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ripplon and phonon degrees of freedom. The microcanonical temperature and the ripplon angular momentum
level density are also evaluated. The approach is based on inversions and systematic expansions of canonical
thermodynamic properties.
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I. INTRODUCTION

Important dynamical processes in finite systems such as
nuclei, polyatomic molecules, nanoclusters, atomic clouds,
and droplets frequently turn out to be statistical in nature:
evaporation/fragmentation, radiation, emission of electrons,
and equilibration between internal degrees of freedom or be-
tween host and solvent molecules. When such a system is
thermally isolated, e.g., when flying in a beam or suspended
in a trap, the proper statistical-mechanics treatment is that of
the microcanonical ensemble where the energy E is fixed and
not the temperature of an external heat bath. The density of
states, or level density, ��E�dE represents the number of
quantum states between energy E and E+dE. For separable
degrees of freedom, this is the number of normal mode com-
binations such that their energies add up to a total internal
energy lying in this interval. This function plays a crucial
role in the thermal description of microcanonical systems.
For low excitation energies, ��E� can be represented by a
sum of delta functions, corresponding to excitations of only a
few of the individual modes, but for even moderate excita-
tion energies, the density of these delta functions becomes so
large that it is well described as a continuous function of
energy. In this situation, it is most convenient to use a den-
sity smoothed over the discreteness of the energy levels. In
addition to energy, systems described with the microcanoni-
cal ensemble have a conserved total angular momentum, so
the correspondingly resolved density of states, ��E ,J�, is of-
ten of relevance.

Free liquid helium nanodroplets1,2 represent an interesting
system for a statistical treatment. One reason is that helium is
the only element which cannot be described in terms of clas-
sical dynamics for any internal degrees of freedom under the
experimental conditions used to study the droplets. This
makes the system interesting in its own right. For example,
“magic number” maxima in the size distributions of small
4He clusters have been shown to correlate with the ability of
the cluster to accommodate elementary excitation modes.3 A
second reason is the use of the droplets as microcryostats
used to investigate other clusters and molecules. Evaporative
cooling generates internal energies corresponding to tem-
peratures of �0.4 K and is used to thermalize impurities to
this otherwise unreachable temperature for gas phase mol-

ecule and cluster beams. Understanding these processes re-
quires accurate density-of-states expressions for the elemen-
tary excitation spectrum.

The calculation of level densities requires that the excita-
tion spectrum is known. At low temperatures, the relevant
normal modes of 4HeN clusters within the liquid drop model
are ripplons which are quantized capillary surface waves,
and phonons which are quantized bulk compression waves.4

For large droplets, these modes are separable to a good
approximation,5 a fact that greatly facilitates a statistical
analysis of the excitation spectrum. For a spherical droplet,
both ripplon and phonon modes possess well-defined eigen-
value spectra characterized by angular momentum for rip-
plons, and angular momentum and mode index for phonons.
A calculation of the total density of states requires enumera-
tion of all possible normal mode combinations, with indi-
vidual energies and angular momenta adding up to a given
total E and J.

A leading-order evaluation of ��E� for ripplons was car-
ried out by Brink and Stringari.6 Subsequently, Lehmann7

presented a comprehensive discussion of the densities of
states for ripplons and phonons computed by direct numeri-
cal counting, and showed that the resultant plots of the loga-
rithm of the level densities could be well parametrized by
polynomial fits. These fits were then used to calculate other
thermodynamic functions and to analyze droplet cooling
with angular momentum conservation constraints.8,9

In this paper, we show that accurate density of states func-
tions can be obtained by analytic evaluation. This is appeal-
ing in its own right, as the calculations take advantage of
several elegant and generally useful tools from the literature.
In addition, having analytic expressions for various types of
elementary excitations provides a systematic method for
treating situations where several types of normal modes are
excited simultaneously, or when the spectrum of elementary
excitations is modified.

