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A rigorous theory for the determination of the van der Waals interactions in colloidal systems is presented.
The method is based on fluctuational electrodynamics and a multiple-scattering method which provides the
electromagnetic Green’s tensor. In particular, expressions for the Green’s tensor are presented for arbitrary,
finite collections of colloidal particles, for infinitely periodic or defected crystals, as well as for finite slabs of
crystals. The presented formalism allows for ab initio calculations of the van der Waals interactions in colloidal
systems since it takes fully into account retardation, many-body, multipolar, and near-field effects.
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I. INTRODUCTION

The van der Waals �vdW� interactions are particularly im-
portant in colloidal systems since, along with the electro-
static forces, they determine the structure of such systems.
The stability of colloidal systems resulting from the interplay
between the vdW and the electrostatic interactions is very
well elucidated in the context of Derjaguin-Landau-Verwey-
Overbeek theory.1 The vdW interactions which originate
from the irreducible electromagnetic �EM� fluctuations of
vacuum are usually calculated by means of the Hamaker
approach,2 where the force stems from simple pairwise addi-
tion of the corresponding intermolecular forces,3,4 although
the vdW interactions are not additive. A rigorous treatment of
the vdW interactions based on fluctuational electrody-
namics5,6 has been pioneered by Lifshitz7 for the case of two
infinite half spaces. The Lifshitz theory has been extended to
the case of pairs of finite-sized objects such as spheres or
cylinders �Derjaguin approximation�,4,8 which is valid, how-
ever, for very short distances between the objects in the non-
retarded limit. In some cases, elements of the Lifshitz theory
for half spaces are incorporated within the Hamaker formula
for the vdW force between two particles, in the form of
semiempirical corrections.3,4,9–11 By use of perturbation theo-
ry and the Clausius-Mossotti formula, Langbein12,13 devel-
oped a general formalism for the vdW force between two
spheres which has been primarily applied to aerosol par-
ticles.14–16

Recently, a rigorous theory based on fluctuational electro-
dynamics for the calculation of the vdW interactions among
a collection of macroscopic bodies of finite size has been
proposed.17 This theory is based on a multiple-scattering
Green’s tensor formalism incorporated within the framework
of fluctuational electrodynamics. More specifically, the vdW
force results from the integration over the surface of the bod-
ies of the Maxwell stress tensor of the vacuum and/or ther-
mal EM field which is provided by the fluctuation-
dissipation theorem and through this by the Green’s tensor of
the classical EM field. The calculation of the Green’s tensor
is based on an EM multiple-scattering formalism for arbi-
trary collections of scatterers. The multiple-scattering
Green’s tensor formalism offers a precise knowledge of the

fluctuating EM field by going beyond the approximation of
pairwise interactions between the scatterers and by taking
into account the full multipole interactions between them.
Furthermore, since it constitutes a solution to the inhomoge-
neous wave equation, retardation effects are included a pri-
ori in the presented formalism. In addition, metallic and di-
electric particles are treated on an equal footing since the
method in question also accounts for the magnetic-field
vacuum fluctuations which cannot be neglected in the case of
metallic particles. Finally, the effect of finite temperature can
be easily addressed. We note that a different approach has
been recently presented18 where the EM Green’s tensor en-
tering the fluctuation-dissipation theorem is calculated by
means of a finite-difference frequency-domain method.

When a particle is a member of a colloidal crystal and a
net vdW force exerted on the particle is evident �e.g., in a
finite slab of a colloidal crystal or in an infinite crystal con-
taining point and/or line defects�, it is calculated from a pair-
wise addition of the forces stemming from the all the other
particles of the crystal. So, at first glance, an extension of
Ref. 17 to the case of a colloidal system would be based on
a pairwise summation of the �exact� force for a pair of par-
ticles. However, such an approach is only approximately cor-
rect since the vdW interactions are not additive. The way to
extend the method of Ref. 17 to the case of a colloidal crystal
is to derive a semianalytical expression of the EM Green’s
tensor for the particular crystal. The knowledge of the EM
Green’s tensor everywhere in space allows the calculation of
the cross-spectral correlation functions of the vacuum EM
field which are contained in the EM Maxwell stress tensor by
application of the fluctuation-dissipation theorem. By inte-
grating the Maxwell stress tensor over the surface of the
particle, we obtain the vdW force. The paper is organized as
follows. In Sec. II, we provide a brief overview of fluctua-
tional electrodynamics and the Maxwell stress tensor. In Sec.
III, we provide expressions for the EM Green’s tensor, �a� for
arbitrary collections of a finite number of scatterers, �b� for
infinite, periodic and defected crystals, and �c� for finite slabs
of colloidal crystals. In Sec. IV, we apply the formalism to
the case of a monolayer of polystyrene spheres containing a
single defect. Section V concludes the paper.
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II. VAN DER WAALS FORCE

