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Classical and quantum solutions of the planar accumulation layer problem for a degenerate semiconductor
within the parabolic effective-mass approximation are presented. The Hartree approximation and the potential
theory equation are used to describe the electron-electron and electron-positive charge interactions. Details of
the exact analytical solution of the classical Thomas-Fermi equation are presented. The straightforward self-
consistent quantum approach is developed. It results in the nonlinear equations similar to that in the quantum
field or disordered solid state theories. The nonlinear quantum equations are solved numerically. It has been
established that the nanosize accumulation layers containing two two-dimensional-confined bands can be
regarded as the most stable states of the inhomogeneous system of such a kind. In the case of inversion layers,
the single-band states can be expected to arise. Useful general relations between crystal parameters and
confinement energies have been found. The applicability of the quantum solution is demonstrated by using
recent literature data obtained by the high-resolution angle-resolved photoemission spectroscopy �L. Colakerol
et al., Phys. Rev. Lett. 97, 237601 �2006��.
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I. INTRODUCTION

Electrostatic potential that exists near a semiconductor
crystal surface has been widely studied theoretically �see, for
example, Refs. 1–3�. The renewed interest to this problem
was stimulated by strong experimental evidences pointing to
the existence of an intrinsic electron accumulation layer near
the surfaces of the InN and InGaN epilayers.4–10 Recently,
quantization of electrons in InN accumulation layer was di-
rectly observed by high-resolution angle-resolved photo-
emission spectroscopy.11

The classical statistical Thomas-Fermi theory is typically
used as a background for description of an inhomogeneous
electron gas �see, for instance, Ref. 12�. The existing theo-
retical approaches taking into account quantum effects and
two-dimensional �2D�-confined states in accumulation
layers1–3 are based on different model approximations of the
accumulation layer potential and solution of the linear
Schrödinger equation.

Our paper describes the straightforward solution of the
classical and quantum problems of the planar accumulation
layer for the n-type degenerate semiconductor.

We demonstrate that the classical Thomas-Fermi equation
in the parabolic band approximation in the low-temperature
limit can be solved analytically for a planar accumulation
layer of a degenerate semiconductor. This solution gives
simple relations between crystal parameters and characteris-
tics of the accumulation layer.

The quantum approach is developed under the assumption
that the accumulation layer potential is produced by the ex-
ternal positive charge and by the electrons trapped by 2D
bands, while the background free carriers and donor charges
screen each other. We neglect, therefore, the possible separa-
tion of the background free carriers and positive charges near
the surface. This simplification is based on the experimental

data4–10 which show that the concentration of the electrons
trapped within accumulation layers of InN samples domi-
nates over the background concentration typically by 2 or 3
orders of magnitude. Under this condition, the influence of
the background free carriers and donors can be considered to
be negligible. In the case of an inversion layer followed by a
depletion layer, the quantum approach developed here be-
comes exact.

We employ the Hartree approximation and the potential
theory to derive the self-consistent equations. In contrast to
the previous publications on this subject, we do not use any
model presentation of the accumulation layer potential. In
the quantum approach, the Schrödinger equation describing
the electron motion in the accumulation layer potential
should be solved. We show that the Schrödinger equation
with the Hartree potential becomes nonlinear and acquires
the features of the nonlinear quantum field theory equation.
In particular, the amplitude of the wave function plays the
role of an important parameter allowing one to proceed to
the self-consistent calculations. It is not possible to introduce
a similar parameter in the approaches using model potentials
and the linear Schrödinger equation. Therefore, it is not pos-
sible to reach self-consistency in the framework of a linear
approach.

We show that there are two types of the self-consistent
quantum solutions which can be used for description of the
accumulation layers of the nanoscale size. The first solution
contains a single 2D-confined band, while the second one
contains two 2D bands. The realization of the second solu-
tion appears to be more favorable from the point of view of
energy considerations. The single-band solution can, prob-
ably, be realized in the case of inversion layers when the
electron number is not sufficient to fill the states of the sec-
ond 2D band.