The plan of the paper is as follows. In Sec. II, we calcu-
late the ripplon density of states as a function of energy, Sec.
III considers its angular momentum dependence, Sec. IV is
devoted to phonon excitations, Sec. V to the angular momen-
tum of phonons, and Sec. VI to the total ��E� function. Sec-
tion VII comments on the similarity between the spectra con-
sidered here and those of multielectron bubbles in bulk liquid
helium, and presents a summary.
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II. RIPPLON DENSITY OF STATES

As mentioned above, ripplons are quantized waves on the
droplet surface. For a spherical liquid drop, the elementary
excitation spectrum is given by10

�� = ��0
���� − 1��� + 2� . �1�

Here, ��2 is the angular momentum quantum number of the
wave and

�0 =� �t

DR3 =� 4��t

3maN
, �2�

where �t is the coefficient of surface tension, D the mass
density, R the droplet radius, ma the atomic mass, and N the
number of atoms in the droplet. If the parameters of bulk
liquid helium are used, we have ��0��3.8 /�N�K in tem-
perature units.7 Below, the ripplon energy will be expressed
in dimensionless units scaled to the quantity ��0. Each mode
has a degeneracy of �2�+1�.

A. Canonical approximation

A first approximation to the level density can be derived
in the canonical ensemble picture, where it is assumed that
the system possesses a definite temperature T, and the sys-
tem’s internal energy is associated with its most probable
value. The energy density of states of a finite system is then
given by6,11–13

��E� =
eS

�− 2���E/���
, �3�

where ���kBT�−1 and

S = �E + ln Z �4�

is the entropy; Z is the canonical partition function. In the
following, we will use units where kB=1. The square root
appearing in the equation involves the heat capacity and ap-
pears because the canonical entropy includes an approxi-
mately Gaussian integral over the thermally populated states
with a width given by the heat capacity and the temperature,
see, e.g., Ref. 13.

Since the ripplon elementary excitations are bosons, we
have

ln Z = − �
�=2

�max

�2� + 1�ln�1 − e−���� . �5�

The canonical thermal energy of the ripplon ensemble is

E = − ��ln Z�/�� . �6�

To leading order, we can replace the sum in Eq. �5� by an
integral from zero to infinity, and approximate the energy
eigenvalues �Eq. �1�� by ����3/2. The integral then straight-
forwardly evaluates to

ln Z = 		7

3


	7

3

�−4/3 = 1.685�−4/3, �7�

and from Eq. �6�, the �dimensionless� energy is

E = 2.247�−7/3. �8�

Assembling everything into Eq. �3� and expressing the
answer in terms of the energy, we find

�rip�E� � 0.311E−5/7 exp�2.476E4/7� , �9�

which is the same answer as in Ref. 6.

B. Microcanonical ensemble

The above calculation can be improved in two places.
One obvious refinement is to evaluate the sum �Eq. �5�� with
greater care and to use more precise eigenvalues. A deeper
conceptual question is how to compute thermodynamic
quantities for a finite isolated system for which the total in-
ternal energy is a conserved quantity and not an expectation
value and the use of “temperature” must be carefully defined.
A thorough discussion was given by Andersen et al. in Ref.
13 with the conclusion that the convenient canonical formal-
ism may be retained, but the canonical expression for the
energy �Eq. �6�� must be corrected as follows:

E = − ��ln Z�/�� − �−1. �10�

Here, E is the fixed excitation energy of the system and � is
understood as the “microcanonical temperature” defined as

� � ��ln ��E��/�E . �11�

The procedure taken is as follows. First, the sum in Eq.
�5� is calculated using the first three terms of the Euler-
Maclaurin summation formula.14 With the form of the spec-
trum given in Eq. �1�, this formula becomes

− ln Z = �
2

�

�2� + 1�ln�1 − e−����d� +
5

2
ln�1 − e−��2�

−
1

12
� d

d�
��2� + 1�ln�1 − e−������

�=2
+ ¯ . �12�

The upper limit, �max, has been set to infinity as before. The
actual value is on the order of �max�2�R /�min�2�R / �2d�,
where � is the wavelength and d is the interatomic distance.5

In the liquid drop approximation �R=N1/3d /2�, one then has
�max��N1/3 /2. In view of Eqs. �1� and �2�, this yields a
size-independent ripplon Debye temperature of �max�7.5 K.
Using this value to estimate the error in ln Z, the leftover
terms are found to be on the order of ���max /4
−7�max /6�exp�−��max�. For T=1 K, this is a relative contri-
bution to ln Z of less than 10−2 /N1/3 which will be ignored.

A tedious calculation of Eq. �12� involving expansions of
exponentials in powers of � is given in the Appendix. The
result is

ln Z = 1.685�−4/3 + 0.639�−2/3 −
349

96
+

7

3
ln�2�2�� + ¯ .

