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Near- and far-field optical properties of several types of gold nanoparticle are investigated with rigorous
three-dimensional computational electrodynamics. The primary focus is on the results obtained with the finite-
difference time-domain method, although some results obtained with the discrete dipole approximation are also
given. We first consider spheres and prolate spheroids, where analytical solutions are available for comparison.
The spectra of gold nanorods and pentagonal bipyramids are then investigated and excellent agreement with
recent experimental optical spectra is found. The local field enhancement (|E|/|E|) is studied at the longitu-
dinal plasmon resonance. Sharper structural features produce more significant enhancement and the largest
enhancement of more than a factor of 200 is seen around the poles of the bipyramid. The fields within the
nanoparticles are also studied. Whereas the field magnitude is nearly uniform within small spheres and sphe-
roids, it can be nonuniform for nanorods and bipyramids. The field magnitude decreases from the center toward
the poles in the case of nanorods, but increases rapidly in the case of bipyramids. A large internal field
enhancement by more than a factor of 30 is seen for the bipyramids, which suggests that these particles will

exhibit strong optical nonlinearities.
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I. INTRODUCTION

It has been known for some time that noble metals, i.e.,
elements in group IB, display distinct colors when dispersed
as nanoparticles in transparent media.! This phenomenon
arises from the optical excitation of surface plasmons, which
leads to strong light absorption and scattering at resonant
frequencies.>> At the plasmon resonance, the near field of the
nanoparticles is disturbed, giving rise to a large local field
enhancement which allows electromagnetic energy to be fo-
cused more tightly than the diffraction limit which applies to
conventional optics. This enhanced electromagnetic field
couples strongly with electronic transitions, leading to
surface-enhanced Raman scattering* (SERS) as well as the
optical antenna effect.’ Optical nonlinearity can also arise
from the local field enhancement, allowing the active control
of light propagation in a plasmonic waveguides.® The plas-
mon modes of a metal particle are determined by its shape,
composition, size, and surrounding medium. In recent years,
metal nanoparticles with different shapes have been synthe-
sized and studied optically. The shapes explored include
prisms,” shells,® cubes,’ bipyramids,'® and rods,'"!? tuning
their plasmon modes across the whole visible and near-
infrared range. Elongated nanoparticles such as nanorods or
bipyramids are especially promising systems for optical stud-
ies as their spectra are easily tunable by varying the aspect
ratio. Compared to spheres with the same volume, rodlike
structures also give a larger curvature at the tips, where sig-
nificant field enhancement is expected.

Although the optical process involved is excitation of a
plasmon, which is a collective oscillation of electrons near
the metal surface,'? it is often well approximated with clas-
sical electrodynamics. The quantum mechanical aspects of
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the process are integrated into a phenomenological per-
mittivity e(\) of the metal. This was first shown by Mie,
who solved the problem of plane electromagnetic wave
scattering by a homogeneous dielectric sphere exactly and
completely.'* The solution explains the spectrum of spherical
gold colloids accurately, although correction for surface ef-
fect is necessary for very small particles (4 <5 nm).!> More
generally, an analytical solution has been developed for the
spheroid, which includes the sphere and infinite-long cylin-
der as special cases.’

For many nanoparticle shapes, however, analytical solu-
tions are not available. The lack of an analytical solution sets
a barrier to understanding their spectra quantitatively and to
gaining further insight into their near-field properties. Differ-
ent methods have been developed to solve Maxwell’s equa-
tions numerically, including the 7-matrix method,'®!” the
discrete dipole approximation (DDA),'®!° and the finite-
difference time-domain method (FDTD).?%2! The T-matrix
method emphasizes more the far-field properties, i.e., the
scattered field, and it is better developed for systems with
revolution symmetry. The DDA and FDTD methods, how-
ever, can give both near- and far-field properties due to their
finite-element nature. Indeed, there have been extensive
DDA calculations reported by Schatz and co-workers, show-
ing it to be a powerful tool to calculate the spectra as well as
the near-field properties of metal colloids.?>2*

Our main purpose is to discuss the optical properties of
rodlike and bipyramidal gold nanoparticles using the FDTD
method. FDTD methodology is well developed and has been
applied to many systems.”>?® The FDTD method calculates
the time evolution of electromagnetic fields, making it
complementary to frequency-domain methods such as DDA.
We also present DDA results which allows us to infer some
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relative pros and cons of the methods. Our calculations lead
to optical spectra that agree well with recent experimental
results and we also examine the near field enhancements of
the electromagnetic fields.