A. Maxwell stress tensor

We consider a finite scatterer with electric permittivity �s
and/or magnetic permeability �s different from those, �h and
�h, of the surrounding homogeneous medium. According to
classical electrodynamics, the exerted force F on a finite
scatterer in the presence of electric E and magnetic H fields
satisfying the Maxwell equations is obtained by integrating
the time-average Maxwell stress tensor Tij �Ref. 19� over the
surface around the scatterer,

�Fi�t = �
S
�

j

�Tij�tnjdS , �1�

where �¯�t denotes the time average, n is the normal vector
at the surface surrounding the object, and i , j=x ,y ,z. The
components of the tensor �Tij�t are given by

�Tij�t = �h�0�Ei�r,t�Ej�r,t��t + �h�0�Hi�r,t�Hj�r,t��t

−
1

2
�ij��h�0�

i�

�Ei��r,t�Ei��r,t��t

+ �h�0�
i�

�Hi��r,t�Hi��r,t��t� . �2�

�ij is the Kronecker symbol, and �0 and �0 are the electric
permittivity and magnetic permittivity of vacuum, respec-
tively.

B. Fluctuation-dissipation theorem

In the absence of other radiation sources, the fields E and
H are generated by the thermal radiation emitted from the
same or neighboring scatterers at finite temperature �thermal
fluctuations� or by vacuum radiation at zero temperature
�zero-point fluctuations�. The time-correlation function
�Ei�r , t+��Ej�r� , t��t contained in Eq. �2� is calculated within
the framework of fluctuational electrodynamics,5,6 namely,
from20

�Ei�r,t + ��Ej�r�,t��t = Re��
0

� d�

2�
exp�i���Wij

EE�r,r�;��� .

�3�

The quantity Wij
EE�r ,r� ;�� is the cross-spectral correlation

function for the electric field. For a system at thermal equi-
librium, i.e., the scatterer, the surrounding medium and its
neighboring scatterers at the same temperature T, Wij, are
provided by the fluctuation-dissipation theorem21

Wij
EE�r,r�;�� = 4��h�0c2 Im Gij

EE�r,r�;��

�	��1 +
1

exp�	�/kBT� − 1
� , �4�

where 	 is the reduced Planck’s constant, kB is the Boltz-
mann’s constant, and Gij

EE�r ,r� ;�� is the component of the
full Green’s tensor Gij which provides the electric field at r
due to an electric dipole source at r�. The time-correlation

function �Hi�r , t+��Hj�r� , t��t for the magnetic field is given
similar to Eq. �3� with Wij

EE substituted by

Wij
HH�r,r�;�� = 4��h�0c2 Im Gij

HH�r,r�;��

�	��1 +
1

exp�	�/kBT� − 1
� . �5�

We note that the final value of the vdW force acting on a
scatterer is obtained by subtracting from Eq. �1� the force
which remains in the absence of the scatterer as is the case
for the calculation of the Casimir force between two semi-
infinite slabs.22 However, in vacuum, the Green’s tensor and
the corresponding Maxwell stress tensor, Eq. �2�, are con-
stant in space and their integral over a closed surface is zero.
From the above, it is obvious that the central quantity which
essentially determines the force acting on the scatterer is the
EM Green’s tensor.

III. ELECTROMAGNETIC GREEN’S TENSOR

A. Multipole expansion of the electromagnetic field

Let us consider a harmonic EM wave, of angular fre-
quency �, which is described by its electric-field component

E�r,t� = Re	E�r�exp�− i�t�
 . �6�

In a homogeneous medium characterized by a dielectric
function �����0 and a magnetic permeability �����0, where
�0 and �0 are the electric permittivity and magnetic perme-
ability of vacuum, Maxwell’s equations imply that E�r� sat-
isfies a vector Helmholtz equation, subject to the condition
� ·E=0, with a wave number q=� /c, where c=1 /����0�0
=c0 /��� is the velocity of light in the medium. The
spherical-wave expansion of E�r� is given by19