�13�

The first term coincides with Eq. �7�, and the rest are finite-
size and spectral corrections. Note that all the numerical co-
efficients derive from explicit expressions involving special
functions. The expansion Eq. �13� has been checked against
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a numerical sum. The comparison is shown in Fig. 1 for
Helmholtz free energy, F=−T ln Z. Already at temperatures
where T is equal to the lowest excitation energy �2=��0

�6
is the free energy well represented by the above expression.
At higher energies, the agreement improves monotonically.

Knowing the partition function, we can now use Eq. �10�
to determine the relation between the microcanonical energy
and temperature,

E = 2.247�−7/3 + 0.426�−5/3 −
10

3
�−1. �14�

Again, the first term reproduces Eq. �8�.
In order to proceed with the calculation of the entropy, the

heat capacity and the level density in Eq. �3�, we need to
invert relation �14� which expresses E��� to get ��E�. This is
done by the iterative method of successive approximations,
as outlined in the Appendix. The result is an expansion for
�−1 in powers of E−2/7,

�−1 = 0.7069E3/7 − 0.072 39E1/7 + 0.7212E−1/7 + ¯ ,

�15�

where the coefficients are calculated from those entering Eq.
�14�. Now, the prefactor and the exponent in Eq. �3� can be
evaluated using Eqs. �4�, �13�, and �14� and ��E�, finally
yielding

�rip�E� = 0.205E−12/7 exp�2.476E4/7 + 0.507E2/7� . �16�

Let us emphasize again that all the numerical coefficients
encode analytical expressions.

Equation �16�, which is the main result of this section,
may be compared with the canonical approximation �Eq.
�9��, an exact numerical count carried out with the help of the
Beyer-Swinehart algorithm,15 and the form written down in
Ref. 7 as an empirical fit to the numerical count in the inter-
val E=50–2500. Figure 2 shows such a comparison and

demonstrates that the analytical expression gives an excellent
representation of the exact result.16

III. RIPPLON ANGULAR MOMENTUM DENSITY

The next step is to generalize the ripplon state density to a
function which is not only energy but also angular momen-
tum resolved. This problem has been comprehensively stud-
ied in nuclear physics.11,12 One way of visualizing the net
angular momentum of a large distribution of excitations with
varying �� ,�z� is as the result of random angular momentum
coupling, in which case the central limit theorem applies and
one expects to find a normal distribution. Indeed, the above
references show that ��E ,J� is essentially a product of ��E�
and a Gaussian factor,

��E,J� = ��E�
2J + 1

2�2��1/2�3e−J�J+1�/2�2
. �17�

It is permissible here to replace J�J+1� by �J+ 1
2

�2.
It is still necessary to establish the variance �2. An elegant

way to do this to leading order by means of an extended
grand canonical distribution is described in Bethe’s review,11

where the method is applied to a system of noninteracting
fermions in a spherical potential box. Here, we follow the
same procedure for a system of bosonic ripplon excitations.

The idea is to first evaluate the projection M of the net

angular momentum J� of the droplet in terms of the contribu-
tions of individual normal modes at temperature T. The fact
that M is a conserved quantity is accounted for by a separate
Lagrange multiplier or a “chemical potential” , such that

 = − �S/�M �18�

�S is the entropy�. We can calculate M directly by summing
over all modes,

FIG. 1. The �negative of� the ripplon free energies, calculated
with Eq. �13� �dotted line� and the summation in Eq. �5� �full line�
which is exact apart from setting the upper limit to infinity. The
temperature corresponding to the energy of the lowest excitation �2

is indicated.

FIG. 2. Comparison of the ripplon level densities calculated
according to Eq. �16� �full line� and Ref. 7 �dashed for E�2500 and
dotted line for E�2500�. The fit in Ref. 7 was limited to energies
between 50 and 2500 in the reduced units used here and is calcu-
lated as the derivative of the numerical fit to the integrated level
density. The expressions have been divided by the exact Beyer-
Swinehart result, causing the oscillatory behavior at low energy, and
the curves plotted are the logarithms of these ratios. The curve of
Ref. 6 �not shown� is around 3.
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M = �
�=2