The electromagnetic fields inside metal nanoparticles
have attracted little attention. This is because they cannot be
directly probed experimentally and the coupling between
plasmons and other electronic systems as in, e.g., SERS, is
accomplished with exterior near fields. However, internal
field distributions are relevant to the nonlinear optical re-
sponse of the particles and deserve further study. In this pa-
per, we determine accurate interior fields and find that the
bipyramidal metal nanoparticles should be particularly prom-
ising candidates for exhibiting nonlinear optical properties.

II. COMPUTATIONAL METHODS

The FDTD method solves the time-dependent Maxwell’s
equations by discretizing space and time and involves a rela-
tively simple time-stepping algorithm. For the optical prop-
erties of nonmagnetic metal nanoparticles with a given ge-
ometry, the only parameters required for the calculation are
the dielectric constants of the metal particle and the medium,
which are usually obtained as phenomenological values by
other optical measurements. The dielectric constants of met-
als are complex valued and strongly dispersive, i.e., €(w)
=€, (w)+i€(w), which requires special care to be properly
implemented within the FDTD method.? However, it is easy
to see that one of Maxwell’s equations,

VX H(w) =-ioD(w) = - ivege(w)E(w),

can be written in an equivalent form of

N
V X H(w) =- iw[ e&E(w) + E P,-(a)):| )

i=0

if one expresses the relative dielectric constant of the metal
as e(w)=6@+2ﬁoxi(a)), and defines polarizations P;(w)
=¢gyxi{(w)E(w). Once an analytical form for each y;(w) is
specified, the differential equations to determine P,(¢) can be
found by Fourier transformation of P;(w) into the time do-
main. Thereafter, the following time-dependent form of
Maxwell’s equations,

N
J J J
V X H(r) = 51)(;) = e B(1) + 52(‘,) P(), (1)

ﬁH(t) =- L V X E(1), (2)
ot Mo

can be solved stably by the FDTD method using the auxil-

iary differential equation approach.?!

In order to account for both the free electron plasmon and
interband transitions, we take the dielectric function, €(w),
for gold to be the sum of a Drude term and several Lorent-
zian terms.® In particular, we fit €(w) to a combination of
experimental data available from Palik’s handbook (the
Lynch-Hunter data set)?’” and Johnson and Christy?® within
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FIG. 1. (Color online) Symbols denote empirical dielectric con-
stant data for gold e(w)=Re €(w)+iIm e(w) and the solid curves
represent the fit given by Eq. (3). In our fit we used primarily Lynch
and Hunter’s assessment in the Palik handbook?’ except for the
1.9-2.3 eV range where we used the Johnson-Christy (Ref. 28)
data (see text for more detail).

the 1.2-3 eV range (Fig. 1) using the following model:

2 3 2
@p gLiwy A€
€(w) = €. - > Ol )
T Wt +ioyy o wz—wi’k+2iw'yL,k

With the exception of the 1.9-2.3 eV range, we fit Eq. (3) to
Lynch and Hunter’s recommended values.?’ It is important to
note that this data has anomalous behavior in the 1.9-2.3 eV
range (A=652-539 nm). This anomaly has also been re-
cently noted elsewhere.?” We therefore used the data from
Johnson and Christy?® in the 1.9-2.3 eV range, which does
not show this anomaly.

In accordance to the model above, the polarization vectors
P,(r) are determined by the following equations:

& d
(? + 'yDgt Po([) = fowéE(t), (4)
& d
<E + 27L,k3t + wi,k>Pk(t) = gL,kwi,kAeE(t)» (5)

where k=1, 2, or 3. With Egs. (1), (2), (4), and (5), the field
vectors and polarization vectors can be calculated in a stan-
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dard FDTD propagation scheme with other details (total field
and/or scattered field injection of the initial wave packet and
absorbing boundary conditions) as discussed elsewhere.?!
The above equations apply to the region of space occupied
by the metal nanoparticle. The medium is characterized sim-
ply as a dielectric with a positive and nondispersive dielec-
tric constant €,, [Egs. (1) and (2), with no polarization vec-
tors and €, replaced by €, apply]. If not specified, it is set to
be that of water with €,,=1.77 (i.e., refractive index of 1.33)
in the calculations discussed below.

