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We analyze theoretically the electron energy spectrum and the magnetization of an electron in a strained
InxGa1−xAs /GaAs self-assembled quantum ring �SAQR� with realistic parameters, determined from the cross-
sectional scanning-tunneling microscopy characterization of that nanostructure. The SAQRs have an asymmet-
ric indium-rich craterlike shape with a depression rather than an opening at the center. Although the real SAQR
shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscilla-
tions of the magnetization survive.
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I. INTRODUCTION

Electrons confined to a small ring manifest their quantum
nature by an oscillatory behavior of their energy levels as a
function of an applied magnetic field. This effect originates
from the periodic dependence of the phase of the electron
wave function on the magnetic flux through the ring, the
Aharonov-Bohm effect,1 and is usually associated with the
occurrence of persistent currents in the ring.2–5 The first ex-
perimental evidence of Aharonov-Bohm oscillations was
found in metallic6,7 and semiconductor8 rings in the mesos-
copic regime. In recent years, the fabrication and the inves-
tigation of InxGa1−xAs self-assembled quantum rings
�SAQRs� have been rapidly progressing and led to a large
number of experimental9–14 and theoretical15–18 studies.

SAQRs are formed by capping self-assembled quantum
dots �QDs� grown using Stranski-Krastanov mode with a
layer thinner than the dot height and by subsequent
annealing.9 During this process, anisotropic redistribution of
the QD material takes place, resulting in elongated ring-
shaped islands on the surface, with craterlike holes in their
centers, as was shown with atomic force microscopy �AFM�
topography measurements.9 The dot-to-ring transition has
been attributed to a dewetting process which expels the in-
dium from the QD19 and a simultaneous strongly temperature
dependent Ga-In alloying process.13

Capacitance and far-infrared spectroscopy on SAQRs
have provided evidence of an Aharonov-Bohm oscillation.10

Measurements of the vertical Stark effect of excitons con-
fined to individual SAQRs12 have shown comparatively large
electric dipole moments with sign opposite to that in quan-
tum dots.20 However, theoretical calculations have indicated
that both the observed electronic radius and the dipole mo-
ment of the QRs are inconsistent with the geometry, as de-
termined by AFM.17

This discrepancy has been resolved on the basis of the
analysis of the shape, size, and composition of SAQRs at the
atomic scale performed by cross-sectional scanning-

tunneling microscopy �X-STM�.21,22 It has been found that
AFM only shows the material coming out of the QDs during
the QR formation. The remaining parts of the QDs, as ob-
served by X-STM, possess indium-rich craterlike shapes that
are actually responsible for the ringlike properties of SAQRs.
These quantum craters do not have an opening at the center.
The crucial question arose whether these singly connected
anisotropic craterlike structures can effectively manifest the
electronic properties �such as the Aharonov-Bohm oscilla-
tions� peculiar to the doubly connected geometry of the ideal
rings.

Recently, the magnetic moment has been measured at low
temperature on a sample consisting of 29 layers of SAQRs,
designed such that each quantum ring confines one or two
electrons. Using an ultrasensitive torsion magnetometer in
magnetic fields up to 15 T, the oscillatory persistent current
in SAQRs has been observed,23 with a magnitude of oscilla-
tion as large as about 60%–70% of the corresponding mag-
nitude in an ideal ring.

In the present paper, based on the structural information
from the X-STM measurements, we calculate the electron
energy spectra and the magnetization of a single-electron
SAQR. The electron energy spectra and the magnetization of
two-electron SAQRs will be analyzed elsewhere.24 The pa-
per is organized as follows. In Sec. II, a model of the SAQR
is described. In Sec. III, the physical problem is formulated.
In Sec. IV, the adiabatic potentials are presented and a solu-
tion is found for the in-plane electron motion. The effects of
the shape anisotropy, strain, and temperature on the electron
energy spectra and the magnetization in the SAQR are dis-
cussed in Sec. V. Section VI contains the conclusions.