�

�
m=−�

�
m

e���−m − 1
� �

0

�

d��
−�

� mdm

e��3/2−m − 1

�19�

�in reduced energy units�. Expanding the integrand to first
order in ,11 we find

M =
20

27
		5

3


	5

3

�−4/3, �20�

and Eq. �8� allows us to express the result in terms of the
droplet energy. To leading order, we have

 = 1.776ME−8/7. �21�

Now, we can use Eq. �18� with Eq. �21� to obtain the entropy
variation,

S�E,M� = S�E,0� − M2/�2�2� , �22�

with

�2�2�−1 = 0.888E−8/7. �23�

The second term in Eq. �22� leads to a normal distribution
in M. The distribution in J can be shown to have the same
variance.11,12 Therefore, Eqs. �17� and �23� define �rip�E ,J�.

The numerical evaluation of the rotational density of
states in Ref. 7 led to essentially the same form of the state
density function, with the factor corresponding to �2�2�−1

fitted as 0.868E−8/7+0.964E−13/7, which affirms the analytical
result �Eq. �23��: the factors deviate by less than 2% for E
=100–2500.

A shorter estimate of the variance is illustrative. The num-
ber of quanta in one mode �� ,m� is on the order of T /�� for
levels up to ��T and zero for higher quantum energies. The
total number of excited quanta is then

n � �
�=2

T2/3

�2� + 1�T/�3/2 � 4T4/3, �24�

where the sum was approximated by an integral and T is
written in terms of the �0 unit. With the energy-temperature
relation �Eq. �14��, we get the leading order value for energy
per quantum �e�=E /n=2.247T /4, and from this, an average
of ���= �e�2/3=T2/3�2.247 /4�2/3. The standard deviation � of
� is then, according to the “random walk” argument used
above, �=�n���. Inserting the calculated ��� and expressing
the result in terms of the total energy, one has

�2�2�−1 = 2−1/3�2.247�−4/21E−8/7 = 0.68E−8/7, �25�

in surprisingly sensible agreement with the above result.
One may seek to describe the angular momentum distri-

bution in the language of a rotational energy and a moment
of inertia I, associating12 the exponential in Eq. �17� with a
Boltzmann factor involving ��2J�J+1� / �2I�, i.e., I=�2��2.
Using the canonical-ensemble results �Eqs. �8� and �23��, we
can express the “ripplon moment of inertia” in terms of the
ripplon excitation energy �in reduced units�,

I = 0.797E5/7. �26�

IV. PHONON DENSITY OF STATES

Surface ripplons are the lowest-temperature droplet exci-
tations; bulk phonons appear next. These are compression
sound waves which arise as solutions of the wave equation
within the volume of the spherical drop. As such, their ener-
gies are given by

�n,� = �ukn,�, �27�

where u is the speed of sound and the wave number kn,� is
determined by the boundary condition at the surface. If the
Dirichlet boundary condition is adopted,5,7 then kn,�=an,� /R,
where an,� is the nth root of the j� spherical Bessel function.
For a free surface, a more appropriate boundary condition is
the Neumann one, in which case kn.�=an,�� /R, with an,�� the
root of the Bessel function derivative j��. The energy scale is
set by the longest wave length, i.e., k�� /R, so we can ex-
press phonon energies in units of

�̃ = �u�/R , �28�

which works out to �̃= �25.5N−1/3�K in temperature units if
the speed of sound in bulk 4He is used.7 The leading-order
behavior of the phonon state density can be determined in a
straightforward way by invoking the standard expression for
the Debye heat capacity �per unit volume� of bulk phonons,17

Cbulk =
2�2

15

kB
4

�3u3T3. �29�

Multiplying this by 4�R3 /3 and using the fact that �in the
canonical framework� C=�E /�T and �kBT�−1=�S /�E, we
can use integrations to express S in terms of E. Then, from
Eq. �3�, we find that to first order, ln �ph�E��S�E�
=3.41E3/4. This matches the leading term of the fit to a direct
numerical count in Ref. 7 which is 3.331E3/4.

The Debye temperature for phonons in liquid 4He is
�25 K,22 corresponding to a total phonon thermal energy
�from Eq. �31�� of �1000N K. We can therefore use the low
temperature approximation throughout.