E�r�= �
l=1

�

�
m=−l

l �alm
H fl�qr�Xlm�r̂� + alm

E i

q
� � 	f l�qr�Xlm�r̂�

 ,

�7�

where alm
P �P=E ,H� are coefficients to be determined. Xlm�r̂�

are the so-called vector spherical harmonics19 and f l may be
any linear combination of the spherical Bessel function jl and
the spherical Hankel function hl

+. The corresponding mag-
netic induction B�r� can be readily obtained from E�r , t�
using Maxwell’s equations.19,23

B. Scattering from a single scatterer and the
corresponding Green’s tensor

In this section, we present a brief summary of the solution
to the problem of EM scattering from a single sphere �Mie
scattering theory19,24� along with the expression for the
single-sphere Green’s tensor. We consider a sphere of radius
S, with its center at the origin of coordinates, and assume that
its electric permittivity �s and/or magnetic permeability �s
are different from those, �h and �h of the surrounding homo-
geneous medium. An EM plane-wave incident on this scat-
terer is described, respectively, by Eq. �7� with f l= jl �since
the plane wave is finite everywhere� and appropriate coeffi-
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cients aL
0, where L denotes collectively the indices Plm. That

is,

E0�r� = �
L

aL
0JL�r� , �8�

where

JElm�r� =
i

qh
� � jl�qhr�Xlm�r̂�, JHlm�r� = jl�qhr�Xlm�r̂� ,

�9�

and qh=��h�h� /c0. The coefficients aL
0 depend on the am-

plitude, polarization, and propagation direction of the inci-
dent EM plane wave and are given by Eq. �37� �Sec. III G�
for g=0.

Similarly, the wave that is scattered from the sphere is
described by Eq. �7� with f l=hl

+, which has the asymptotic
form appropriate to an outgoing spherical wave: hl

+

��−i�l exp�iqhr� / iqhr as r→�, and appropriate expansion
coefficients aL

+. Namely,

E+�r� = �
L

aL
+HL�r� , �10�

where

HElm�r� =
i

qh
� � hl

+�qhr�Xlm�r̂�, HHlm�r� = hl
+�qhr�Xlm�r̂� .

�11�

The wave field for r
S is the sum of the incident and
scattered waves, i.e., Eout=E0+E+. By applying the require-
ment that the tangential components of E and H be continu-
ous at the surface of the scatterer, we obtain a relation be-
tween the expansion coefficients of the incident and the
scattered field as follows:

aL
+ = �

L�

TLL�aL�
0 , �12�

where TLL� are the elements of the so-called scattering tran-
sition T matrix.24 Equation �12� is valid for any shape of
scatterer; explicit relations of the T matrix for scatterers of
various shapes can be found elsewhere.25,26

The Green’s tensor for a single sphere is given by23

Gii�
�s��r,r�� = − i�

��h�h�3/2

c0
3 �

L

	RL;i�r�ĪL;i��r����r� − r�

+ IL;i�r�R̄L;i��r����r − r��
 . �13�

The vector functions RL;i�r� and R̄L;i�r� are dimensionless
eigenfunctions of the wave operator

��r� =
c0

2

��r���r�
� � �� �14�

for a single scatterer which are regular at its center.23,27 The

vector functions IL;i�r� and ĪL;i�r� are also eigenfunctions of
operator �14� but they are infinite at the sphere center.23,27

The Green’s tensor of Eq. �13� will be the basis for the con-

struction of the corresponding tensor for a collection of
spheres.

C. Green’s tensor for many scatterers

We consider a collection of N nonoverlapping scatterers
described by a permittivity �s and permeability �s centered at
sites Rn in a homogeneous host medium described by �h and
�h, respectively. In site-centered representation, the Green’s
tensor for the system of scatterers satisfies23,27

�
i

	�2�i�i − �i�i�Rn + rn�
Gii��Rn + rn,Rn� + r�n�
�

= �i�i���rn − r�n�
��nn�, �15�

where rn=r−Rn, r�n�
=r�−Rn�, and i , i�=x ,y ,z. The opera-

tor �i�i�r� is given by Eq. �14�. It can be verified that the
Green’s tensor satisfying Eq. �15� is the following:23,27