II. MODEL

We model the SAQR structure with a varying-thickness
InxGa1−xAs layer embedded in a infinite GaAs medium. The
bottom of the InxGa1−xAs layer is considered to be perfectly
flat and parallel to the xy plane. The height of the InxGa1−xAs
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layer as a function of the radial coordinate � and of the
angular coordinate � is modeled by the expression

h��,�� = h0 +
�h̃M��� − h0��1 − ��/R̃��� − 1�2�

��� − R̃����/�̃0����2 + 1
, � � R̃��� ,

h��,�� = h� +
h̃M��� − h�

��� − R̃����/�̃�����2 + 1
, � � R̃��� , �1�

with

h̃M��� = hM�1 + �h cos 2�� , �2�

�̃0��� = �0�1 + �� cos 2�� , �3�

�̃���� = ���1 + �� cos 2�� , �4�

R̃��� = R�1 + �R cos 2�� . �5�

Here, h0 corresponds to the thickness at the center of the
crater, hM to the rim height, and h� to the thickness of the
InxGa1−xAs layer far away from the ringlike structure. The
parameters �0 and �� define the inner and outer slopes of
the rim, respectively. The parameters �h ,�� ,�R describe the
anisotropy of the ring-shape.

A typical shape of a SAQR is shown in Fig. 1�a� for R
=11.5 nm, h0=1.6 nm, hM =3.6 nm, h�=0.4 nm, �0=3 nm,
��=5 nm, �h=0.2, ��=0, and �R=0. In the particular case
when ��=0,�R=0, Eq. �1� leads to the model considered in
Refs. 21 and 22.

A three-dimensional finite-element calculation based on
the elasticity theory is used to determine the relaxation of the
cleaved surface of the modeled QR. With R=10.75 nm, h0
=1.6 nm, hM =3.6 nm, h�=0.4 nm, �0=��=3 nm, �h=0.2,
��=−0.25, and �R=0.07, an indium concentration of 55%
results in a calculated surface relaxation that matches the
measured relaxation of the cleaved surface, as shown in Ref.
22. This set of geometric parameters of a SAQR is selected
as the standard for the calculations discussed below, unless
stated otherwise.

III. PROBLEM

The Hamiltonian of an electron in a strained ring takes the
form25,26

He = −
	2

2
��−

e

	
A� 1

me�re�
��−

e

	
A� + Ue�re� + 
Ee�re�

− eVP�re� , �6�

where me�re� is the electron band mass and A=e�H� /2 is the
vector potential of the uniform magnetic field H=ezH. Ue�re�
is the conduction band edge, determined by the In content x,
in the absence of strain. The strain-induced shift of the con-
duction band,


Ee = ae��xx + �yy + �zz� �7�

depends on the hydrostatic component of the strain tensor
� jk.

The shear strains give rise to the piezoelectric potential

VP�r� = −
1

4��0�r
	 div P


r − r�

d3r�, �8�

determined by the piezoelectric polarization Pi=eijk� jk,
where for InAs and GaAs only the piezoelectric moduli
e123=e213=e312 differ from zero; �r is the relative dielectric
constant. The relevant material parameters are e123

InAs

=0.045 C /m2, e123
GaAs=0.16 C /m2,26 ae

InAs=−5.08 eV, and
ae

GaAs=−7.17 eV.27 The electron band mass as well as the
parameters e123 and ae for InxGa1−xAs are taken from a linear
interpolation between the corresponding values for InAs and
GaAs.

FIG. 1. �Color online� �a� Height of a SAQR as a function of the
radial and the azimuthal coordinates as modeled by the function �1�.
�b� The adiabatic potential governing the electron motion in a
SAQR shown in panel �a�.
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The components of the strain tensor � jk as well as the
distribution of indium x for the revealed geometry of a
SAQR were calculated following a three-dimensional finite-
element method of the elasticity theory. Using the tables of
� jk and x, we first numerically calculate and tabulate the
distributions of the strain-induced shifts of the band edges
�Eq. �7�� and of the piezoelectric potential �Eq. �8��.