The prospect of refining the calculation by analytically
evaluating a statistical sum over the precise spectrum �Eq.
�27�� may seem bleak, as the Bessel function roots which
‘‘contribute in an essential manner are just the zeros for
which the usual formulas �such as McMahon’s expansion�
are bad approximations.’’18 However, rescue comes from an
elegant mathematical framework known as the Weyl
expansion.18–20 It provides a systematic expression for the
smoothed density of eigenmodes in a finite cavity in terms of
volume, surface, and curvature terms. As described in the
above references, this is a very general theory, valid for both
scalar and vector wave equations, and applicable to a wide
variety of physical phenomena.

Reference 21 applied this formalism to the specific heat of
metal nanoparticles. The finite-size correction to the specific
heat �Eq. �29�� derived there is immediately usable for our
droplet problem,
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C = Cbulk ±
9
�3�

4�

kB
3

�2u2

T2

R
+

1

6

kB
2

�u

T

R2 . �30�

The � sign applies to the Neumann and the � sign to the
Dirichlet boundary conditions. Although we focus on the
Neumann condition, the Dirichlet case will be included for
completeness.

We now follow almost the same sequence as in the bulk
limit described above: Eq. �30� is multiplied by the droplet
volume and integrated once to obtain �with E and T in units
of �̃�

E�T� =
2�6

45
T4±
�3��2T3 +

�2

9
T2, �31�

and a second time to obtain S�T� as S=�0
T�C /T��dT�. The

first function is inverted by iteration to yield

T�E� = 0.391E1/4�0.069 − 0.006E−1/4. �32�

�Calculating T�E� instead of ��E� is more convenient in this
case.� Equation �3� is then used to obtain the density of
states. The calculation is done to the first three orders in E, in
correspondence to the three terms in the heat capacity expan-
sion �Eq. �30��. The microcanonical correction �Eq. �10�� in
the present case turns out to contribute only in the next order
of smallness. The result of the calculation is as follows:

�ph�E� = AE−5/8 exp„3.409E3/4±0.908E1/2 + 0.482E1/4
… .

�33�

Once again, the � sign is for the Neumann boundary condi-
tion on the phonon wave at the droplet surface and the � for
the Dirichlet condition. Using the bulk canonical heat capac-
ity in Eq. �30� gives a preexponential factor of A=0.26.

Figure 3 compares the exact Beyer-Swinehart count for
the phonon spectrum with the full Eq. �33� and with the level
density based on the bulk Debye heat capacity �Eq. �29��,
i.e., where only the first term in the exponent is present.
Figure 4 shows a more detailed comparison of Eq. �33� and
the exact-count phonon level density. We find good agree-
ment between the analytical expression and the exact com-
putation, although not as good as for the ripplon case.

The estimate of the prefactor A in Eq. �33� cannot be
expected to be correct because it does not include higher-
order expansion terms in the exponent that would yield
corrections of the same order. A comparison with the numer-
ical count suggests a correction in the form of a factor
exp�−0.62E0.2�. Although this correction is larger than the
error found for the ripplon level density, it is nevertheless
still relatively small. An effective value of A�0.05 can be
used for energies below 400.

V. PHONON ANGULAR MOMENTUM DENSITY

A computation of the angular momentum resolved pho-
non level density suffers from the difficulties with expressing
the lowest Bessel function eigenvalues with a simple func-
tional form. In contrast to �ph�E� there is, to our knowledge,
no solution in the literature for this problem. As will be clear
from the results presented in Sec. VI below, the contribution

to the level density from the phonons is minor compared to
that of the ripplons, and the required precision in the calcu-
lation of the angular specified phonon contribution is there-
fore correspondingly smaller. In this section, we will make
an order of magnitude estimate, based on the leading order
term of McMahon’s expansion of the roots of the Bessel
functions.14 For the Neumann boundary condition, the roots
are �n+� /2−3 /4����n+� /2��. With the phonon energy
scale used �Eq. �28��, the quantum energies are thus n+� /2.
When states with energies up to T are averaged, the linear
dependence of the quantum energy on � gives an average
value of ����T. Since the n dependence also is linear, the
constant of proportionality is on the order of unity. The total
number of states below energy T is on the order of T3. Com-
bining these estimates gives, using the same type of random
walk estimate as Eq. �25� for the ripplons, that

FIG. 3. Phonon level densities calculated according to the exact
Beyer-Swinehart count �open circles�, Eq. �33� �full line�, and the
level density derived from the bulk Debye heat capacity, i.e., cor-
responding to Eq. �33� but including only the first term in the ex-
ponential �dashed line�.