The theory is developed for the zero temperature limit.
This restriction can easily be removed in the quantum ap-
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proach by using the temperature dependent Fermi distribu-
tion function in all expressions. In the classical solution,
where the solution is expressed analytically, this restriction
means that the temperature should not influence the electron
population of the states below the conduction band bottom,
i.e., kT��, where � is the electron Fermi level measured
from the conduction band bottom.

We present also results of calculations of the accumula-
tion layer characteristics using experimental data of Ref. 11.
Despite the fact that our calculations are performed in the
parabolic band approximation a good qualitative and quanti-
tative agreement with the experiment is obtained.

II. SOLUTION OF THE CLASSICAL THOMAS-FERMI
EQUATION

We consider a typical model of the accumulation layer
that arises due to a planar positive charge on the crystal
surface. We assume that the semiconductor contains homo-
geneously distributed donors of density ND, the charge of
which is compensated for by free electrons of density ne, so
that ne=ND. We neglect, therefore, the spatial fluctuations of
the donor density. The planar positive charge of density Qs is
compensated for by additional free electrons �n�z� inhomo-
geneously distributed within the crystal.

The resulting inhomogeneous Coulomb potential, in ac-
cordance with the potential theory, can be written as

��z� =� d2r�dz��− Qs��z��e + �n�z��e�

�����z − z��2 + �r��2�1/2�−1, �1�

where ��z�� is the � function, the reference point for z is
chosen to be at the surface, �n�z�� is the compensating elec-
tron density, and � is the electron dielectric constant. Neither
homogeneous positive donor charge nor homogeneous elec-
tron charge contribute to the inhomogeneous potential of the
accumulation layer. We consider the potential normalized by
the condition

��z� = ��z� − ���� .

Then integrating over d2r� and assuming the electroneutrality

Qs =� dz�n�z� , �2�

we obtain for the potential

��z� = −
2	e

�
� z�dz��n�z + z�� . �3�

A similar expression for the potential can be found in Ref. 3.
The potential of Eq. �3� satisfies the Poisson equation. The
Thomas-Fermi approach assumes that �n�z� can be ex-
pressed through the Fermi distribution function. Since the
surface plane is taken to be isotropic, the potential should
have a cylindrical symmetry. Then the Thomas-Fermi equa-
tion can be presented as

d2

dz2 �− e��z�� =
2	

�

e2

3	2	2m*


2 
3/2

�− e��z��3/2, �4�

where m* is the electron effective mass.
The exact asymptotic for the solution of the Thomas-

Fermi equation in the case of spherical symmetry12 is well
known. In the case of a planar accumulation layer the
Thomas-Fermi equation is one dimensional, and the exact
solution can be obtained in the whole range of z. The poten-
tial that is a solution of Eq. �4� is

− e��z� = RH�� aB

z + l
�4

, �5�

the compensating electron density is

�n�z� =
10�

aB
3 � aB

z + l
�6

, �6�

and the external surface charge density is

Qs =
2�

aB
2 �aB

l
�5

. �7�

Here, RH=e2 /2aB is the hydrogen Rydberg, aB=
2 /m0e2 is
the hydrogen Bohr radius or atomic length unit, and � is
expressed via crystal characteristics

� = �30	�

2
�2	m0

m*
3

, �8�

where m0 is the free electron mass and l is the characteristic
length related to the surface charge by Eq. �7�. The full elec-
tron density in the crystal is given by

n�z� =
1

3	2	2m*


2 
3/2

�� − e��z��3/2, �9�

where � is the chemical potential which is defined in the
limit z→� as

� =

2

2m* �3	2ne�2/3. �10�

The obtained classical solution gives simple and transpar-
ent expressions for the band bending potential and inhomo-
geneous electron density in terms of crystal parameters and
external electrical charge. When the potential of Eq. �5� is
found, the electron density for the nonparabolic conduction
band can be calculated. Therefore, the nonparabolic disper-
sion of the electron band in InN can be approximately taken
into account.