The FDTD calculations are performed on the Jazz cluster
at Argonne National Laboratory, which has 350 nodes each
equipped with an Intel Xeon 2.4 GHz processor and at least
1 Gbyte random access memory (RAM). Depending on the
problem size, a parallel calculation is carried on 2—45 nodes,
which allows a simulation to be done within 24 h.

The DDA calculations'®! were performed with an appro-
priate adaptation of the program written by Draine and
Flatau.’ These calculations involved simple cubic lattices,
grid spacings similar to the FDTD calculations, and a small
(e=107%) error tolerance for convergence of the iterations.
The calculations are carried out on a 16-node cluster where
each node has two AMD Athlon 1900+ processors and
2 Gbytes RAM.

II1. OPTICAL SPECTRA OF GOLD NANOPARTICLES
WITH DIFFERENT SHAPES

A. Spherical nanoparticles

The scattering of a plane electromagnetic wave by a
spherical object has been solved analytically by Mie and Lo-
renz, in equivalent forms.'* For the Mie solution, we used
the code given by Bohren and Huffman to calculate the ab-
sorption spectra of gold nanospheres with different sizes.?
The results are shown in Fig. 2(a). The spectra calculated for
the same systems with FDTD are shown in Fig. 2(b). One
can see that the FDTD simulation reproduces the analytical
results very well, both on the line shapes and the cross sec-
tion at the plasmon resonances. The FDTD plasmon reso-
nance of the 10 nm radius gold nanoparticle (2.38 eV)
agrees with the expectation (2.39 eV) of the quasistatic ap-
proximation [Re e(w)=-2¢,] very well, as a result of its
smaller size. However, the plasmon resonance redshifts and
broadens as the gold nanoparticle grows larger due to the
phase retardation and the increasing contribution from higher
order modes. The peaks are located at 2.35 eV for the 25 nm
radius particle and 2.29 eV for the 50 nm radius particle. In
the quasistatic approximation, the optical absorption cross
section is proportional to the volume of the particle; there-
fore, the absorption efficiency Q,,=C,,,/ 7> is proportional
to its radius. This relation holds roughly for the gold nano-
particles with radii 10 nm and 25 nm. However, the retarda-
tion effect becomes so significant for the 50 nm radius gold
nanoparticle that its absorption efficiency at resonance is
even lower than the 25 nm radius gold nanoparticle. The
DDA method has also been shown to give quite good results
for similar problems,?? although we found that the cross sec-
tions are consistently less (~10%) than the Mie theory ex-
pectations.
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FIG. 2. (Color online) Absorption spectra of spherical gold
nanoparticles with radii of 10, 25, and 50 nm, all immersed in water
(n=1.33): (a) Mie’s solution and (b) FDTD results. Q,, is the ab-
sorption cross section normalized by the geometrical cross section
ar?. In the FDTD calculations, the spatial resolution was set as
either 0.5 nm (for 10 nm sphere) or 1 nm (for the 25 and 50 nm
spheres).

B. Spheroidal nanoparticles

Optical scattering by an ellipsoid is the next simplest that
can be solved analytically since the boundary conditions can
be treated in ellipsoidal coordinates. It was shown by Gans
that a homogeneous and isotropic ellipsoid is homoge-
neously polarized in the quasistatic limit.>' The polarizabil-
ities along the three principal axes are

l (-_123)
€,+L(e-¢,) 1=

where V is the volume of the ellipsoid, € and ¢, are, respec-
tively, the dielectric constants of the ellipsoid and the me-
dium, and L; are geometric factors defined as

o 3
1
L= f dql 1 a(a; +q)"r",
0 Jj=1

where a; <a, < aj; are the semiaxes of the ellipsoid and §; is
the Kronecker delta.® For a sphere, for example, L;=L,=Ls
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FIG. 3. (Color online) Absorption spectrum of a gold prolate
spheroid with minor axis of 14 nm and aspect ratio of 4.1 calculated
by different methods: the analytical solution of Voshchinnikov and
Farafonov (bold black dashed line), Gans’ quasistatic approxima-
tion (blue dashed line), FDTD simulation (bold black line), and
DDA simulation (red line). The incident light polarization is along
the major axis of the spheroid. Panel (a) shows the spectrum in the
1.4—1.85 eV range and panel (b) shows the the 1.85-3 eV range.
In panel (b) the DDA result and analytical result coincide with each
other. The small oscillation shown on the FDTD result in panel (b)
is because a finite time window is used to collect the scattered
wave, which produces a small ringing artifact in its Fourier trans-
formation into the frequency domain.