FIG. 4. A comparison of Eq. �33� and the exact-count phonon
level density, showing essentially the relative difference in the en-
tropy of the phonon system in the two calculations.
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�2�ph
2 �−1 �

1

T3T2 = 	2�6

45

5/4

E−5/4 � 100E−5/4. �34�

The ratio of the �’s for the phonons and ripplons �here de-
noted �rip� with the leading order terms in the caloric curves
Eqs. �14� and �31� and the proper energy scaling is

�ph

�rip
� 0.002�T �K��7/6N1/6. �35�

This is small compared to unity up to extremely large
droplet sizes. The conclusion that the width of the phonon
angular momentum distribution can be ignored holds very
well, even if the estimate of the width were incorrect by as
much as an order of magnitude.

VI. COMBINED LEVEL DENSITY

A helium droplet may have both ripplon and phonon os-
cillations excited at the same time �and, at higher tempera-
tures, rotons as well1�. The coupling between these normal
modes is weak at bulk liquid surfaces23 and in large
droplets;5 thus, their energy contents may remain indepen-
dently defined for some length of time, and the individual
state densities will then come from Eqs. �16� and �33�. The
question of equilibration dynamics of excitations in super-
fluid droplets and the relevant time scales is a very interest-
ing one, and has not yet been addressed in detail. Below, we
discuss an estimate of state densities in circumstances when
the ripplon and phonon excitations do achieve statistical
equilibrium.

In principle, the level density of combined excitations can
be calculated by the method used in Sec. II for the ripplon
degrees of freedom alone. This would be a very involved
procedure because the ripplon and phonon quantum energies
have different dispersion relations and scale differently with
size. Alternatively, one can calculate the level density as a
convolution. In this task, one also benefits from formulating
the general problem in terms of the microcanonical tempera-
ture. The convolution to be performed is

��E� = �
0

E

�rip�E − ���ph���d� . �36�

For not extremely large droplets, the largest part of the exci-
tation energy resides in the ripplons. Indeed, the ratio be-
tween the energies of the ripplon and phonon subsystems is
canonically,

Eph

Erip
� 6.8 � 10−3N1/3�T �K��5/3 �37�

�temperature expressed in kelvins�. It is clear that for tem-
peratures under 1 K �i.e., those which lie safely below the
Debye cutoff values specified above and below the onset of
roton modes� and droplets of up to several tens of thousands
of atoms in size, the phonon energy contents is a fraction of
the ripplon energy. Under these conditions, one can treat the
ripplon degrees of freedom as a heat bath and calculate the
phonon contribution with an expansion of the integrand of

Eq. �36� around some small phonon energy. We will use the
simplest choice of zero phonon energy, and to increase the
precision, we expand the logarithm of the level density.
Thus,

��E� = �
0

E

�rip�E�exp�− �
d ln��rip�E��

dE

+
1

2
�2d2 ln��rip�E��

dE2 − ¯ ��ph���d� . �38�

The upper limit of the integral can be replaced by infinity
without serious loss of precision because the integrand peaks
well below this value. We recognize the first derivative in the
exponential as the microcanonical temperature 1 /T of the
ripplon system at energy E �see Eq. �11��, and therefore have

��E� = �rip�E��
0

�

e−�/T�ph���

�exp�1

2
�2d2 ln��rip�E��

dE2 + ¯ �d� . �39�

The second exponential in the integrand can be expanded,
with the integral of the first term yielding the phonon canoni-
cal partition function at T, Zph�T�,

��E� = �rip�E��Zph�T� + �
0

�

e−�/T�ph���

��1

2
�2d2 ln��rip�E��

dE2 + ¯ �d�� . �40�

To leading order and ignoring the difference between the
canonical and microcanonical temperatures, this simplifies to

��E� = �rip�E�Zph�T��1 −
Cph

2Crip
−

Eph
2

2CripT
2 + ¯ � . �41�

Hence, the ratio of the term which is second order in � to the
zero order term in Eq. �40� is approximately

Cph

2Crip
+

Eph
2

2CripT
2 = 6 � 10−3�T �K��5/3N1/3

+ 4 � 10−6�T �K��14/3N4/3. �42�

For not excessively large or warm droplets, we can leave out
the correction terms and thus have

��E� = �rip�E�Zph�T� , �43�

where Zph�T� as stated above is the phonon canonical parti-
tion function at the microcanonical ripplon temperature cor-
responding to the ripplon energy E.