III. QUANTUM THEORY

A. Quantum confinement in the classical potential

It is convenient to begin the quantum consideration from
the solution of the Schrödinger equation with the classical
potential of Eq. �5�
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−

2

2m*
d2
n

dz2 + e��z�
n�z� = 
�n
n�z� . �11�

Here, n enumerates the energies and wave functions of the
confined bands. In all quantum calculations we have to sepa-
rate the potential well and vacuum by a barrier. As an ex-
ample, Fig. 1 shows results of solution of the Schrödinger
equation using the classical potential of Eq. �5�. In view of a
strong nonparabolic behavior of the conduction band10 and
typically high electron concentrations in InN, we consider
high enough value of the effective mass m*=0.20m0. It can
be seen that the potential supports three 2D-confined bands
in the accumulation layer at the parameters used.

The 2D-confined bands give the quantum electron density
in an accumulation layer

�nq�z� =
1

2	

2m*


2 

n


�n
n
2�z� , �12�

where the wave functions are normalized to unity

� 
n
2�z�dz = 1. �13�

Using the atomic length unit

z → x = z/aB,


n
2�z� → 
n

2�x�aB, �14�

we present the electron density as

�nq�x� =
1

aB
3

1

2	

m*

m0



n


�n

RH

n

2�x� . �15�

To derive the potential in the Hartree approximation, we sub-
stitute �nq�z� of Eq. �12� and

Qs
q =� �nq�z�dz

into Eq. �1�. After integrating over d2r� we have

�q�z� = −
e

�

2m*


2 

n


�n� 
n
2�z + z��z�dz�. �16�

According to the potential theory, the potential defined by
Eq. �16� satisfies the Poisson equation as well as the initial
classical potential. It can be seen, therefore, that the quantum
procedure, we are using, does not involve the Poisson equa-
tion directly.

Transition to the dimensionless length gives

�q�x� = −
e

aB�

m*

m0



n


�n

RH
� 
n

2�x + x��x�dx�. �17�

Therefore, starting from the classical potential of Eq. �5� we
obtained the potential of Eq. �17�. The results give the band
bending and the electron density which differ significantly
from the initial classical values. The quantum potential of
Eq. �17� and the electron charge of Eq. �15� do not coincide
with the initial classical potential of Eq. �5� and classical
charge of Eq. �7�, respectively. The quantum electron charge
��nq�z�dz=3.06�1013 cm−2 for the potential presented in
Fig. 1 is not equal to the classical surface charge Qs=3.62
�1013 cm−2. It is correct to say that the characteristics ob-
tained as the first approximation are not self-consistent.

B. Quantum self-consistent solutions

The aim of the quantum approach is to derive the equation
adequate for the procedure of the self-consistent solution of
the problem. Substituting the potential of Eq. �16� into the
Schrödinger equation, we obtain

−

2

2m*
d2
n

dz2 + e�q�z�
n�z� = 
�n
n�z� . �18�

This equation which defines the confinement energies and
wave functions becomes nonlinear because �q�z� is given by
Eq. �16�. We have taken the reference point for energies at
the conduction band bottom �CBB� which is the discrete
spectrum boundary.

In contrast to the linear Schrödinger equation �Eq. �11��,
where the wave function amplitude can be normalized, the
wave function amplitude of nonlinear equation �18� should
be found in the process of self-consistent solution of this
equation. The nonlinear equation of the Eq. �18� type gives
the possibility to perform a self-consistent procedure.

It is convenient to deal with normalized wave functions in
calculations by introducing the amplitude �1/2


n�z� → �1/2
n�z� . �19�

Then the normalized wave function and the amplitude �1/2

should be found self-consistently by solving the nonlinear
equation

−

2

2m*
d2
m

dz2 −
�e2

�

2m*


2 �

n


�n� 
n
2�z + z��z�dz��
m�z�

= 
�m
m�z� . �20�

We can introduce only one factor � which is common to the
whole expression in the curly brackets of Eq. �20� because
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FIG. 1. �Color online� Classical potential ��z� of Eq. �5� of
depth 0.84 eV and 2D confinement energies Ei �i=1,2 ,3� equal to
−284, −71, and −11 meV found from Eq. �11� for �=7.16 and m*

=0.20m0.
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we have to keep the relative contributions of different con-
fined bands into the quantum electron density as they are
defined by Eq. �12�. The physical meaning of this factor is a
renormalization of the dielectric constant of the �→� /� type
due to the nonlinear character of the equation.

