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We calculate the electronic width of quantum wires as a function of their lithographic width in analogy to
experiments performed on nanostructures defined by local oxidation of Ga�Al�As heterostructures. Two-
dimensional simulations of two parallel oxide lines on top of a Ga�Al�As heterostructure defining a quantum
wire are carried out in the framework of density functional theory in the local density approximation and are
found to be in agreement with measurements. Quantitative assessment of the influence of various experimental
uncertainties is given. The most influential parameter turns out to be the oxide line depth, followed by its exact
shape and the effect of background doping �in decreasing order�.
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I. INTRODUCTION

There have been several semiconductor quantum dot cal-
culations assuming simplifications such as parabolic confin-
ing potentials1–3 and a number of self-consistent solutions of
coupled Schrödinger and Poisson equations in III/V semicon-
ductor nanostructures.4–13

However, in particular, the depletion mechanism in two-
dimensional electron gases �2DEGs� caused by local oxida-
tion of the surface of AlGaAs /GaAs heterostructures with an
atomic force microscope �AFM� has so far only been studied
in simplified models assuming a nonrealistic geometry.14 By
AFM induced oxidation,15,16 confining walls can be defined
with high accuracy enabling long quantum wires with only a
few modes. Previous studies on quantum wires have either
used analytical approaches,17 lacked self-consistency,18 or
applied simple geometrical assumptions.19

In this work, we perform a self-consistent numerical
simulation of the effect of oxide lines on top of an
AlGaAs /GaAs heterostructure assuming a realistic oxide
line profile. In particular, a structure with two oxide lines
defining a quantum wire is studied within the framework of
density functional theory20 assuming the local density
approximation21 and the results thereof are compared with
available experimental data. The main point of this paper is
to treat this specific kind of semiconductor nanostructure on
a quantitative level. Moreover, various uncertainties such as
background charges are assessed quantitatively in order to
rank them by importance and judge their respective influ-
ences. Obtaining results for this type of quantum wires
which agree with experiments represents a major step toward
a full self-consistent simulation of AFM lithography defined
III/V semiconductor nanostructure devices such as quantum
dots and quantum point contacts with realistic potentials.

II. METHODOLOGY

In order to solve the electrostatic problem, it is necessary
to solve Poisson’s equation. In our case of a two-dimensional
calculation, it reads

�„��x,y� � …��x,y� = −
��x,y�

�0
, �1�

where � represents the space-dependent dielectricity tensor
and � denotes the charge density, given by the ionized donor
and acceptor concentrations Nn and Np as well as the electron
density n:

��x,y� = q„Nn�x,y� − Np�x,y� − n�x,y�… . �2�

Furthermore, we solve the one-particle Schrödinger equation

�−
�2

2
� � 1

m*�x,y�
� � + V�x,y����x,y� = E��x,y� . �3�

In Eq. �3�, m* stands for the space-dependent effective mass,
while the potential V consists of the band edge offsets �Ec at
heterostructure interfaces, the electrostatic potential �, and
exchange and correlation terms, which are taken into account
through the explicit parametrization Vxc given by Hedin and
Lundqvist,22

V�x,y� = − q��x,y� + �Ec�x,y� + Vxc„��x,y�… . �4�

The exchange-correlation potential explicitly reads

Vxc��� =
− 2Ry*

�2/3�4
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where

rs�x,y� = �4

3
�a*3��x,y��−1/3

, �6�

while a* and Ry* are the effective Bohr radius and Rydberg
constant in the respective material, which are given by

a*�x,y� = 4��0��x,y�
�2

m*�x,y�q2 . �7�
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Ry*�x,y� =
q2

8��0��x,y�a*�x,y�
. �8�

Material parameters have been taken from well established
sources23 �the permittivity � of GaAs and Al0.3Ga0.7As is
taken as 13.18 and 12.24, respectively, the effective masses
of � valley electrons, m* /m0, in GaAs and Al0.3Ga0.7As are
assumed to be 0.067 and 0.092, respectively, while the con-
duction band offset between those two materials amounts to
�Ec=0.23 eV in our simulations�.