=1/3. The absorption cross sections with polarization along
axis i are then given by the optical theorem,

Cabs =kIm «;,

where k is the wave number of the incident light. This model
is still used nowadays to explain the spectra from elongated
nanoparticles, most commonly, nanorods. The solution for
spheroid (a,=a,) in the general case, i.e., finite wavelength
to size ratio, was given by Asano and Yamamoto.? Later, a
new solution was given by Voshchinnikov and Farafonov
which is more computationally efficient.* This solution was
developed for scattering problems and therefore only the far-
field behavior was addressed.

In Fig. 3, we plot the absorption spectrum of a prolate
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spheroid (a;=a,<a;) with minor axis of 14 nm and aspect
ratio of 4.1 using Gans’ solution, the exact analytical solution
of Voshchinnikov and Farafonov, the DDA and FDTD meth-
ods. The fitted dielectric function shown in Fig. 1 is used for
all the calculations. The incident light polarization is along
the major axis of the ellipsoid, so the spectrum of the longi-
tudinal mode is being probed. The exact analytical solution
shows that the longitudinal plasmon mode is at 1.588 eV,
with absorption efficiency Q,,,~30. The efficiency is a di-
mensionless quantity defined as the optical cross section C,
divided by the effective geometrical cross section 7a”, where
the effective radius a= (3V/4m)"3. In Gans’ quasistatic so-
lution, the resonance is noticeably blueshifted to 1.616 eV,
with the absorption efficiency Q,,, being about 10% larger
than the exact result. Such differences contrast with typical
expectations that the higher order modes are negligible since
the dimension of the spheroid in the wave propagation direc-
tion (14 nm) is much smaller than the resonance wavelength
(~780 nm). The quasistatic limit linewidth, however, is in
accord with the exact result, 77 meV.

The FDTD spectrum obtained with 1 nm grid resolution
shows a resonance at 1.560 eV, with absorption efficiency
similar to the exact result. The resonance is redshifted by
28 meV relative to the exact solution. The shift is reduced by
half to 14 meV using a 0.5 nm grid resolution, indicating
that the FDTD simulation is converging to the analytical so-
lution. Both calculations give a linewidth of 76 meV, match-
ing the analytical result very well. For comparison purposes,
the absorption spectrum was also calculated with
DDA.'81930 The result shows the plasmon resonance at
1.567 eV, similar to the FDTD result. The DDA result con-
verges very nicely to the analytical result at higher energies
(>1.7 eV). However, the absorption efficiency is about 17%
smaller than the analytical result. It has been noted that better
convergence can be achieved by further reducing the grid
size to 0.25 nm.2* However, we find that the accuracy in this
case is only slightly improved relative to that in Fig. 3. The
underestimate of the cross section near resonance by the
DDA method is most likely due to the fact that it is known
that the DDA method is less appropriate (i.e., will converge
more slowly) in the limit of large index of refractions index
magnitudes, |n|=|\€|.!” Near the plasmon resonance in Fig.
3(a) (E=1.5eV), |n| is about 5.4, and increases rapidly to-
ward lower energy (Fig. 1). This is also consistent with the
fact that the DDA cross sections are much more accurate at
higher energies where |n| is significantly smaller [Fig. 3(b)].