Using again the dimensionless variable x, we obtain

−

2

2m*aB
2

d2
n

dx2 + e�q
sc�x�
n�x� = 
�n
n�x� , �21�

with �q
sc�x� given now by

e�q
sc�x� = −

�e2

aB�

m*

m0



n


�n

RH
� 
n

2�x + x��x�dx�. �22�

The self-consistent quantum electron density in an accumu-
lation layer can be written as

�nsc
q �x� =

�

aB
3

1

2	

m*

m0



n


�n

RH

n

2�x� , �23�

and the surface charge density following from the self-
consistent quantum electroneutrality condition is

Qs
sc =

�

aB
2

1

2	

m*

m0



n


�n

RH
. �24�

Hence, starting from the classical potential of Eq. �5� we
obtain the self-consistent equation �21�, the solution of which
leads to a finite number of confined states. In order to de-
scribe the possible quantum self-consistent solutions it is
useful to compare the quantum solution of Eq. �11� �using
the classical potential of Eq. �5�� with the quantum self-
consistent solutions of Eq. �21� �using the quantum potential
of Eq. �22��.

The exact solution of the Thomas-Fermi equation gives
the short-range potential of Eq. �5�, the characteristics of
which are defined by the magnitudes of � and l. These pa-
rameters are associated with the external charge and crystal
constants by Eqs. �7� and �8�. The potential of Eq. �5� can
support different but finite numbers of localized states de-
pending on the parameters used. The minimal number of
localized states in the potential of Eq. �5� is equal to unity,
while the maximal number depends on the effective width of
the potential well l.

The quantum self-consistent potential of Eq. �22� has the
properties that considerably differ from those of the potential
of the Thomas-Fermi solution. In order to define the quantum
self-consistent potential, we have to choose one of the three
following characteristics: �i� its depth, �ii� the depth of the
ground localized state, or �iii� the magnitude of the external
charge. We also have to choose the number of the terms in
the series given by Eq. �22�. This number defines the width
of the potential well and is a quantum analog of the classical
potential width l.

An important property of Eq. �21� is its similarity to the
instanton equation13,14 if the series of Eq. �22� is truncated
not only at n=1 but also at n=2.

This similarity is due to the following: if we preserve only
one term in the sum �22�, the self-consistent potential sup-
ports only one bound state at any value of the parameter �i�,

�ii�, or �iii�. In the case two terms in the sum are preserved,
the self-consistent potential supports only two bound states
at an arbitrary value of one of the parameters ��i�–�iii��.

The situation changes if a third term is included into con-
sideration. The potential �22� supports the higher-order
bound states if the sum �22� is truncated at n=3. Therefore,
the higher-order terms in Eq. �22� should be taken into ac-
count. However, if the third and higher terms are included in
the self-consistent procedure, the size of the potential well
increases sharply up to tens of nanometers, and it is unclear
whether the self-consistency can be reached without consid-
ering the sample finite thickness or not. This can be ex-
plained by the increasing role of the polynomial factors in
the wave functions of the third- and higher-order bound
states and simultaneous weakening of the exponential factors
providing a spatial decay of the wave functions and the po-
tential.

In any case, only two types of self-consistent solutions
�single-state and two-state� can be used for the description of
a nanoscale accumulation layer. The solutions of Eq. �21� of
these two types which we consider below can be classified
depending on the number of states.15

C. Single-state solutions

The single-state solutions result in the accumulation lay-
ers of a minimal thickness and an arbitrary depth. In order to
investigate these solutions, it is convenient to use the mag-
nitude of �
 /2m*� as the length unit and 
�=
�1 as the
energy unit. Then the Schrödinger equation transforms into
the dimensionless one similar to the nonlinear equation of
the quantum field theory13,14

−
d2
�y�

dy2 − �� 
2�y + y��y�dy�
�y� = 
�y� . �25�

This equation has only one confined energy equal to 
�. The
dimensionless surface charge density is

� =
2�

�
	 RH


�

1/2	m*

m0

1/2

� 1.8. �26�

The dimensionless electron charge distribution is

�nsc
q �y� = �
n

2�y� . �27�

The solution of this equation 
�y� and the magnitude of the
dimensional charge density � are universal if the barrier re-
stricting the accumulation layer is infinite. In this case a
simple scale transformation allows one to obtain a continu-
ous set of solutions with different depths of the potential
wells and different confinement energies.