Gii��Rn + rn,Rn� + r�n�
�

= Gii�
�s�n�rn,r�n�

��nn� − i�
��h�h�3/2

c3

��
LL�

R̄L;i
n �rn�DL�L

n�nRL�;i�
n� �r�n�

� . �16�

G
ii�
�s�n�rn ,r�n�

� is the Green’s tensor for a single scatterer lo-
cated at Rn and it is given by Eq. �13�. The vector functions

RL;i
n �rn� and R̄L;i

n �rn� are the dimensionless eigenfunctions of

the operator of Eq. �14� for the sphere at Rn. DLL�
nn� are propa-

gator functions that represent the contributions of all possible
paths by which a wave outgoing from the n�th scatterer pro-
duces an incident wave on the nth scatterer, after scattering
in all possible ways �sequences� by the scatterers at all sites
including the nth and n�th scatterers. The specific form of the

DLL�
nn� propagator functions depends on the geometrical ar-

rangement of the scatterers.

D. Propagator for an arbitrary collection of scatterers

For an arbitrary collection of a finite number N of scatter-
ers, the D propagator is given by23

DLL�
nn� = 
LL�

nn� + �
n�

�
L�

�
L�

DLL�
nn�TL�L�

n� 
L�L�
n�n� . �17�

The matrix 
LL�
nn� appearing in Eq. �17� is called free-space

propagator and transforms an outgoing vector spherical wave
about Rn� in a series of incoming vector spherical waves
around Rn.23 The matrix TLL�

n is the scattering T matrix of a
scatterer of general shape25,26 located at Rn.

E. Propagator for periodic arrays of scatterers

For the case of an infinite number of same spheres ar-
ranged periodically, in one, two, or three dimensions, the

propagator DLL�
nn� is given as a Fourier transform,
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DLL�
nn� =

1

v
�

BZ

dqk exp	ik · �Rn − Rn��
DLL��k� , �18�

where q is the space dimensionality, the integration in Eq.
�18� is carried out within the Brillouin zone �BZ�, k is the
Bloch wave vector, and v is the BZ volume. Rn are the
Bravais lattice vectors. DLL��k� is given by

DLL��k� = 
LL��k� + �
L�L�

DLL��k�TL�L�
L�L��k� . �19�

TL�L� is the T matrix of the spheres. 
LL��k� depend only on
the crystal lattice and are known as structure constants, a
term which is common in the Korringa-Kohn-Rostoker
method28 for the calculation of the electronic band structure
of atomic solids. They can be found by Ewald-summation
techniques.29,30 Equations �4� and �5� require the calculation
of the Green’s tensor 	via Eq. �16�
 for an infinitely periodic
lattice of scatterers; therefore, only the DLL�

00 component �that
for the central unit cell� is needed since all spheres are
equivalent for the case of a Bravais lattice with one sphere
per unit cell.

We note that the propagator of Eq. �19� does not yield a
net nonzero vdW force, since it corresponds to an infinitely
periodic system. However, the propagator of Eq. �19� can be
used as a basis for calculating the corresponding propagator
of a system containing, e.g., one or more point defects �not
symmetrically distributed within the crystal�, in which case a
net vdW force emerges. If, for example, the colloidal par-
ticles �described by a scattering matrix T0LL�

n � positioned at
Rn in an otherwise periodic crystal are substituted by other,
different particles, each of them described by a scattering
matrix TLL�

n , the propagator of the defected system is given
similar to Eq. �17�, i.e.,

DLL�
nn� = D0LL�

nn� + �
n�

�
L�

�
L�

DLL�
nn��TL�L�

n� D0L�L�
n�n� , �20�

where �TL�L�
n� =TL�L�

n� −T0LL�
n and D0LL�

nn� is the propagator of
the periodic system given by Eqs. �18� and �19�.

F. Propagator for finite slabs

In reality, the colloidal systems are not infinitely periodic
but they are actually slabs consisting of a finite number of
planes of particles �scatterers�. In this case, the vdW force
exerted on a given scatterer depends on the position of the
plane within which it is located and can therefore be very
different for a scatterer on a surface plane than a scatterer at
an innermost plane. In the following lines, we will provide a
formalism for the propagator for a slab consisting of Np
planes of scatterers. It is assumed that all the planes of the
slab have the same two-dimensional �2D� periodicity with
the associated lattice vectors given by

Rn = n1a1 + n2a2, �21�

where a1 and a2 are primitive vectors in the xy plane and
n1 ,n2=0 , ±1, ±2, ±3, . . .. The corresponding 2D reciprocal
lattice is defined by

g = m1b1 + m2b2, �22�

where m1 ,m2=0 , ±1, ±2, ±3, . . ., and b1 and b2 are primi-
tive vectors defined by

bi · a j = 2��ij, i, j = 1,2. �23�

Although each plane of the slab must have the same 2D
periodicity, the spheres within each of the Np planes can be
different in terms of shape, size, or refractive index.

