising different types of magnetic and orbital orders and
even superconductivity.1 This complexity stems from the in-
terplay between the formation of narrow 3d bands leading to
a delocalization of these states, on the one hand, and the
local part of the Coulomb interaction between the 3d elec-
trons tending to localize them.1 A particularly interesting ex-
ample is La1−xCaxMnO3.2 In this cubic perovskite, the five-
fold degenerate 3d level is split by a crystal field into
threefold degenerate t2g, which have the lower energy, and
twofold degenerate eg states. These states have to be filled
with 4−x electrons, nominally yielding a metal even for x
=0. However, taking into account the local Coulomb inter-
action, three of these electrons will occupy the t2g states
forming an S=3 /2 high-spin state due to Hund’s coupling,
which interacts ferromagnetically with the electron occupy-
ing the eg states. Besides its complicated phase diagram with
a large variety of paramagnetic and magnetically ordered
metallic and insulating phases, one finds a colossal
magnetoresistance.3 The physics just described can be cov-
ered in great parts by the KLM, in this context usually called
double exchange model.4,5

Another class of materials which can be addressed by the
KLM with ferromagnetic exchange interaction between con-
duction states and the localized spin degrees of freedom is
magnetic semiconductors or semimetals in the series of the
rare earth monopnictides and monochalcogenides.6–8 Here,
the focus lies on the magnetic and magneto-optic properties
of, for example, EuS, EuO, GdN, or thin films of such sys-
tems, respectively.9

Last, but not least, the ferromagnetic KLM can be applied
to investigate the magnetic properties of diluted magnetic

semiconductors such as Ga1−xMnxAs. In these materials, the
III-V semiconductor GaAs becomes ferromagnetic by intro-
ducing magnetic ions10,11 such as Mn. The local spin of the
Mn ions couples ferromagnetically to the states of the semi-
conductor, a setup which can be modeled by the KLM. Note,
however, that in these materials, disorder effects are expected
to play a vital role.12

A completely different realization of the KLM starts from
the periodic Anderson model,13–15 a model for heavy fermion
physics.16 Heavy fermion physics manifests itself in a num-
ber of lanthanide and actanide compounds, which have a
very large effective mass in common. The low-temperature
physics of these compounds is determined by a partly filled f
shell and hybridization induced spin flip scattering between
the f and conduction electrons. By a Schrieffer-Wolff
transformation,17 the periodic Anderson model can be
mapped onto the KLM with antiferromagnetic exchange in-
teraction. Note that in these materials, one typically expects a
competition between the heavy fermion physics, driven by
the Kondo effect due to the antiferromagnetic coupling, and
the formation of antiferromagnetism.18

In most of the approaches, one does not include Coulomb
interaction among the conduction band electrons. Especially
for manganites, this is quite likely an insufficient approxima-
tion, because all the physics takes place in a correlated d
band, as explained above. There is no reason to ignore the
local Coulomb correlations in the itinerant subshells, in par-
ticular, because estimates of its magnitude typically lead to
values of the order of or even larger than the bandwidth of
the d states at the Fermi level.1 Therefore, we want to ad-
dress the influence of these local Coulomb correlations
among the conduction band on the magnetic properties of the
KLM.

Generally, the fivefold or 14-fold degenerate d or f shells
split in a crystalline environment into more or less well sepa-
rated subshells. Here, we assume that the different crystal
field levels are well separated on the scale of relevant low-
energy structures—this is typically true in transition metal
compounds, but less obvious in rare-earth systems—and fo-
cus on a situation where we have one subshell well localized,
hosting a spin S, while the remaining levels are split suffi-
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ciently to leave one relevant, spin-degenerate state close to
the Fermi energy. Our model, thus, consists of a conventional
one-band Hubbard model,19–21 where the itinerant states are,
in addition, coupled to local spins S, i.e.,

H = HHub + Hspin. �1�

HHub describes the ordinary Hubbard model,

HHub = − t �
�i,j�,�

ĉi,�
† ĉj,� + U�

i

n̂i,↑n̂i,↓,

where ĉi,�
† �ĉi,�� creates �annihilates� an electron at lattice site

Ri with spin �. While the inclusion of an arbitrary hopping tij
presents no principal problem, we focus on the simplest case
of next-neighbor hopping parametrized by an amplitude t.
Finally, n̂i,�= ĉi,�

† ĉi,� denotes the density operator for a �
electron at site Ri, and U parametrizes the local Coulomb
interaction.