A few remarks on the relative pros and cons of DDA and
FDTD simulations are in order. We have found that FDTD
calculations can be more time consuming than DDA ones
with the same grid resolution. For example, it takes about
600 node hours (i.e., computation time multiplied by the
number of nodes employed) for the FDTD to obtain the
spectrum shown in Fig. 3. For a frequency-domain DDA
simulation, the computation time depends on the frequency
significantly. At 0.5 nm resolution DDA requires only a few
minutes for each frequency at 2—3 eV, but around 1 h in the
1-2 eV range due to the convergence difficulties in this re-
gion. Altogether, it takes about 100 node hours for the DDA
calculation to get the full spectrum of interest at a 10 meV
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FIG. 4. (a) TEM image of gold nanorods synthesized by a seed-
mediated method and (b) the idealized 3D model assumed for our
calculations. Scale bar=50 nm.

energy resolution. Therefore, DDA is clearly a better method
in the high energy range (2—3 eV) due to its accuracy and
fast convergence. While still faster than the FDTD method at
lower energies, there can be some loss of accuracy in the
DDA results, as noted in the paragraph above. The large
amounts of computer time involved in all these calculations
is required to achieve very high accuracy and quantitative
agreement with experimental results for the nanorod and bi-
pyramid particles to be discussed later. If one is satisfied with
10%-20% agreement in peak positions and intensities, con-
siderably larger grid spacings could be employed. A grid
resolution of 2 nm, for example, four times larger than the
0.5 nm we prefer for high accuracy, results in FDTD simu-
lations that are about 128 times faster when both the fewer
number of spatial and time grid points are considered.

C. Rod-shape nanoparticles

Although spheroidal metal nanoparticles are good from
the perspective of analytical calculations, there are very few
experimental studies available on them due to the difficulty
in chemical synthesis and separation of such particles. Gold
nanorods, however, have been synthesized by various meth-
ods as a replacement to prolate spheroids.!®!> Their optical
properties have been studied extensively at both the en-
semble and single-particle level, and small nanorods can be
approximated by Gans’ theory of small ellipsoidal particles.
Recently, their ultrafast nonlinear optical properties have
been studied with pump-probe techniques, and up to 20%
pump-induced change in scattering cross section was
observed.®

For the FDTD simulations, the nanorod is modeled as a
finite cylinder with both ends capped by hemispheres (Fig.
4). The nanorod modeled this way is very close in shape to
the nanorods observed in transmission electron microscopy
(TEM). The aspect ratio of a nanorod is defined as the ratio
between its total length and diameter. The diameter of the
nanorods is fixed at 14 nm, as typically observed from
experiment.'%! The grid resolution is chosen to be 0.5 nm,
matching the accuracy level of that of the spheroid calcula-
tions above. The simulations are performed for three aspect
ratios of 3.4, 4.1, and 4.8 and give resonance energies (wave-
lengths) as 1.67 eV (741 nm), 1.53 eV (808 nm), and
1.41 eV (878 nm), as shown in Fig. 5(a). The longitudinal
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FIG. 5. (Color online) (a) Absorption spectra of gold nanorods
with diameter of 14 nm and aspect ratios of 3.4, 4.1, and 4.8, cal-
culated by FDTD simulations with 0.5 nm grid resolution and inci-
dent light polarization along the major axis of the nanorods. (b)
Theoretical wavelengths of the longitudinal plasmon resonances
(filled red squares) are compared with experimental values (open
circles with error bars). The line is a least-squares fit to the experi-
mental data.

plasmon resonance redshifts as the aspect ratio increases,
which is consistent with the experimental results. It is found
by experiment that the wavelength of the resonance varies
linearly with the aspect ratio [Fig. 5(b)]. The simulation re-
sults agree with the experimental relation remarkably well.
The plasmon resonance narrows as it redshifts as a result of
reduced contributions from interband transitions. For the
resonances at 1.67, 1.53, and 1.41 eV, the linewidths are,
respectively, 84, 76, and 72 meV, respectively.

D. Bipyramidal nanoparticles

Recently, gold nanoparticles with bipyramidal shape were
synthesized in aqueous solution using a seed-mediated ap-
proach [Fig. 6(a)].!” The colloidal solution has a pronounced
optical absorption feature around 1.5 eV, corresponding to
the longitudinal plasmon resonance of the bipyramids. The
absorption feature is very narrow, with a linewidth of
~0.12 eV, due to the monodispersity of the bipyramidal
nanoparticles in their shape and size. The bipyramids have
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FIG. 6. (a) TEM image of gold bipyramids (some spherical-like particles are also evident). (b) 3D model of a pentagonal bipyramid (left
side) and a radial cross section from its axis to one of its edges (right side).