The exponential part of the phonon canonical partition
function can be calculated, e.g., by integration of the stan-
dard relation Eq. �6� with the caloric curve in Eq. �31�. This
procedure does not determine the integration constant which
translates into a multiplicative constant on the total level
density �Eq. �43��. This constant c is approximately the prod-
uct of the preexponential from Eq. �33� and the prefactor that
appears in Eq. �3� �i.e., the value given by a saddle point

HANSEN, JOHNSON, AND KRESIN PHYSICAL REVIEW B 76, 235424 �2007�

235424-6



expansion of the phonon level density in the calculation of
the canonical partition function�. The result is

c � �2�T2CphAE−5/8, �44�

where Cph is again the phonon heat capacity. The leading
order expressions for the phonon parameters Cph�T� and
Eph�T� give, taking into account the different scaling of en-
ergies for phonons and ripplons, the total level density

��E� = �rip�E�0.526N1/6 exp�0.047 13N−1/2T3

+ 0.013 17N1/3T2 + 0.1634N1/6T� , �45�

with the equation given in ripplon energy units and T
=T�E� given by Eq. �15�. The constant of 0.05 for the pho-
non level density preexponential, mentioned at the end of
Sec. IV, was used here also.

This result is compared with the numerical convolution
for N=103 in Fig. 5. The numerical convolution was also
calculated for N=104 with a similar outcome.

One remark about Eqs. �43� and �45� is in order: These
equations should only be used for calculations of microca-
nonical properties. For the calculation of canonical proper-
ties one should use the product partition function, Zripp,ph
=ZripZph. A naive application of Eq. �45� in a calculation of
the partition function of the combined ripplon-phonon sys-
tem will give a divergent result at all temperatures. The ori-
gin of this divergence is the breakdown at high excitation
energies of the approximations leading to the equation.

VII. CONCLUSIONS

We have presented an analytical evaluation of the statis-
tical density of state functions of the elementary excitations
�surface ripplons and volume phonons� of isolated liquid-
drop helium nanoclusters. These functions are expressed in
terms of microcanonically conserved quantities: energy and

angular momentum. The obtained formulas accurately match
numerically computed curves as the energy level densities
vary over �150–300 orders of magnitude.

Other interesting helium systems to which the results may
be applicable include micron-sized superfluid fog24 and mul-
tielectron bubbles in liquid helium. The latter are spherical
voids inside bulk He, with a thin shell of electrons lining the
inner wall �see, e.g., Refs. 25 and 26 and references therein�.
They can undergo small-amplitude shape oscillations, i.e.,
ripplons, whose frequency under zero external applied pres-
sure has the form ��

2� ��2−1���−2�, which for large � ap-
proaches the same form as the droplet ripplon dispersion
�Eq. �1��. This implies that the statistical mechanics of these
bubbles should be similar to that of nanodroplets. One dis-
tinction is that the bubble is submerged into a bulk helium
thermal bath; therefore, for them the canonical ensemble
treatment is rigorously correct and not just a convenient ap-
proximation.

Finally, it should be pointed out that the results obtained
in the present paper have a universal form and are expressed
in terms of dimensionless scaled energies; therefore, they are
generally applicable to the statistics of droplets of various
substances besides helium.
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APPENDIX

This appendix outlines details of the calculation per-
formed between Eqs. �12� and �13� in the main text of the
paper, and the inversion of the energy-temperature relation.

Evaluating the derivative in Eq. �12�, we have, using L to
denote the angular momentum,

ln Z = − �
2

�

�2L + 1�ln�1 − e−�EL�dL

−
7

3
ln�1 − e−�E2� +

5

12

��e−�E2
dEL

dL
�

L=2

1 − e−�E2
, �A1�

where �dEL /dL�L=2=7�2 /4 and E2=�8. In the high energy
limit, the last two terms can be expanded to leading order in
�, and they add up to 35 /96− �7 /3�ln��2�2�.

Next, the integral in Eq. �A1� needs to be evaluated, and
this must be done beyond the leading order. The first step is
a partial integration,

− �
2

�

�2L + 1�ln�1 − e−�EL�dL = − ��L2 + L�ln�1 − e−�EL��2
�

+ �
2

�

�L2 + L�
�

dEL

dL

e�EL − 1
dL .