The band electrons are, in addition, coupled to a local spin
Si at each lattice site by an exchange interaction

Hspin = − J�
i

s�i · S� i,

where s�i is the spin operator for the band states at site Ri. As
discussed before, such a term can arise through Hund’s cou-
pling, in which case J is ferromagnetic, or through a hybrid-
ization, leading to an antiferromagnetic J.17 Note that both
effects can appear simultaneously, thus partially compensat-
ing each other.22

Even without Coulomb interaction U, this model is not
exactly solvable in general; thus, approximations have to be
made. For U=0, a first approach can consist of a perturbative
treatment of the exchange interaction J, leading to the well-
known effective Ruderman-Kittel-Kasuya-Yoshida �RKKY�
interaction23–25 with a characteristic, dimension-dependent
dependence on distance. Although generally accepted as an,
at least proper, ansatz for a qualitative discussion of mag-
netic properties of models such as the KLM, it has not yet
been studied in detail how well this approximation works for
increasing J. Furthermore, for the antiferromagnetic Kondo-
lattice model, where heavy Fermion physics can play an es-
sential role, or in the presence of additional correlations in
the band states, the validity of the use of the RKKY argu-
ments is far from clear. Thus, one aspect of the present paper
is to investigate to what extent the RKKY exchange indeed
leads to a reasonable description of the low-temperature
properties of the KLM.

As an approximation to study the KLM while leaving as
much of the local correlations induced by both the Coulomb
interaction U and the exchange J intact as possible, we use
the dynamical mean-field theory �DMFT�,26 mapping the lat-
tice model onto an effective impurity problem. In former
treatments of the model �1�, especially within DMFT,27–29

classical spins were assumed to avoid the sign problem of
the quantum Monte Carlo treatment of the effective impurity
problem employed there. The importance of a fully quantum
mechanical treatment of the local spins even in impurity
problems has been addressed by Peters and Pruschke,30 and
the effects of quantum spins in the KLM by Kienert and
Nolting.31 To achieve such a fully quantum mechanical treat-

ment, we use the numerical renormalization group32–34

�NRG� of Wilson and co-workers as impurity solver. The
NRG can handle the whole interaction and temperature re-
gime, and is also able to calculate Green’s function even in
ordered phases. We use a recently improved technique for
calculating Green’s functions35–37 within NRG. Therefore,
we are able to treat a large bandwidth of values of both
on-site interactions J and U.

The paper is organized as follows. In the next section, we
discuss the form of the perturbative RKKY exchange in the
limit spatial dimension D→� appropriate for the DMFT. In
Sec. III, we present our results for the magnetic phase dia-
grams of the model �1� at half-filling and finite doping and
different values of U, and discuss their dependence on the
sign and magnitude of J. A summary will conclude the paper.

II. RUDERMAN-KITTEL-KASUYA-YOSIDA
INTERACTION IN THE LIMIT D\�

Conventionally, the interaction between localized spins in
metals is analyzed in terms of the RKKY interaction.23–25

This effective exchange interaction shows a characteristic
dependence on distance R and local exchange coupling J of
the form

JRKKY � J2cos�kFR�
�kFR�� , �2�

where kF is the Fermi momentum of the host, and � is some
positive, dimension-dependent number. This distance depen-
dence is due to the sharp Fermi surface in metals and, strictly
speaking, valid only in the limit J→0. Note that, because
JRKKY �J2, the sign of J does not matter. Furthermore, it is a
priori not evident how the distance dependence looks like in
the limit spatial dimension D→�, which sets the framework
for the construction of the DMFT. In particular, in this limit
there is no proper definition of kF, which controls the depen-
dence of JRKKY on the occupancy of the band. Thus, in order
to be able to study to what extent the RKKY interaction
controls the magnetic properties of the KLM in DMFT, we
will derive this interaction and especially its dependency on
the filling for the limit D→� in the following.