The propagator for a scatterer residing at the �th plane
��=1,2 , . . . ,Np� of a slab is written as a sum of three terms31

F�;LL�
00 = D�;LL�

00 + �
n

�
L�

�
L�

P�;LL�
0n T�;L�L�D�;L�L�

n0 + P�;LL�
00 .

�24�

The matrix D�;LL�
nm represents all the possible scattering

paths within the �th plane by which a wave outgoing from
the mth sphere of this plane produces an incident wave on
the nth sphere of the same plane, after scattering in all pos-
sible ways by all the spheres of this plane including the cen-
tral sphere �every sphere represented by the scattering matrix
T�:LL��. It is given by application of Eq. �18� to a 2D periodic
lattice, i.e.,

D�;LL�
nm =

1

S0
� �

SBZ

d2k� exp�ik� · Rnm�D�;LL��k�� , �25�

where

D�;LL��k�� = �
L�

†	I − ��k��T�
−1
‡LL�
L�L��k�� , �26�

where Rnm=Rn−Rm, S0 is the area of the surface Brillouin
zone �SBZ� corresponding to Eq. �22�, and 
LL��k�� are the
2D structure constants.

The matrix P�;LL�
0n appearing in the second and third terms

of Eq. �24� represents all scattering paths by which an out-
going wave from the nth sphere of the �th plane exits from
that plane to produce an incident wave on the central sphere
of the same plane after scattering in all possible ways by all
the planes of spheres of the slab, including the �th plane. In
the next section, we will present a summary of the derivation
of P�;LL�

0n and F�;LL�
00 which is given in detail in Ref. 31.

G. Calculation of P�;LL�
0n and F�;LL�

00

A wave outgoing from the nth sphere of the �th plane has
the form of Eq. �10�,

Esc�r� = �
L

bL
+�n;��HL�r� , �27�

where rn� is the position vector with respect to the center of
the nth sphere of the �th plane. We can expand the wave of
Eq. �27� into a sum of plane waves propagating or decaying
away from the �th plane as follows.31 To the right of the �th
plane, we have
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Eout+�r� =
1

S0
� �

SBZ

d2k��
g

Eg
out+�k��exp	iKg

+ · „r − A2���…
 ,

�28�

with

Eg;i
out+�k�� = exp	− i„k� · Rn − Kg

+ · d2���…
�
L

�L;i�Kg
+�bL

+�n;�� ,

�29�

where i=1,2. A2��� is a reference point on the right of the
�th plane at d2��� from its center �see Fig. 1�. To the left of
the �th plane, we have

Eout−�r� =
1

S0
� �

SBZ

d2k��
g

Eg
out−�k��exp	iKg

− · „r − A1���…
 ,

�30�

with

Eg;i
out−�k�� = exp	− i„k� · Rn + Kg

− · d1���…
�
L

�L;i�Kg
−�bL

+�n;�� ,

�31�

where A1��� is a reference point to the left of the �th plane at
−d1��� from its center �see Fig. 1�. Kg

± is given by Kg
±= (k�

+g , ± 	q2− �k� +g�2
1/2), where the � and � signs define the
sign of the z component of the wave vector. The coefficients
�L;i are given from Eqs. �19� and �20� of Ref. 32.

The plane waves of Eq. �28� will be multiply reflected
between two parts of the slab, the first �right part� consisting
of all planes to the right of the �th plane and the second �left
part� consisting of all planes to the left of the ��+1�th plane
�including the �th plane�, to produce a set of plane waves
incident on the �th plane from the right, which we can write
formally as follows:

Ein−�r� =
1

S0
� �

SBZ

d2k��
g

Eg
in−�k��exp	iKg

− · „r − A2���…
 ,

�32�

with

Eg;i
in−�k�� = �

g�,i�

�QIII��;2�	I − QII�� + 1;1�

�QIII��;2�
−1�gi;g�i�Eg�;i�
out+ �k�� , �33�

where QII��+1;1� and QIII�� ;2� are the appropriate matrices
which determine the reflection �diffraction� of a plane wave
by the left and the right parts of the slab, respectively, as
defined above. These matrices are shown schematically in
Fig. 1.