We discretize both Eqs. �3� and �1� in a finite-difference
approach, allowing for different lattice spacings in orthogo-
nal directions.

Equation �3� represents an eigenvalue problem, which we
have to solve only in a restricted domain as the electron
density equals zero for practical purposes far away from the
interface. For computational efficiency reasons, the domain
has been chosen to be as small as possible such that it does
not change the numerical result compared to the solution
within the whole heterostructure domain. Since only the low-
est states are needed, the Lanczos algorithm24 is a suitable
method for obtaining the eigenstates and their respective en-
ergies. We have chosen the freely available IETL �Ref. 30�
implementation for this purpose. Having obtained a set of
kmax eigenstates �k allows us to calculate the electron den-
sity n by integrating the Fermi distribution multiplied by the
density of states of the orthogonal directions over energy. In
the case of a two-dimensional simulation, it reads

n = 	
k=1

kmax


�k
2�
Ek

	 �2m*

���E − Ek

1

1 + exp�E − Ef

kbT
�dE , �9�

where Ef and Ek denote the Fermi energy and kth eigenvalue,
respectively, while T remains at liquid helium temperatures
of 4 K throughout the investigation.

For the solution of Eq. �1�, we rely on the biconjugate
gradient stabilized method.25 As boundary conditions for the
system as depicted in Fig. 1, we demand a vanishing electric
field in the bulk �bottom of Fig. 1� and Fermi level pinning
on the semiconductor surface.26 The left and right sides of
Fig. 1 are connected by periodic boundary conditions, care-
fully paying attention to choose the lateral extension to be
large enough to prevent images of the oxide line potential
from having a considerable effect.

As both the Lanczos algorithm and the biconjugate gradi-
ent stabilized method mainly consist of matrix-vector prod-
ucts, a parallel matrix-vector class has been implemented in
order to achieve fast computation and ensure extensibility to
three dimensions, which will impose significantly higher
computational demands.

Starting with a trial potential, Eqs. �1� and �3� are itera-
tively solved until a self-consistent solution is found. To en-
sure convergence, suitable damping schemes27 have to be
applied in order to reach the desired equilibrium solution.

The heterostructure we want to investigate is schemati-
cally depicted in Fig. 1, following a design which has been
realized and characterized experimentally.15,28,29 Layer D is n
doped in order to generate a 2DEG at the heterostructure
interface. However, due to the fabrication process, it is
known that the bulk GaAs �denoted F� is usually unintention-
ally p doped. In our simulations, this results in an additional
degree of freedom since for every background doping Np, a
modulation doping Nn can be found that yields the experi-
mentally measured sheet density Ns=4.5
1011 cm−2 of the
2DEG 37 nm below the surface �see later discussion and Fig.
2�. This relationship has been established using a one-
dimensional self-consistent simulation �without oxide lines�
along the growth direction. We then apply the aforemen-
tioned numerical method to the structure as defined in Fig. 1,
performing two-dimensional simulations in the plane perpen-
dicular to the two parallel oxide lines in order to study the
influence of parameter variations on the electronic width of
the quantum wire. The latter forms in between the projec-
tions of the oxide lines on the 2DEG plane. In the experi-
ment, it has been established that the dimensions of the oxide
line below and above the semiconductor surface are approxi-
mately the same. It was also demonstrated that the electronic
properties of a device confined by oxide lines do not change
if the oxide lines are removed, e.g., by HCl etching. There-
fore, we use in the following the term “oxide line” to de-
scribe the shape of the groove in the semiconductor surface,
which leads to a depletion of the electron gas below.