To this end, we consider the extended Hubbard model �1�
on a hypercubic lattice. In the paramagnetic phase with �S� i�
= �s�i�=0, an effective Hamiltonian for the local spins can be
calculated perturbatively in J by formally tracing out the
band states. The resulting expression in lowest order in J
reads

Heff � − J2�
ij

�
�=1

3 	
0

�

d�Si
�Sj

��si
����sj

��0��J=0

= − J2�
ij

�
�=1

3

Si
�Sj

�	ij
��,

where 	ij
�� denotes the static susceptibility of the bare Hub-

bard model. In the paramagnetic case, 	ij
�� does not depend

on �, and we are free to evaluate it for �=3, for example.
This leads to an effective spin-spin interaction
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JRKKY�Ri − Rj� = J2	ij
zz = J2 1

N
�

q

eiq·�Ri−Rj�	zz�q� . �3�

Let us evaluate the latter sum for a model with nearest-
neighbor hopping in the limit D→�. As has been shown by
Müller-Hartmann,38 the q dependence then enters only via


�q� ª
1

D
�
l=1

D

cos�qla� ,

where a is the lattice parameter. Due to inversion symmetry,
we have

1

N
�

q

eiq·�Ri−Rj�	zz�q� = 2
1

N
�

q

cos�q · �Ri − Rj��	zz�q�

= 	
−1

1

dx�ij�x�	zz�x� ,

with

�ij�x� ª 2
1

N
�

q


cos�q · �Ri − Rj����x − 
�q��� .

For a nontrivial result in the limit D→�, we need D ·JRKKY
to be finite. We, thus, will evaluate

D	
−1

1

dx�ij�x�	zz�x�

directly. Following again the arguments by Müller-
Hartmann, we first rewrite

��x − 
�q�� = 	
−�

� ds

2�
ei�x−
�q��s

and obtain

D�ij�x� = 2D	
−�

� dDq

�2��D	
−�

� ds

2�
ei�x−
�q��s cos�q · �Ri − Rj�� .

Expanding the exponential in terms of 
�q� and observing
that

	
−�

� dDq

�2��D cos�q�Ri − Rj�� = �i,j ,

	
−�

� dDq

�2��D cos�q�Ri − Rj���
l=1

D

cos�ql · a� = ��Ri−Rj�,a
,

and so on for terms involving 
�q�m for m1, we obtain for
i� j

2D�ij�x� =
D→�

2	
−�

� dDq

�2��D	
−�

� ds

2�
eixs

��D − iD
�q�s + ¯ �cos�q · �Ri − Rj��

= − i��Ri−Rj�,a	
−�

� ds

2�
eixss + O 1

D
�

= − ��Ri−Rj�,a
d

dx
��x� + O 1

D
� .

With this result, we find in the limit D→� for the RKKY
exchange

D · JRKKY�Ri − Rj� = J2��Ri−Rj�,a� d

dx
	zz�x��

x=0
. �4�

Note that the right hand side of Eq. �4� is already correctly
scaled to obtain nontrivial results in the limit D→�. Further-
more, the RKKY exchange acts only on nearest neighbors,
the oscillatory structures arising from Fermi surface singu-
larities in finite dimensions are absent in D→�. Neverthe-
less, the dominant nearest-neighbor exchange constant,
which through its sign determines the type of order, can be
obtained.

For U=0, the susceptibility is given by the simple bubble,
which can be evaluated exactly albeit only numerically, lead-
ing to the behavior for JRKKY depicted in Fig. 1. Note that the
sign change from J�0 �antiferromagnetic� to J0 �ferro-
magnetic� appears for n�0.5. We will discuss this figure in
connection with numerical results in the next sections.

For finite U0, a similar evaluation is not possible, be-
cause the susceptibility entering now is the full lattice sus-
ceptibility. While 	zz�x=0� is the local susceptibility, which
can be obtained from the effective impurity problem directly,
its derivative determining JRKKY involves neighboring x val-
ues, which cannot be calculated within NRG. We content
ourselves here by noting that finite Coulomb correlations
typically lead to a more asymmetric distribution of spectral
weight, which is known to tend to enhance ferromagnetic
correlations. We, thus, expect that the root of JRKKY will shift
to larger values of the occupancy n for finite U.

III. RESULTS

In this section, we present our results for the magnetic
phases of the extended KLM �1�. Up to now, the local spin S
was completely arbitrary and can, in principle, take any
value. Although it is surely interesting to study the effect of
increasing spin quantum number on the results,31 we restrict
the discussion to the case S=1 /2 here.