Similarly, the plane waves of Eq. �30� will be multiply
reflected between two parts of the slab, the first �left part�
consisting of all planes to the left of the �th plane and the
second �right part� consisting of all planes to the right of the
��−1�th plane �including the �th plane�, to produce a set of
plane waves incident on the �th plane from the left, which
we can write formally as follows:

Ein+�r� =
1

S0
� �

SBZ

d2k��
g

Eg
in+�k��exp	iKg

+ · „r − A1���…
 ,

�34�

with

Eg;i
in+�k�� = �

g�,i�

�QII��;1�	I − QIII�� − 1;2�

�QII��;1�
−1�gi;g�i�Eg�;i�
out− �k�� , �35�

where QII�� ;1� and QIII��−1;2� are again the appropriate
matrices, shown schematically in Fig. 1. A more detailed
description of these matrices and the way these are calcu-
lated are to be found in Ref. 32. We note that for �=1�N�, we
have only waves incident from the right �left�.

Each plane wave in Eqs. �32� and �34� can be expanded in
spherical waves about the central sphere of the �th plane in
the manner of Eqs. �8� and �9�. For a plane wave
Eg

in−�k��exp	iKg
− · (r−A2���)
, incident on the �th plane from

the right, the multipole coefficients are given by32

aL
0�Kg

−� = exp	− iKg
− · d2���
�

i

AL;i
0 �Kg

−�Eg;i
in−�k�� . �36�

For a plane wave, Eg
in+�k��exp	iKg

+ · (r−A1���)
, incident on
the �th plane from the left, the multipole coefficients are32

aL
0�Kg

+� = exp	iKg
+ · d1���
�

i

AL;i
0 �Kg

+�Eg;i
in+�k�� , �37�

where AL;i
0 are given by Eqs. �12� and �13� of Ref. 32.

Finally, to obtain the wave incident on the central sphere
of the �th plane, which derives from the outgoing wave of
Eq. �27�, we must add to the waves given by Eqs. �32� and
�34� that which is due to the wave scattered from all the other
spheres of the �th plane and it is given by multiplying the
coefficients aL

0 of Eqs. �36� and �37� by the multiple-

QII(ν;1)

QIIΙ(ν-1;2)

QIIΙ(ν;2)

QII(ν+1;1)

Α1 Α2

d1 d2

…

……

…
ν-2 ν-1 ν ν+1 ν+2

FIG. 1. �Color online� The Q matrices appearing in Eq. �39�.
The position vectors d1 and d2 of the �th layer along with the
corresponding origins A1 and A2 are also shown.
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scattering matrix [	I−�T�
−1]LL� for the �th plane of
spheres. We have

�
L�

P�;LL�
0n bL�

+ �n;��

=
1

S0
� �

SBZ

d2k��
g

�
s=±

�
L�

†	I − �T�
−1
‡LL�aL�

0 �Kg
s�

�38a�

=�
L�

1

S0
� �

SBZ

d2k� exp�− ik� · Rn�

�†	I − �T�
−1��‡LL�bL�
+ �n;�� , �38b�

where ��:LL� is a matrix defined by

��;Plm,P�l�m��k�;��

= �
g,i

�
g�,i�

�exp	− i�Kg
− − Kg�

+ � · d2���


�APlm;i
0 �Kg

−�†QIII��;2�	I − QII�� + 1;1�

�QIII��;2�
−1
‡gi;g�i��P�l�m�;i��Kg�

+ �

+ exp	i�Kg
+ − Kg�

− � · d1���
APlm;i
0 �Kg

+�†QII��;1�

�	I − QIII�� − 1;2�QII��;1�
−1
‡gi;g�i��P�l�m�;i��Kg�

− �� .

�39�

Therefore, from Eq. �38b�, P�;LL�
0n is given by

P�;LL�
0n =

1

S0
� �

SBZ

d2k� exp�− ik� · Rn�†	I − �T�
−1��‡LL�.