For barriers of finite thicknesses and heights a negligible
weak dependence of the accumulation layer on the barrier
characteristics appears because of the wave function tail pen-
etration into the barrier.

D. Two-state solutions

A similar transformation of Eqs. �21� and �22� using the
dimensionless length and confinement energy units for the
case of two-state solutions gives
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−
d2
i�y�

dy2 − �1� �
1
2�y + y�� +

�2

�1

2

2�y + y���y�dy�
i�y�

= 
i�y� , �28�

where i=1,2 enumerates the self-consistent wave functions
and 
�1 and 
�2 are the self-consistent confinement ener-
gies. The dimensionless constant �1 is now

�1 =
2�

�
	 RH


�1

1/2	m*

m0

1/2

. �29�

Numerical analysis shows that Eq. �28� does not support the
third state. The value of �1 remains �1.1, and the ratio
between the confined energies 
�2 /
�1�0.08 is rather low
in a wide range of crystal parameters.

IV. RELATIONS BETWEEN THE SELF-CONSISTENT
SOLUTIONS AND THE INTRINSIC CHARACTERISTICS

OF AN ACCUMULATION LAYER

A. Theoretical results

The simplest expressions for the accumulation layer char-
acteristics can be obtained in the single-state approximation.
The surface charge density is given by

Qs
sc =� �nsc

q �x�dx =
��

4	aB
2 �m*

m0
�1/2�
�

RH
�3/2

. �30�

This equation relates the observable confinement energy to
the most important characteristics of the accumulation layer.

The band bending is equal to −e�q
sc�0� and, therefore, can

be presented as

− e�q
sc�0� = −

�e2

2aB
�m*

m0
�1/2�
�

RH
�3/2

�y� , �31�

where the dimensionless matrix element of the coordinate �y�
is of the order of unity. Using an atomic length unit, it can be
presented as

�y� =� 
2�y�ydy = 	 


2m*�aB
2 
1/2� 
2�x�xdx

= 	 RH


�

1/2	m*

m0

1/2

�x� , �32�

The matrix element �x� is the quantum analog of the classical
characteristic length l.

The surface charge density of the two-state solution can
be expressed similar to Eq. �30�

Qs
sc =� �nsc

q �x�dx =
�1�

4	aB
2 �m*

m0
�1/2�
�1

RH
�3/2�1 +

�2

�1
� ,

�33�

and the band bending is

− e�q
sc�0� = −

�1e2

2aB
�m*

m0
�1/2�
�1

RH
�3/2��y�11 +

�2

�1
�y�22� ,

�34�

if we use �
 /2m*�1 as the length unit. Here, �y�11�1 and
�y�22���1 /�2 are the dimensionless matrix elements of the
coordinate for the first and second confined states, respec-
tively. Using the atomic length unit, we transform �y�11

→�
 /2m*�1aB
2�x�11 and Eq. �34� into

− e�q
sc�0� = −

�1e2

2aB
�m*

m0
��
�1

RH
���x�11 + 	�2

�1

1/2

�x�22� ,

�35�

which demonstrates that the contribution of the second state
into the potential is larger than to the surface charge density
because of a low ratio �2 /�1�1.

In Fig. 2 the classical potential is compared with the self-
consistent potential wells corresponding to the single-state
and two-state quantum solutions. In calculations, equal po-
tential depths were taken. It can be seen that the single-state
potential well has the minimal thickness.

In Figs. 3 and 4 the potentials of both quantum solutions
are presented together with the positions of the confined lev-
els and squares of the wave functions. It can be seen that the
depth of the first confined level of the two-state solution
exceeds the depth of the single-state confined energy level.

Figure 5 demonstrates self-consistent confined electron
densities for the potential wells presented in Fig. 2. The elec-
tron distribution of the single-state quantum solution is nar-
rower than the classical and two-state distributions, while the
integral ��n�z�dz is larger for the single-state solution. At the
same time, the classical charge for the potential of the same
depth is the largest.