The calculations were done for a Bethe lattice employing
a bipartite subdivision to accommodate antiferromagnetic

0 0.2 0.4 0.6 0.8 1
occupation n

-0.2

-0.1

0

0.1

d/
dx

χzz
(x

)| x=
0

FIG. 1. � d
dx	zz�x��x=0 for U=0 as function of the occupancy

n.
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order.26,39 We used a Bethe lattice instead of a hypercubic
one for computational reasons. However, we did not find any
significant differences between the two lattices in test calcu-
lations. As discretization parameter for the NRG, we used
�=2, and typically kept 1000,…,2000 states in each NRG
step. As our unit of energy, we choose the bandwidth W
=4t.

A. Antiferromagnetism at half-filling

Let us begin by examining the magnetic order at half-
filling, n=1. Clearly, Fig. 1 states that the interaction be-
tween the localized spins is negative, which is supposed to
result in antiferromagnetic order. In Fig. 2 are collected re-
sults for the polarization �sz�= 1

2 �n↑−n↓� of the band electrons
and �Sz� of the local spin. One can see in Fig. 2 two curves
corresponding to U�0 �circles� and U=W �squares�. For
large negative J, there is no magnetic order. The system
forms a Kondo insulator, locally quenching all moments.
Within DMFT we find for the critical value of the coupling at
U=0, Jc / t�−0.3W / t=−1.2, which is consistent with long-
known results.40 With increasing U, this value is shifted to
somewhat smaller absolute values �J�.

For JJc, antiferromagnetic order can emerge before all
moments have been quenched locally. Quite generally, we
observe that the polarization �sz� of the band states and �Sz�
of the local spins are opposite in sign for J�0. Around the
critical value Jc, the resulting total polarization �sz+Sz�, thus,
is very small, although both contributions can already have
rather sizable values. This result is quite interesting, in par-
ticular, in view of the so-called small-moment antiferromag-
netism observed in several rare-earth compounds.

Obviously, for U=0, there is no antiferromagnetic order at
J=0; however, even for very small �J /W��1, the local spins
are almost fully polarized, �Sz��0.5. On the other hand, the
polarization of the conduction electrons �sz� goes smoothly
through zero. We can, thus, identify this range of J values as
corresponding to the RKKY regime, where the local spins

are fully polarized and the band electrons show a polariza-
tion proportional to the “effective field” �J�Sz� provided by
the local spins. In this region, we also observe that the mag-
netic properties of the system are roughly independent of the
sign of J, as predicted by RKKY.

On the other hand, the behavior in the vicinity of Jc can-
not be understood in terms of RKKY anymore, although
�Jc�=0.3W is still significantly smaller than W and one might
expect the perturbational arguments to still be valid. How-
ever, the physical properties are radically different for J�0
and J0, as no critical point exists for J0 and the model
always is in the fully polarized state.

For U0, there is antiferromagnetic order even at J=0,
which represents the pure Hubbard model.26,39 As mentioned
before, for J�0, spin and electron polarizations are antipar-
allel, while for J0, both orientations are parallel. Due to
numerical errors, we were not able to determine the behavior
as J→0. Even with as many as 4000 states kept in each
NRG step, DMFT+NRG calculations did not converge, but
showed strong fluctuation for �J /W��0.04. The results ob-
tained, nevertheless, suggest a jump at J=0. Again, as J
→0−, the net polarization �sz+Sz� is strongly reduced from
the almost full values for each individual part.

Figure 3 shows the majority spectral functions for U /W
=1 /200 and different J. All calculations show a gap at �
=0, characteristic of an insulating behavior. The solid line
represents the results for a large antiferromagnetic coupling,
i.e., in the Kondo insulating state. The spectral function
agrees with the typical result for the paramagnetic phase of a
Kondo insulator. The remaining lines correspond to JJc.
The dotted and dashed lines correspond to the same value �J�,
however, with opposite signs. The general shape is that of a
weak-coupling antiferromagnet41 with the characteristic
square-root van Hove singularities at the gap edges. Note
that for J�0, we find a shallow shoulder for �0, which
quite likely is the remnant of a quasiparticle peak due to the
Kondo effect expected in this regime.30 This is again a sign
that already for moderate values of J, the physical properties
are significantly different for J�0 and J0, i.e., cannot be
understood by pure RKKY physics.
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FIG. 2. �Color online� Antiferromagnetic polarization at half-
filling and T=0 as function of the coupling J between spins and
band electrons. Circles were calculated for U /W=1 /200, corre-
sponding approximately to U=0; squares for U=W.
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FIG. 3. �Color online� Spectral function for the majority spin at
half-filling for U /W=1 /200 and temperature T /W=2.3�10−4.
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The dotted-dashed line in Fig. 3 corresponds to a large
ferromagnetic coupling. Here, lifetime effects due to a large
self-energy already substantially dominate the spectrum.