The precise shape and size of the oxide growth under the
semiconductor surface cannot easily be probed experimen-

FIG. 1. �Color online� Schematic drawing of heterostructure lay-
out. A: 5 nm GaAs, B: 8 nm Al0.3Ga0.7As, C: 7 nm GaAs, D: 2 nm
n-doped Al0.3Ga0.7As, E: 15 nm Al0.3Ga0.7As, and F: bulk GaAs.
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FIG. 2. �Color online� Required modulation n-doping Nn for a
given background p-doping Np yielding a constant sheet density
Ns=4.5
1011 cm−2 of the 2DEG.
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tally. For the exact shape of the oxide line, we therefore
choose a Gaussian-like form similar to what has been ob-
served in the experiment.16 Expressed in terms of the width
w1 as a function of depth d, it reads

w1�d� = 2b�− ln�1 + �1 −
d

d0
��e−�w0/b�2

− 1�� , �10�

where d0 and w0 represent the maximum depth and width,
respectively, while the parameter b characterizes the width at
half-depth.

The main aim of this work is now to assess the influence
of these unknown parameters on the electronic wire width
quantitatively. In order to obtain independent parameters to
vary, we choose a definition of the lithographic width that
does not depend on the exact oxide line shape. Following the
experiment, we therefore define the lithographic width wli as
the horizontal distance of the oxide lines at a depth d0 /2 and
investigate the influence of relative width b /w0, maximum
depth d0, and background doping Np, respectively, on the
plane defined by the electronic and the lithographic width.
The maximum width is kept constant at w0=200 nm
throughout the simulations.

III. RESULTS

Experimental electronic width values wel �Refs. 28 and
29� as a function of lithographic width wli are plotted in Figs.
3–5 together with simulations for various parameter settings.
In our simulation results, we define the electronic width wel
as the spatial distance over which the self-consistent poten-
tial is below the Fermi energy. A linear interpolation of the
experimental values yields a slope of 1.13±0.07, while fit-
tings for all simulations result in slopes in the range of

1.00±0.02. The experimental error bars have been estimated
based on available AFM scans and typical results for the
wire width obtained from a fitting of the positions of the
minima of the low-field magnetoresistance. The simulation
results are within these error bounds.

Since the background doping Np, the maximum oxidation
depth d0, and the relative oxide line width b /w0 are only

0

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350

w
el

[n
m

]

wli [nm]

experimental data

Np=1014 cm-3, b=w0/2, d0=12nm

Np=1015 cm-3, b=w0/2, d0=12nm

FIG. 3. �Color online� Influence of background doping uncer-
tainty on electronic width: Electronic width wel as a function of
lithographic width wli for two simulated cases at constant b=w0 /2
and oxide line depth d0=12 nm for different background doping
levels Np �1014 and 1015 cm−3� as well as experimental values. The
symbols denote specifically calculated or measured values; the lines
are linear fits to the corresponding data points.
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FIG. 4. �Color online� Influence of oxide line shape uncertainty
on electronic width: Electronic width wel as a function of litho-
graphic width wli for two simulated cases at constant background
doping Np=1015 cm−3 and oxide line depth d0=12 nm for different
width parameters b �w0 /2 and 20w0� as well as experimental values.
The symbols denote specifically calculated or measured values; the
lines are linear fits to the corresponding data points. Inset: geometri-
cal shape of a single oxide line. The same color code as in the
electronic width graph has been used to identify the different pa-
rameter sets �all axis units are in nanometers�.
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FIG. 5. �Color online� Influence of oxide line depth uncertainty
on electronic width: Electronic width wel as a function of litho-
graphic width wli for two simulated cases at constant background
doping Np=1014 cm−3 and width parameter b=20w0 for different
oxide line depths d0 �12 and 13 nm� as well as experimental values.
The symbols denote specifically calculated or measured values; the
lines are linear fits to the corresponding data points. Inset: geometri-
cal shape of a single oxide line. The same color code as in the
electronic width graph has been used to identify the different pa-
rameter sets �all axis units are in nanometers�.
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known within certain ranges, we now investigate all three of
them within their physically meaningful ranges and discuss
their respective influences on the electronic width.