Then the question arises which of two quantum solutions
will be realized in the case of equal potential well depths. To
answer this question we compare full energies of the con-
fined electrons in these two cases. The calculations show that
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FIG. 2. �Color online� Classical potential and self-consistent po-
tentials of equal depths of 0.84 eV �curves �1� and �2�–�3�, respec-
tively�. Curve �2� is the potential of the single-state solution and
curve �3� is the potential of the two-state solution. Parameters are
�=7.16 and m*=0.2m0.
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the full energy is considerably lower for the two-state solu-
tion because of a deeper position of the ground confined
state. Therefore, the two-state solution is more favorable
thermodynamically despite a lower electron content. In the
case of equal surface charges Qs and equal confined electron
contents, the potential well will be deeper for the two-state
solution, which will lead to a further increase of the depth of
the ground confined state and to a lower full energy.

It is worth noting that a single state can be realized for
inversion layers. In the case of an inversion layer a decrease
in the confined electron content lowers the chemical poten-
tial � below the conduction band bottom. As a result, trans-
formation of 
�1→ �
�1−�� and 
�2→ �
�2−�� in Eq.
�28� occurs. This reduces the contribution of the second 2D
band into the self-consistent solution and can be followed by
a collapse of the two-state solution to a single-state solution

because the two-state self-consistent solution can exist if
there are two filled 2D-confined bands.

B. Comparison with experimental data

The applicability of the theory developed was checked in
comparison with recent data obtained in the high-resolution
angle-resolved photoemission experiment with InN crystals11

that provided detailed information on the spectra of the 2D
states in accumulation layers. We considered the data for the
first of the two samples described in this paper.

First of all, we have found that there exists a qualitative
agreement between the self-consistent quantum theory and
experiment because two confined bands were observed,
which is consistent with our quantum theoretical predictions.
In order to obtain quantitative estimates, we performed the
self-consistent quantum potential calculations for three effec-
tive masses m*=0.15m0, m*=0.20m0, and m*=0.25m0. The
criterion for fitting was taken to be the depth of the first
experimental 2D state. The results are presented in Fig. 6�a�.
It can be seen that the second 2D states found for the poten-
tials occupy close positions, and the ratio between localiza-
tion energies is close to 
�2 /
�1=0.08, as it follows from
the theory. This ratio agrees well with the experimental data.

We also examine the classical potentials found for effec-
tive masses m*=0.15m0, m*=0.20m0, and m*=0.25m0. The
potentials were built in such a way that the deepest state
energy coincided with the energy of the corresponding ex-
perimental state. One of these classical potentials for m*

=0.20m0 is presented in Fig. 6�a�. It was found that each
classical potential contained three confined bands, which dis-
agrees with the experiment.

Figure 7 presents the detailed comparison of the calcu-
lated parabolic and nonparabolic 2D bands with the photo-
current intensity map that reflects the dispersion of quantized
states along the ��M direction in the surface plane �Fig. 2
of Ref. 11�. Note that we used the conduction band bottom
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FIG. 3. �Color online� Self-consistent potential of single-state
solution, confinement energy, and wave function. The potential
depth is 0.84 eV and the barrier height is taken to be 3.4 eV. The
parameters are �=7.16 and m*=0.2m0. The confined electron con-
tent and the quantum surface charge are ��n�z�dz=Qs=2.57
�1013 cm−2. 2D confinement energy is equal to −115 meV.
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FIG. 5. �Color online� Classical electron density �curve �1�� and
self-consistent electron densities �curves �2� and �3�� corresponding
to potentials of Fig. 2. Curve �2� is the density of the single-state
solution. Curve �3� is the density of the two-state solution. The
confined electron contents and the quantum surface charges
��n�z�dz=Qs for these three densities are 3.62�1013, 2.57�1013,
and 2.09�1013 cm−2, respectively.