B. Doped model at U=0

Figure 4 shows the magnetic phases of the Kondo-lattice
model at U=0 as a function of filling n and temperature
calculated within DMFT for a Kondo coupling �J�=W /2.
Note that this value is already larger than the critical value Jc
at half-filling, thus we expect that for J�0, the physics is
governed by local quenching of the moments close to
half-filling.

The upper panel in Fig. 4 shows the model with ferromag-
netic coupling, while the lower one displays the results for
antiferromagnetic coupling. In the ferromagnetic Kondo-
lattice model, we find an antiferromagnetic phase around
half-filling n0.7, and a ferromagnetic phase for n�0.45.
The location of phase boundary of the ferromagnet at T=0
appears to agree very well with the RKKY prediction from
Fig. 1, where the coupling between the localized spins within
DMFT becomes ferromagnetic for n�0.45. We have fo-
cused in our work on homogeneous ferromagnetic, antiferro-
magnetic Néel, and paramagnetic states. Between 0.45�n
�0.7, calculations also showed significant magnetic re-
sponse. However, neither a ferromagnetic nor an antiferro-
magnetic Néel state could be stabilized. The real nature of
this phase could not yet be clarified in our calculations, but
one might argue that one should expect some type of incom-
mensurate order. In fact, the magnetic phase diagram of the
Kondo-lattice model has been analyzed by a number of other
authors.31,40,42–49 In addition to the conventional homoge-
neous ferromagnet and Néel antiferromagnet, other magnetic
phases like incommensurate, chiral, and short range ordered
phases were analyzed for 0.5�n�1.0 in these studies, and
were found to be stable in the regime where our calculations
fail to converge.

For the antiferromagnet close to n=1, several
authors31,43–45,48 also reported phase separation between an-
tiferromagnetism at half-filling and phases away from half-
filling. Figure 5 shows our results for the occupancy and
polarization in the antiferromagnetic phase as a function of
the chemical potential � for different temperatures. We see
that with decreasing temperature, the slope of the curves for
n→1.0 gets larger and larger. However, even for the lowest
temperature, we could stabilize every occupation number n
�1.0, even if there is a large slope for n→1.0. Increasing
the numerical accuracy by, for example, keeping more states
per NRG step also tends to increase the slope further. How-
ever, we never did observe a clear jump of the occupation at
a critical value of the chemical potential. Note, however, that
we cannot rule out phase separation at T=0 from our numeri-
cal results.

The lower panel in Fig. 4 shows the phase diagram of the
antiferromagnetic Kondo-lattice model. Here, our results
yield only evidence for a ferromagnetic phase. In contrast to
the ferromagnetic Kondo-lattice model, this phase reaches
significantly higher occupations and temperatures; the anti-
ferromagnetic coupling obviously stabilizes ferromagnetic
order. This effect can be understood in terms of Kondo
screening, which is present for J�0 only. As with decreasing
conduction band filling one band electron has to partake in
the screening process for an increasing number of spins, it is
favorable for neighboring spins to align ferromagnetically to
foster this screening process.

This behavior leading to a rather large critical value for
nc

�AF� at T=0 cannot be explained within the RKKY picture.
Furthermore, the quite likely incommensurate phase neigh-
boring the ferromagnet for J0 is absent here.

The previous observations are further substantiated by the
results in Fig. 6, where we show the ferromagnetic polariza-
tions for ferromagnetic �upper panel� and antiferromagnetic
�lower panel� coupling parameters. The circles correspond to
a very low temperature, squares to a temperature near the
transition into the paramagnetic state. Full lines represent
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FIG. 4. �Color online� Magnetic phase diagrams for U=0 and
�J � =W /2 as function of filling and temperature. The upper �lower�
panel shows the results for ferromagnetic �antiferromagnetic� cou-
pling. Lines are meant as a guide for the eyes. For ferromagnetic
coupling, a magnetic phase exists between 0.45�n�0.7, whose
nature could not be determined �see text�. The number of states kept
during NRG calculation was increased at phase boundaries.
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as a function of chemical potential � for different temperatures.
Other parameters as in Fig. 4.
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�sz�, dashed lines �Sz�. For J0 and temperatures above the
critical temperature for the “incommensurate” phase, both
�sz� and �Sz� show a similar behavior as function of doping.
In particular, they vanish smoothly as n→nc, indicating a
second order phase transition. For very low T, on the other
hand, �Sz� remains almost constant at the fully polarized
value until we reach the phase boundary to the incommen-
surate phase at nc�0.45. At the same time, �sz� monotoni-
cally increases with filling up to nc. Although we cannot
determine the true structure of the phase for nnc, its exis-
tence seems to be connected to the peculiar behavior of �sz�
rather than with �Sz�, i.e., is primarily driven by the itinerant
electrons. We are currently further investigating this phase
transition by including magnetic structures other than the
Néel state in our calculations.