�A2�

FIG. 5. The convoluted level densities for phonons and ripplons
for droplet size 103. The numerical convolution is the full line, and
the approximate result in Eq. �45� is the �hardly discernible� dashed
line. The level densities for ripplons alone �dotted line� is given for
reference. The arrow indicates the energy content of the combined
ripplon-phonon system in equilibrium at a temperature of 1 K.
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The term in brackets is �6 ln�2�2��, and the second term
is calculated by changing the integration variable to EL, be-
coming �E2

� �L2+L���e�EL −1�−1dEL, with �L2+L� considered
a function of EL. The relation between EL

2 and L is a cubic
equation and can be solved in closed form, but it is more
instructive to use an iterative procedure �which below also
will be applied to inverting the function E���� as follows.
Equation �1� can be rewritten as L= �EL

2 −L2+2L�1/3 and ex-
panded to give

L � EL
2/3�1 −

1

3

L2

EL
2 +

2

3

L

EL
2 −

1

9
	 L2

EL
2
2� . �A3�

This equation is used iteratively to eliminate all L’s ap-
pearing on the right-hand side; after some algebra we get, to
the same order in EL,

L = EL
2/3 −

1

3
+

7

9
EL

−2/3, �A4�

The integral on the right-hand side of Eq. �A2� then becomes
equal to

�
E2

� 	EL
4/3 +

1

3
EL

2/3 +
4

3

 �

e�EL − 1
dEL. �A5�

The first two integrands are well behaved at zero and the
corresponding integrals can be calculated as

�
E2

�

EL
2n/3 �

e�EL − 1
dEL = �

0

�

EL
2n/3 �

e�EL − 1
dEL

− �
0

E2

EL
2n/3 �

e�EL − 1
dEL, �A6�

with n=1,2. The second of these can be approximated by
expanding the exponential to leading order in �EL and evalu-
ates to �3 /2n�E2

2n/3. The integrals from zero to infinity, in
turn, are equal to �setting x=�EL�

�−2n/3�
0

�

x2n/3 1

ex − 1
dx = �−2n/3cn, �A7�

where the numerical constants can be expressed as

cn = �
0

�

x2n/3�
j=1

�

e−jxdx = �
j=1

�

j−2n/3−1�
0

�

x2n/3e−xdx ,

�A8�

which is just a product of a sum and an integral �gamma
and zeta functions�. The values are c1=1.917 00, . . . and
c2=1.684 94, . . . .

Now, the last term in integral �A5�, with x=�EL and leav-
ing out the factor 4 /3, is

�
�E2

� 1

ex − 1
dx = �

�E2

�

�
j=1

�

e−jxdx = �
j=1

�
e−j�E2

j
= − ln�1 − e−�E2�

� − ln��E2� = − ln�2�2�� . �A9�

Collecting all the parts of Eq. �A5� and combining them
in Eq. �A2� with its previously evaluated first term, we find
that therefore

− �
2

�

�2L + 1�ln�1 − e−�EL� � c2�−4/3 +
c1

3
�−2/3 − 4

+
14

3
ln�2�2�� . �A10�

Finally, bringing together all the parts of the Euler-
Maclaurin expansion in Eqs. �12� and �A1�, and keeping only
terms of consistent orders of magnitude give

ln Z � c2�−4/3 +
c1

3
�−2/3 −

349

96
+

7

3
ln�2�2�� . �A11�

This is Eq. �13�. Equation �14� for E��� follows directly
from it with the help of Eq. �10�,

E =
4

3
c2�−7/3 +

2

9
c1�−5/3 −

10

3
�−1. �A12�

To invert this equation, we again follow the iterative
method and rewrite it as

�−1 = 	 3

4c2

3/7	E −

2

9
c1�−5/3 +

10

3
�−1
3/7

. �A13�

Expanding this to the desired order and iterating, after a
straightforward but tedious calculation, we arrive at

�−1 = 	 3

4c2

3/7

E3/7 −
2

21
c1	 3

4c2

8/7

E1/7

+ �	 2

21
c1
2	 3

4c2

13/75

3
+

10

7
	 3

4c2

6/7

−
8

49 � 27
c1

2	 3

4c2

13/7�E−1/7. �A14�

This is Eq. �15�.
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