In order to assess the influence of the background doping
uncertainty, two possible doping concentration combinations
�corresponding to the two points marked in Fig. 2� are simu-
lated and their effect on the electronic width is shown in Fig.
3. The effect of the background doping turns out to be of
minor importance.

In the following, we choose two extreme cases of possible
oxide line shapes, b=20w0, corresponding to a close to rect-
angular profile, and b=w0 /2, which corresponds to the situ-
ation where the oxide depth decreases quickly from the cen-
ter to the edge of the oxide line. All other parameters are kept
constant. In Fig. 4, we show the configuration at which the
influence of b is largest. It turns out that the choice of b is
more relevant for the comparison of experimental and simu-
lated data than the background doping uncertainty.

Finally, all simulations have been carried out at two maxi-
mum oxide line depths �d0=12 nm and d0=13 nm�, which
are most likely to represent the physical reality. Again, Fig. 5
displays the line in configuration space at which the maxi-
mum depth exerts the most significant influence leaving all
other parameters constant. This parameter turns out to be the
crucial one affecting the electronic width as the 2DEG is
depleted at larger lateral distances for larger values of d0.
Figure 5 clearly shows that the minimum lithographic width
for the population of the wire, i.e., the value of wli where wel
goes to zero, increases with increasing oxide line depth d0.
For this special case, a situation can be realized where the
electronic width wel is larger than zero for a negative value of
the lithographic width wli. This peculiar configuration arises
because of the definition of wli. This means that the electron
gas in the wire can laterally extend significantly under the
oxidized areas, an effect which can be confirmed experimen-
tally and is also known from split-gate defined quantum
point contacts.

We note that our exploration of the parameter space given
by experimental uncertainties does not affect the slope of the
electronic width vs lithographic width curve but only adds
constant offsets. This fact and the slope of unity we discov-
ered agree with intuition in the case of a lithographic width
exceeding all other physical length scales involved. How-
ever, on a smaller scale, there should be a higher slope due to
screening as well as exchange and interaction effects, which
cannot be observed using this oxide line shape because the
lithographic width at half-depth is still too wide for these
phenomena to have a significant effect. In order to further
investigate the behavior at smaller lithographic widths, we
therefore implemented another shape allowing for extremely
steep oxide line walls, which reads

w2�d� = 2�c3
2 −

2c2c3

d + c1
. �11�

We achieve steep walls with the desired oxide distance by
choosing the constants c1=−1053 /62, c2=
−55 575�62 /1922, and c3=450�62 /31. Figure 6 shows the
resulting slope of 3±0.6 for very close oxide lines. This ex-

treme choice of parameters is used to test the theoretical limit
rather than represent the actual geometry.

Extrapolation down to the intersection of the electronic
width vs lithographic width curve with the x axis �litho-
graphic width axis� allows one to read off the physically
interesting depletion length. It turns out that moderate pa-
rameter variations can easily account for the difference be-
tween a positive depletion length �i.e., the quantum wire gets
cut off at a finite oxide line distance� and a negative deple-
tion length �it remains conducting�.

IV. CONCLUSIONS

Given that experimental error bars are not explicitly taken
into account, the simulation data are in reasonable agreement
with experiments. Of all parameters investigated, the oxida-
tion depth turns out to be the most influential one. However,
also the exact shape of the oxide line, as well as the back-
ground doping uncertainty, contributes to the overall error
bounds �in decreasing order�.

Given the exact physical setup of a nanostructure, the
result of electronic width calculations is precisely determined
by the well-known laws of quantum mechanics and electro-
dynamics. Since the exact shape is never exactly known in
experiments and also differs from sample to sample, it is not
straightforward to calculate the potential profile of more
complex geometries.16 We envision, however, that simula-
tions using the methods presented in this paper will be useful
in designing novel structures and in obtaining a better under-
standing of the electrostatic action of in-plane and top gates.
Most importantly, simulations enable us to point out which
parameters have the most significant effect. Better experi-
mental control is therefore desirable for these parameters, in
this particular case, the oxide line depth.
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