For antiferromagnetic coupling �lower panel of Fig. 6�,
we find a critical nc increasing with temperature, where the
ferromagnetic metal becomes a Kondo insulator. Note that
for T /W=4�10−5, we are effectively in the ground state.
Further lowering the temperature does not change the phase
diagram anymore. Both �sz� and �Sz� appear to vanish
smoothly, too, thus again indicating a second order phase
transition.

Choosing �J�� �Jc� does not modify the general structure
of the phase diagram for ferromagnetic coupling. The results
for antiferromagnetic coupling, of course, do change. There-
fore, an antiferromagnetic phase in the vicinity of half-filling
and the above mentioned undetermined magnetic phase be-
tween the regions with antiferro- and ferromagnetic orders
appears, too. While the overall structure of the phase dia-
gram is now similar to the case J0 in Fig. 4 �upper panel�,
the values for nc

�FM� are still enhanced with respect to the
RKKY prediction.

C. Finite Coulomb interaction U=W Õ2

Let us now turn to the model with finite on-site Coulomb
interaction. We present results for fixed U= �J�=W /2; chang-

ing these parameters modifies the observations quantitatively
but not qualitatively. The phase diagrams for ferromagnetic
�upper panel� and antiferomagnetic �lower panel� couplings
are shown in Fig. 7. As for U=0, we find both an antiferro-
magnetic phase around half-filling and a ferromagnetic phase
for larger doping in the ferromagnetic Kondo-lattice model.
The critical values have changed to nc

�AF��0.8 and nc
�FM�

�0.53 for T=0, indicating that local correlations addition-
ally stabilize ferromagnetic order but destabilize antiferro-
magnetic for J0, in accordance with the anticipated varia-
tion of JRKKY with U.

For the ferromagnetic Kondo-lattice model, we again find
between the ferromagnetic phase for n�0.53 and the anti-
ferromagnetic for 0.8�n�1 a magnetic phase whose nature
could not be determined for the same reasons as for U=0.
Guided by our observations for U=0 and a comparison to
other studies by other groups, one can again assume the ap-
pearance of an incommensurate magnetic phase like a spin-
density wave or a chiral phase. From quantum Monte Carlo
studies50 for the conventional Hubbard model, an incommen-
surate phase can indeed be anticipated in this parameter re-
gime.

Figure 8 shows occupation and polarization as function of
the chemical potential � for different temperatures. For high
temperatures, squares and triangles, there is a smooth cross-
over from half-filling to lower occupancies, as for U=0 �cf.
Fig. 5�. However, in contrast to the indecisive results at U
=0, we observe clear evidence for phase separation at T /W
=4�10−5 �circles� this time. There exists a critical value
�crit where both occupation and polarization jump from their
values at half-filling to a smaller occupancy and polarization.
We, therefore, have phase separation between the antiferro-
magnetic insulator at half-filling and an antiferromagnetic
metal with a lower occupancy. Note that one also finds phase
separation in the conventional Hubbard model, which here,
however, occurs between an antiferromagnetic insulator with
n=1 and a paramagnet with n�nc

�AF�.41

The dependence of the polarization on n and T in the
ferromagnetic phase for the present values of U and �J� is
shown in Fig. 9 for J0 �upper panel� and J�0 �lower
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FIG. 6. �Color online� Polarization of the ferromagnetic solu-
tions. The upper �lower� panel corresponds to ferromagnetic �anti-
ferromagnetic� coupling. Other parameters as in Fig. 4.
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panel�. As in Fig. 6, full lines represent �sz� and dashed lines
�Sz�. For high temperatures �squares�, we again find second
order phase transitions, indicated by the smooth simulta-
neous vanishing of both �sz� and �Sz�, while for low T
�circles� and J0, the peculiar behavior at the phase bound-
ary to the incommensurate phase already seen in Fig. 6 is
observed.