Then, the Schrödinger equation,

He

�e��r� = E
�e��r� , �9�

is solved within the adiabatic approximation, using the an-
satz


�e��r� = �k
�e��z;�,���kj

�e���,�� , �10�

where the index k numbers subbands due to the size quanti-
zation along the z axis,

�−
	2

2

�

�z

1

me��,�,z�
�

�z
+ Ve��,�,z� + 
Ee��,�,z�

− eVP��,�,z���k
�e��z;�,�� = Ek

�e���,���k
�e��z;�,�� .

�11�

The Schrödinger equation �Eq. �11�� for the “fast” degree of
freedom �along the z axis� is solved numerically for each
node of a two-dimensional grid in the �� ,�� plane. As a
result, we obtain the adiabatic potentials Ek

�e��� ,��, tabulated
on the aforementioned grid.

IV. ADIABATIC POTENTIALS: SOLUTIONS FOR
THE IN-PLANE MOTION

A SAQR—although it reveals a potential hill near its
axis—is a singly connected structure. It is then not evident
whether or not its electronic states resemble those in a dou-
bly connected �ideal ringlike� geometry. Such a resemblance
can be expected if the central maximum of the adiabatic
potential �shown, e.g., in Fig. 1�b� for the SAQR model rep-
resented in Fig. 1�a�� is sufficiently high. Moreover, the adia-
batic potential possesses two pronounced minima, which can
be regarded as the potential profile of two quantum dots. If
the potential minima are sufficiently deep, the electron is
localized in one of those quantum dots, and no persistent
current occurs. When the depth of the potential minima is
reduced, the electron tunneling between the potential minima
of the adiabatic potential becomes more probable. If the po-
tential minima are shallow enough, the electron can rotate
around the center of the SAQR and persistent currents can
occur.

Below, we represent the adiabatic potential E1
�e��� ,��,

which corresponds to the lowest state of the size quantization
along the z axis, using the indium distribution �see Fig. 2�
and the strain data for a realistic SAQR as found using the
finite-element numerical calculation package ABAQUS,28

which is based on the elasticity theory. The solutions for the
strain field on a grid lead to numerical noise in Figs. 2 and 3.
We have checked that the noise does not affect the general
conclusions of the present work.

In Fig. 3�a�, the adiabatic potential E1
�e��� ,��, calculated in

the absence of strain �i.e., taking into account only the in-
dium distribution shown in Fig. 2�, is shown as a function of
the radial coordinate � for three different in-plane directions:
along the x axis ��=0�, along the y axis ��=� /2�, and along
the diagonal direction x=y ��=� /4�. Along the y axis, the
potential well for an electron is on average deeper and nar-
rower compared to that along the x axis.

As seen from Fig. 3�b�, where we plot the adiabatic po-
tentials E1

�e�, due to strain, the depth of the potential well for
an electron significantly decreases �compare panels �b� and
�a� in Fig. 3�. The influence of the piezoelectric potential on
the shape of the adiabatic potential E1

�e� along the x and y
axes is almost negligible. For the direction x=y, the effect of
the piezoelectric potential on E1

�e� is more pronounced but
still does not seem to be crucial in determining the electron
in-plane motion.

Recently, it has been shown29 that including the piezo-
electric potentials by calculating the induced charges to the
first order in the shear strain tensor matrix elements actually
overestimates the magnitude and may lead to a wrong sign of
the piezoelectric potential in InAs /GaAs quantum dots.
However, this would not change our conclusions for the
SAQR under consideration because, as shown above, the pi-
ezoelectric correction for the adiabatic potential resulting
from Eq. �8� with the polarization calculated to the first order
in strain, even if overestimated, is nearly negligible.