reasonably sharp tip at their poles, which is promising for
strong field enhancement. The detailed structure of the bi-
pyramid was studied by high resolution transmission electron
microscopy and found to be a pentagonal bipyramid. A three-
dimensional (3D) model of the structure is shown in
Fig. 6(b), with its poles being rounded to fit the shapes
seen by TEM. The parameters used for the model were di-
rectly measured from the TEM images. For the spectra
present in Fig. 7(a), the gold bipyramid has R
(radius at the equator)=15 nm, & (total length)=83.4 nm,
and r (radius at the poles)=3.0 nm. The FDTD calculations
were performed with 0.5 nm grid resolution and gave a lon-
gitudinal plasmon resonance at 1.53 eV, which is in excel-
lent agreement to the experimental extinction spectrum. The
experimental extinction spectrum actually includes both op-
tical absorption and scattering. In the case of the gold bipyra-
mids, the FDTD simulated scattering spectrum (not shown)
has the same line shape and peak position as the absorption
spectrum, but contributes less than 20% to the total optical
extinction. Due to the larger particle size, the calculation can
also be performed at 1 nm grid size, with very small changes
in the results. The linewidth of the resonance is 86 meV,
broader than the corresponding spheroid with similar reso-
nance frequency. This broadening has been also observed
experimentally by dark-field microscopy and can be ex-
plained by the extra radiative damping due to the larger size
of the particle.!” The experimental ensemble spectrum has
another significant peak around 2.3 eV. However, this peak
is most likely due to the spherelike by-products in the solu-
tion, as seen in Fig. 6(a) and not due to a transverse plasmon
resonance as might naively be expected. From the calcula-
tions, the actual transverse plasmon mode of the bipyramid is
quite weak [Fig. 7(a)]. Experimentally, it is also known that
the longitudinal plasmon mode redshifts as the tips of the
bipyramid grow sharper.!® Figure 7(b) shows results for
varying pole radius r, keeping all the other parameters the
same. It clearly shows a redshift as the tip radius varies from
4.4 t0 3.0 and to 2.0 nm.

IV. FIELD ENHANCEMENT AT THE PLASMON
RESONANCE

In FDTD simulations, the field distribution at a given fre-
quency can be obtained by Fourier transformation of the
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FIG. 7. (Color online) (a) The absorption spectra of a gold bi-
pyramid with R=15 nm, £=83.4 nm, and r=3.0 nm by FDTD
simulation: longitudinal mode at 0.5 nm grid size (bold black line)
and transverse mode at 1 nm grid size (blue dashed line). The ex-
perimental extinction spectrum is shown in solid red line for com-
parison. (b) The longitudinal plasmon resonance is redshifted as the
tips of the bipyramid get sharper. There is no change on the other
geometrical factors.
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FIG. 8. (Color online) The field enhancement |E|/|E| at the plasmon resonance (2.38 eV) for a 10 nm radius gold sphere based on (a)
FDTD calculation at 0.5 nm grid size and (b) quasistatic approximation. The propagation of the field is along the x axis and the polarization

is along the z axis. The black ring shows the boundary of the sphere.

time-evolving field. For greater accuracy, we ran separate
calculations that involved a more monochromatic incident
field. The field amplitude is then normalized by the ampli-
tude of the incident field to get the field enhancement
[E|/[E,|.

A. Spherical nanoparticles

This calculation is performed on a 10 nm radius gold
sphere at its resonance frequency (2.38 eV), with the field
enhancement |E|/|Ey| plotted in Fig. 8(a). This result can be
compared with calculations based on the quasistatic approxi-
mation, which should be good enough since the size of the
sphere is much smaller than the wavelength. In this approxi-
mation, the electric field around a homogeneous and isotro-
pic sphere with radius a can be written as

3¢,
E 45+245,,,E0 (r<a) 6
" Eo_e—2em ’ <E0~r> (r>a) ¢
€+2€ r ’

m

where € and ¢, are, respectively, the dielectric constants of
the sphere and the medium and E, is the incident electric
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field. The field enhancement is then calculated for the same
geometry as the FDTD simulation and shown in Fig. 8(b).
The plot from the FDTD simulation is very similar to the
analytical result, only producing small errors at the boundary
due to the “staircasing effect,” i.e., the roughness introduced
by discretizing the sphere on a cubic lattice. Both calcula-
tions show the maximum field enhancement near the surface
to be about 5. The homogeneous internal field enhancement
observed in Eq. (6) is also nicely reproduced by the FDTD
simulation, with a magnitude of about 2.