A remarkable difference to the behavior for U=0 col-
lected in Fig. 6 can be observed for antiferromagnetic cou-
pling J�0. Here, the polarization now vanishes disconti-
nously at nc

�FM� for T→0, indicating a first order phase
transition in contrast to the second order type observed for
U=0. Thus, while the results at U=0 would predict a quan-
tum critical point at nc

�FM�, such a scenario is obvioulsy de-
stroyed by Coulomb correlations in the conduction band, at
least within DMFT.

Note that for the bare Hubbard model, no ferromagnetic
phase exists in this parameter regime for a bipartite lattice. It

is, thus, clearly the spin-electron interaction which leads to
ferromagnetism. Our results are consistent with earlier stud-
ies by other groups, who, however, treated the electron-
electron interaction in an effective medium approach,51–54

while we are able to treat the on-site correlations exactly
within DMFT and NRG. Especially our Curie temperatures
are located in the same range as in these earlier studies.

A possible reason for the tendency of both finite U and
negative J to stabilize ferromagnetism is the strong asymme-
try induced by U and J.55,56 As can be seen from Fig. 10, this
effect is most pronounced for J�0. For J0, a weaker, but,
nonetheless, significant redistribution of spectral weight is
observed, which can explain the increase of nc

�FM� here, too.

IV. SUMMARY

In this paper, we discussed the magnetic properties of the
extended Kondo-lattice model, where, in addition to an ex-
change coupling between itinerant states and localized spins,
the band electrons are subject to a local Coulomb interaction.
Such a model is expected to describe the properties of, e.g.,
transition metal compounds, where part of the d states are
localized in the crystalline environment due to Coulomb cor-
relations, and form a local spin which couples to the remain-
ing, usually itinerant d states either due to Hund’s exchange
or hybridization.

These materials typically have a rich magnetic phase dia-
gram, and it is an interesting question how these two inter-
actions cooperate or compete in driving different magnetic
phases. A particularly interesting question in this respect is to
what extent, qualitatively and quantitatively, the concept of
the RKKY approximation of an effective interaction between
the local spins mediated by the itinerant conduction states
holds.

We treat the model within DMFT, using NRG as solver
for the effective impurity problem. The calculations were
done for a bipartite lattice, allowing for homogeneous ferro-
magnetism and Néel antiferromagnetism. At half-filling, we
find an antiferromagnetic phase, as expected, for all ferro-
magnetic Kondo couplings J0. For antiferromagnetic cou-
pling J�0, there exists a critical Jc where the system be-
comes a paramagnetic Kondo insulator.18

For JJc, this antiferromagnetic phase prevails for finite
doping up to a critical filling nc

�AF� depending on J and the
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local Coulomb interaction U. For finite U and J0, we, in
addition, find phase separation between the antiferromag-
netic insulator with n=1 and an antiferromagnetic metal with
n�1. For U=0, we find no convincing evidence that such a
phase separation exists, too, but the numerical results are not
sufficiently clear to rule it out either. For J�Jc, no antifer-
romagnetic phase exists at all.

Below a second critical filling nc
�FM�, a homogeneous fer-

romagnet is found. Quite interestingly, the extent and stabil-
ity of this phase are increased by both a finite U and an
antiferromagnetic J. The reason for this stabilization can
quite likely be traced back to the introduction of a strong
asymmetric redistribution of spectral weight in the electronic
spectral function. An interesting aspect in connection with
quantum critical points in, e.g., ferromagnetic heavy fermion
compounds is that for antiferromagnetic Kondo exchange a
finite Coulomb correlation among the conduction states has
the tendency to change the order of the phase transition at

nc
�FM� from second order without correlation to first order

with correlations.
We find that for ferromagnetic Kondo coupling J, the pre-

dictions by RKKY can be used to at least qualitatively ac-
count for the different phases. For moderate and large J�0,
however, RKKY cannot even qualitatively predict the phases
correctly, underestimating the ferromagnetic phase grossly.
Moreover, the variations of the polarizations of the local spin
and band electrons seem to follow RKKY for very small �J�,
but already deviate substantially for moderate values.
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