�40�

Accordingly, the second term in Eq. �24� becomes31

�
n

�
L�

�
L�

P�;LL�
0n T�;L�L�D�;L�L�

n0

=
1

S0
� �

SBZ

d2k�†	I − �T�
−1��T�D�‡LL�, �41�

where D�;LL��k�� is given by Eq. �26�. Finally, the matrix
F�;LL�

00 , defined by Eq. �24�, is given by

F�;LL�
00 =

1

S0
� �

SBZ

d2k�		I − �T�
−1

�†� + ���I + T�	I − �T�
−1��
‡LL�. �42�

IV. NUMERICAL EXAMPLE

The evaluation of the propagator, either from Eq. �25� or
Eq. �42�, requires a numerical integration over the entire
SBZ. Using symmetry to reduce the area of integration to a
part of SBZ is not profitable in the present case. However,
when one deals with scatterers whose dielectric function con-

tains a positive imaginary part, the intergrand in Eqs. �25� or
�42� is a relatively smooth function of k�, and the integration
can be performed without much difficulty by subdividing the
SBZ �a square in our example� into small squares, within
which a nine-point integration formula33 is very efficient.
Using this formula, we managed good convergence with a
total of 576 points in the SBZ.

When computing the vdW for T=0, we first integrate the
Maxwell stress tensor for a specific frequency over the sur-
face of the body and afterward we perform the frequency
integration, i.e., the vdW force F is calculated by integrating
the force spectrum F���: F=�0

�F���. Both integrals are ob-
tained numerically. We note that, in the Lifshitz theory for
half spaces,22 the frequency integration is done analytically
using contour integration. The numerical integral over fre-
quencies is convergent since, in the limit of �→�, the re-
fractive index of most materials tends to unity and the cor-
responding Green’s tensor of the system tends to that of
vacuum which is constant in space. However, the integral
over a closed surface of a constant tensor vanishes and there-
fore F���→0 as �→�.

We consider the case of a 2D square lattice �monolayer�
of polystyrene nanospheres of radius of 10 nm. The dielec-
tric function of the spheres, which is generally complex for
high frequencies, is taken from numerical fit to experimental
data.4 We have calculated the force acting on a single poly-
styrene nanosphere when we remove one of its first neigh-
boring spheres �see inset of Fig. 2�. In this case, we first
calculate the propagator for the periodic square lattice from
Eqs. �25� and �26� �which yields vanishing net vdW force�
and then make use of Eq. �20�.

In Fig. 2, we show the net vdW force �x and y compo-
nents� for different lattice constants a of the underlying 2D
square lattice. While each of the components oscillates from
positive to negative values, it is evident that there exists a
value of the lattice constant a, namely, a�47 nm, where the
net force is zero and this particular sphere rests in equilib-
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FIG. 2. �Color online� Inset: 2D square lattice of 10 nm poly-
styrene spheres containing a single defect �one missing sphere�.
Graph: the x �squares� and y �circles� components of the vdW force
exerted on a single polystyrene nanosphere when its right neighbor-
ing sphere is missing.
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rium. Overall, the magnitude of the vdW force decreases
with the lattice constant, as expected.

V. CONCLUSION

We have presented a method for the calculation of the
vdW forces in colloidal systems such as clusters of colloidal
particles, infinite periodic or defected crystals, and colloidal
crystalline slabs. The method is based on the fluctuation-
dissipation theorem which relates the cross-spectral correla-
tion functions entering the formula for the vdW force �inte-
gral of the Maxwell stress tensor over the particle surface�
with the EM Green’s tensor of the system of particles �scat-
terers�. The calculation of the Green’s tensor is based on a
rigorous multiple-scattering formalism for EM waves. The
accuracy stems from the fact that it does not include any kind
of approximations apart from the unavoidable cutoffs in the
angular momentum expansion and/or in the plane-wave ex-

pansion of the EM field. As such, the method includes all
essential multipole terms beyond the dipole term in the EM
response of the scatterers and is valid for any distance be-
tween the scatterers where the continuum pictures of particle
and medium dielectric properties pertain. By including a pri-
ori all the possible multiple-scattering processes of the
vacuum fluctuations, the method, naturally, accounts for all
possible many-body interactions between the scatterers and
therefore goes beyond the approximation of pairwise inter-
actions.

Finally, we note that a theoretical approach, analogous to
the multiple-scattering treatment for the wave equation, has
been developed for solving Poisson’s equation in solids de-
scribed by arbitrarily shaped, space-filling charges.34 By
combining this electrostatic multiple-scattering approach
with the vdW theory presented in this work, one can devise a
general, first-principles theory for the determination of col-
loidal structure.
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