The Schrödinger equations for the “slow” degrees of
freedom,

�−
	2

2
���,� −

e

	
A� 1

mk
�e���,��

���,� −
e

	
A� + Ek

�e���,���
��kj

�e���,�� = Ekj
�e��kj

�e���,�� , �12�

with the effective mass

mk
�e���,�� =	 dz
�k

�e��z;�,��
2me��,�,z� , �13�

determine the eigenstates of the in-plane motion, which are
labeled by the index j. The Schrödinger equation �Eq. �12��
with an �anisotropic� adiabatic potential Ek

�e��� ,�� and
position-dependent effective mass mk

�e��� ,�� cannot be
solved analytically.

FIG. 2. Indium distribution in the yz plane in the SAQR.
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We find the eigenstates of the in-plane motion by numeri-
cal diagonalization of the Hamiltonian, which enters the left-
hand side �lhs� of Eq. �12�, in the basis of eigenfunctions of
an auxiliary Hamiltonian with a constant effective mass m̄k

�e�

and a simplified adiabatic potential. We choose this simpli-
fied adiabatic potential in the form

Ēk
�e���� = vk

�e� + wk
�e��2. �14�

Since the potential �Eq. �14�� is isotropic, the corresponding
in-plane eigenfunctions can be written as

�̄knL
�e� ��,�� = �̄knL

�e� ���eiL�, �15�

where n labels the radial solutions. Our basis wave functions
�Eq. �15�� are the Fock-Darwin eigenfunctions30–32 of a two-
dimensional harmonic oscillator in a magnetic field, which
were extensively used in the theory of quantum dots �see,
e.g., Refs. 33–35 and references therein�.

Inserting into Eq. �12� the adiabatic potential �Eq. �14��
instead of Ek

�e����, a constant effective mass m̄k
�e�, and wave

functions in the form of Eq. �15�, one obtains the one-
dimensional Schrödinger equation

��̄knL
�e� �� +

1

�
��̄knL

�e� ��

+ �2m̄k
�e�

	2 �EknL
�e� − vk

�e�� +
L

l2 −
L2

�2 − ��k
�e���2��̄knL

�e� = 0,

�16�

where l=
	 / �eH� is the magnetic length and

�k
�e� =
 1

4l4 +
2m̄k

�e�wk
�e�

	2 . �17�

The eigenfunctions of Eq. �16� are

�̄knL
�e� ��� = CknL�
L
 exp�−

�k
�e��2

2
�Ln

�
L
���k
�e��2� ,

n = 0,1,2, . . . , �18�

where Ln
�m��x� are generalized Laguerre polynomials and CknL

are normalization constants. The corresponding eigenener-
gies are

EknL
�e� = vk

�e� +
	2

m̄k
�e���n +

1

2
−

L

2
� 1

l2 + 
L
�k
�e�� . �19�

We are interested in the lowest energy states of an elec-
tron in the SAQR. Therefore, we restrict our calculations to
the states in the lowest subband of the �strong� size quanti-
zation along the z axis �i.e., we consider states with k=1�.
For each value of the applied magnetic field, the electron
eigenstates in the SAQR are found by numerical diagonal-
ization of the adiabatic Hamiltonian, which enters the lhs of
Eq. �12�, in a finite basis of the in-plane wave functions

�̄1nL
�e� �� ,��, given by Eq. �15� with the �̄1nL

�e� ��� of Eq. �18�.
This finite basis includes functions with n=0, . . . ,nmax and
L=−Lmax , . . . ,Lmax. In our calculations, we use nmax=15 and
Lmax=12. The parameters of the auxiliary Hamiltonian are
taken as v1

�e�=650 meV, w1
�e�=0.43 meV /nm2, and m̄1

�e�

=0.053m0.
As a result, we obtain the energies, E1j

�e�, and the wave
functions,

FIG. 3. �Color online� Adiabatic potential, calculated in the absence �a� and in the presence �b� of strain, as a function of the radial
coordinate � for three different in-plane directions, determined by the angular coordinate �. In panel �b�, heavy �thin� curves are obtained
with �without� the piezoelectric potential.
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1j
�e��r� = �1

�e��z;�,�� �
L=−Lmax

Lmax

�1jL
�e� ���eiL�, �20�

of the lowest single-electron states in the SAQR as a func-
tion of the applied magnetic field. Here,

�1jL
�e� ��� = �

n=0

nmax

a1jnL�̄1nL
�e� ��� . �21�

The index j=1,2 ,3 , . . . labels states in order of increasing
energy.