B. Spheroidal and rod-shaped nanoparticles

Figure 9(a) shows the electric field distribution for a
spheroid obtained with the FDTD method at the longitudinal
plasmon resonance of 1.574 eV using a grid resolution of
0.5 nm. The near field is about the same as the analytical
result recently reported by Calander and Willander.>* The
internal electric field enhancement is approximately uniform
across the particle, with a value around 13.4. This homoge-
neity is followed strictly in the quasistatic approximation, in
which the internal electric field of an ellipsoid is given by?

80

Nanorod
----- Spheroid |+ 1

-30 -20 -10 0 10 20 30
Z (nm)

FIG. 9. (Color online) The field enhancement |E|/|E| at the plasmon resonance of a gold prolate spheroid with minor axis of 14 nm and

aspect ratio of 4.1 calculated by FDTD. The propagation of the field is along the x axis and the polarization is along the z axis. (b) A similar
calculation was performed on the resonance of a gold nanorod with diameter of 14 nm and aspect ratio of 4.1. (c) The field enhancement
along the center axis of the nanorod (black line) is compared with an on-resonance gold prolate spheroid with diameter of 14 nm and aspect
ratio of 4.1 (red dashed line). The boundary between the nanoparticle and the medium is marked by the vertical blue dotted lines.
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FIG. 10. (Color online) The field enhancement |E|/|E| at the plasmon resonances of gold bipyramids with R=15 nm, #=83.4 nm, and
(a) r=3.0 nm or (b) 2.0 nm. The propagation of the field is along the x axis and the polarization is along the z axis. The grid size for the
FDTD calculations is 0.5 nm. The field enhancement along the center axes of the bipyramids are compared in panel (c). The boundary
between the nanoparticle and the medium is marked by the vertical blue dotted lines.

aL EmEO
E=Ey+ —Ej=—7T—"—.
Vv €,+L(e—¢,)

The polarization of the prolate spheroid induces a huge local
field enhancement within its vicinity. The field enhancement
maxima are observed near the poles of the spheroid, to be
larger than a factor of 100. In terms of field intensity |E|?, the
enhancement is thus larger than 10*. The field enhancement
can be observed in quite a large region surrounding the par-
ticle. For example, there is about 1.8 X 10° nm® of space sur-
rounding the particle with the field intensity enhancement
exceeding 1000 and about 2.5 X 10* nm® of space with the
enhancement exceeding 100, while the volume of the particle
is 8.1 X 10° nm?. We found that the corresponding DDA ex-
ternal field distribution (not shown) is very similar to the
FDTD result. However, the field distributions within the par-
ticle were not reliable.

We also performed FDTD calculations on the cylindrical
gold rod defined by Fig. 4(b), with diameter of 14 nm and
aspect ratio of 4.1. The electric field distribution is calculated
at its longitudinal plasmon resonance of 1.533 eV, with the
grid resolution of 0.5 nm [Fig. 9(b)]. The maximum field
enhancement achieved around the nanorod is significantly
smaller than that of the prolate spheroid with the same aspect
ratio, as a result of the smaller curvature of the nanorod at
the poles. However, the comparison may favor the nanorod
better if we look at the volume of field enhancement, instead
of its maximum value. The region of space with field inten-
sity enhancement exceeding 1000 has a volume of about
2.4 103 nm>. However, for field intensity enhancement ex-
ceeding 100, the corresponding volume is 4.0X 10* nm?.
Both values are comparable to the numbers given above for
the case of spheroid, upon the normalization by the volumes
of the particles.

The electric field intensity distribution inside of the nano-
rod is quite different from the spheroid. For the spheroid, the
field enhancement is uniform across the particle with a value
of around 13.4. However, the field enhancement at the center
of the nanorod is about 16 and smoothly decreases to about 4

toward its poles [Fig. 9(c)]. Considering that the shape of
spheroid is just right to “confine” the electric field to be
uniform across the particle, it is not difficult to understand
the field distribution in the nanorod on the qualitative basis
that the cross section of the nanorod does not shrink toward
its poles as fast as the spheroid and therefore the internal
electric field is not well confined. In terms of optical nonlin-
earity due to the internal field enhancement, the nanorod is
therefore not as appealing as the spheroid.