KLOCHIKHIN et al. PHYSICAL REVIEW B 76, 235325 �2007�

235325-6



as the point of reference, while the Fermi energy was
used as a reference point in Ref. 11. It can be seen that
the experimental results appreciably deviate from the para-
bolic dispersions corresponding to the effective masses
m*= �0.15–0.20�m0. In order to estimate the role of the
nonparabolic deviation in the conduction band dispersion,
we performed quantum self-consistent calculations of the
potential. In the calculations, the nonparabolic conduction
band dispersion was chosen so that it provides the best fit
to the data of the photocurrent intensity map �Fig. 2 of
Ref. 11�. This dispersion �see Fig. 7� was calculated from
the expression ��k�= ��E0
2k2 /2m�+E0

2 /4−E0 /2� that cor-
responds to a linear increase of the effective mass with
kinetic energy16 m*=m��1+E /E0�. Here, m� is the effective
mass at the � point and E0 is the parameter of the nonpara-
bolic behavior. The Fermi energy corresponding to this
dispersion at the electron concentration 6�1018 is equal
to 0.130 eV. The expression for the potential was found

for m�=0.07 and E0=0.4 eV. Then the self-consistent solu-
tion of the Eq. �28� type equation was found. This gives the
results for the potential and for the electron density close
to those calculated for effective masses m*= �0.15–0.20�m0

by using the parabolic approximation. The only appreciable
difference is a decrease in the 
�2 /
�1 ratio to �0.065.
Therefore, the nonparabolic dispersion does not lead to
radical changes of the results. Note that similar results can
be obtained by using the dispersion of the Kane model.17

More detailed calculations will be given in a separate
paper.

V. SUMMARY

To summarize, we have presented classical and quantum
solutions of the planar accumulation layer problem for a de-
generate n-type semiconductor within the parabolic
effective-mass approximation. Details of the exact analytical
solution of the classical Thomas-Fermi equation have been
given. The classical solution has been used as the zero ap-
proximation for the quantum self-consistent calculations. We
have shown that there are two types of the self-consistent
quantum solutions which can be used for description of ac-
cumulation layers of the nanoscale size. The first solution
contains a single 2D-confined band, while the second one
yields two 2D bands. It has been shown that the solutioncon-
taining two 2D bands is more favorable from the thermody-
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FIG. 6. �Color online� �a� Self-consistent quantum potentials
obtained for �=7.16 and at effective masses m*=0.15, 0.20, and
0.25m0, and the classical potential at m*=0.20m0. The barrier
height was taken to be 6 eV. The self-consistent potentials give two
2D-electron bands, the energies of which at zero wave vectors are
E1=−0.44 and E2=−0.036 eV. The classical potential supports
three 2D states. The deepest of them is at the same energy
��−0.44 eV� as for the self-consistent potentials, two others at
−0.127 and −0.026 eV are not shown. �b� The electron densities
corresponding to the potentials of �a�. The values of Qs

sc are 5.6, 6.4,
and 6.9�1013 cm−2 for the self-consistent potentials and Qs=5.75
�1013 cm−2 for the classical potential. The bulk electron density
was taken to be 6�1018 cm−3.
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FIG. 7. �Color online�. The best fit of the photocurrent intensity
map from Ref. 11 by the calculated parabolic and nonparabolic 2D
bands. The left energy scale is the original one used in Ref. 11. The
energy scale for the calculated energies is shown on the right side of
the figure. The reference point is taken to be at the conduction band
bottom �CBB� which is the discrete spectrum boundary. Curves �1�
and �2� are the 2D-band parabolic dispersions corresponding to ef-
fective masses 0.15m0 and 0.20m0. Curve �3� is the 2D-band non-
parabolic dispersion with the effective mass at the � point m�

=0.07m0 and E0=0.4 eV. EF=0.130 eV is the Fermi energy calcu-
lated for the nonparabolic dispersion of curve �3� at the electron
concentration of 6�1018 cm−3. The calculated 2D-electron band
energies at zero wave vectors are E1=−0.44 and E2=−0.036 eV.
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namic point of view. Simple relations between crystal param-
eters and binding energies have been established. It has been
shown that the nonparabolic electron band dispersion does
not lead to radical changes in the results obtained. The quali-
tative and quantitative agreement with experimental data of
Ref. 11 is obtained. The self-consistent quantum approach
developed in this paper provides a solution of the accumula-
tion layer problem and can be useful in analysis of experi-
mental data.
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