C. Bipyramidal nanoparticles

FDTD calculations are performed on a gold bipyramid
defined by Fig. 6(b), with its dimensions R=15 nm, h
=83.4 nm, and r=3.0 or 2.0 nm. The electric field distribu-
tion is calculated at its longitudinal plasmon resonance of
1.534 eV, with the grid resolution set as 0.5 nm [Figs. 10(a)
and 10(b)]. In the vicinity of the tips, a large local field
enhancement is observed of about a factor of 140. Due to the
larger particle size, the field enhancement area extends more
broadly into the space compared to the nanorod. In terms of
field intensity enhancement, a volume of 5.5 X 10° nm? pre-
sents a field enhancement larger than 1000, and 5.4
X 10* nm? of space has it larger than 100. The maximum
field enhancement is directly related to the curvature of the
tip. For a gold bipyramid with sharper tip (r=2.0 nm), the
enhancement can be over 200 times at its resonance of
1.503 eV [Fig. 10(c)]. In terms of SERS activity, it would be
corresponding to at least 200*=1.6 X 10° times of enhance-
ment, where only the electric field contribution is considered.

As we showed earlier, the internal electric field drops
quickly toward the poles in the case of nanorod. However,
the situation is reversed for the bipyramid. The lowest field
enhancement, which is around six times, appears at the cen-
ter of the bipyramid. For the bipyramid with r=2.0 nm at the
poles, the field enhancement grows up to a factor of 30 near
the poles [Fig. 10(c)]. The effect is less significant for larger
pole radius, but a field enhancement of more than 20 is still
observed for bipyramid with r=3.0 nm. It seems that the
shape of the bipyramid successfully confines the internal
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field so that it rises to very high magnitude toward the poles.
We believe such a significant field enhancement offers the
opportunity for the study of intrinsic optical nonlinearities in
this metal nanoparticle. For instance, in terms of third order
nonlinearity, the effect is proportional to the square of the
field amplitude. Therefore, the nonlinearity observed in a bi-
pyramid can be four times larger than a spheroid with the
same resonance frequency, and much larger than the nano-
rod.

V. CONCLUSION

In this paper, we analyzed the optical properties of gold
nanorods and bipyramids with the aid of rigorous computa-
tional electrodynamics methods. For this purpose, we carried
out a variety of FDTD calculations, as well as some DDA
calculations. Comparisons with various exact and approxi-
mate analytical results, and some experimental results, were
also made.

By comparing simulation results on near-field and far-
field properties of spheres and spheroids where exact analyti-
cal results were available, we deduced criteria for obtaining
good accuracy. For achieving the highest accuracy (~2 %) at
the photon energies (~1.5 eV or 827 nm) of interest, where
the magnitude of the metal’s dielectric constant is high, the
FDTD method was found to be most appropriate. The com-
putationally faster DDA approach, however, is still semi-
quantitative (~15%) in this limit and is significantly more
accurate at higher energies.

For the FDTD simulations on gold nanorods and pentago-
nal bipyramids, the computed spectra agreed very well with
experimental results. The simulations showed a huge local

PHYSICAL REVIEW B 76, 235428 (2007)

electric field enhancement around the poles of the elongated
nanostructures at their longitudinal plasmon resonance. The
poles with larger curvature showed stronger field enhance-
ment. In particular, the pentagonal bipyramid showed the
largest field enhancement of a factor of about 200 making it
a promising candidate for enhanced Raman and fluorescence
spectroscopies.

Field enhancements within metal nanoparticles have not
been discussed much in the literature, but are relevant to
understanding metallic nonlinear optical responses. We
therefore used the FDTD method to learn about the nature of
the electromagnetic fields inside the metal nanoparticles of
interest to us. (The DDA approximation was found to give
less reliable results concerning these fields.) The field en-
hancement inside a nanoparticle is found to be very sensitive
to its shape. The field amplitude drops quickly toward the
poles in the case of nanorod, but increases quickly for the
bipyramid, while being nearly uniform for a spheroid. Sig-
nificant internal field enhancement was found for the gold
bipyramid with sharp tips, with the amplitude up to a factor
of 30. We thus expect that the field enhancement will lead to
pronounced ultrafast optical nonlinearity in this very unique
nanostructure.
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