V. RESULTS

A. Shape anisotropy effect

The effect of the ring-height anisotropy, described by the
parameter �h, on the oscillations of the calculated electron
magnetic moment �, induced by the persistent current, as a
function of magnetic field H has been studied in Ref. 22. The
electron magnetic moment at zero temperature,

� = − �B

�E1
�e�

�H
, �22�

is calculated numerically via the ground state energy E1
�e� of

an electron in the SAQR; �B is the Bohr magneton.
Shape anisotropy of the SAQR results in a mixing of elec-

tron states with different magnetic quantum numbers. The
transition magnetic fields, which correspond to sharp jumps
of � due to the interchange between the ground and first
excited electron energy levels, increase with increasing �h.

Variations of the rim height h̃M��� with � suppress oscilla-
tions of � versus H. The effect of variations of the rim width
with � on ��H� is qualitatively the same as that due to varia-

tions of h̃M���: for sufficiently large ��, the oscillating be-
havior of ��H� is strongly suppressed.

In Fig. 4, we compare the magnetic moment ��H� �Eq.
�22��, calculated for SAQRs with nonzero �h and �� of op-
posite sign, with the results for a perfectly symmetric ring
and for a ring with relatively large variations of the rim
height and a uniform rim width. As implied by Fig. 4, well-
pronounced oscillations of ��H� can be expected even for
SAQRs with a strong shape anisotropy, provided that the
width of the rim changes as a function of � in antiphase with
the rim height. Remarkably, this condition is satisfied for
realistic SAQRs as characterized by X-STM21 �see also Fig.
3�b��, where the parameters �h and �� have opposite sign, so
that the height and the width of the rim vary with � in such
a way that the effects of these variations on the cross-
sectional area of the rim �in the �z plane� partially compen-
sate each other.

B. Strain effect

In Fig. 5, the lowest electron energy levels, calculated
with and without effects due to strain, are shown as a func-
tion of the applied magnetic field H. Since the potential well
for an electron in the strained SAQR is relatively shallow
�see Fig. 3�b��, there exist only few discrete energy levels

below the continuum of states in the GaAs barrier. Due to the
reduced potential barrier at the center of a strained ring, the
effective electron radius decreases when taking into account
strain. Correspondingly, the transition magnetic fields, where
the ground and first excited electron energy levels inter-

[
]

FIG. 4. �Color online� Magnetic moment induced by the
ground-state persistent current as a function of the applied magnetic
field for In0.6Ga0.4As SAQRs with R=10.75 nm, h0=1.6 nm,
hM =3.6 nm, �0=3 nm, and �R=0 at different values of the aniso-
tropy parameters �h and ��.
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FIG. 5. �Color online� Electron energy spectra in a SAQR, cal-
culated without �a� and with �b� effects due to strain. Energies are
counted from the bottom of the conduction band in unstrained InAs.
A dashed line, indicating the region of the continuum as obtained
from our numerical simulation, is a guide to the eyes.
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change, are higher in a strained ring than in an unstrained
one �see Fig. 5�.

As we have shown above, strain-induced effects reduce
the magnitude of the variations of the adiabatic potential as a
function of the azimuthal angle. As a result, at low magnetic
fields, the mixing of electron states with different magnetic
quantum numbers, which occurs due to the shape anisotropy
of a SAQR, is weakened in a strained ring, as compared to
the case when strain is absent. The consequences of the
weakening of state mixing are clearly seen in Fig. 5. At H
�10 T, the energy spacing between the lowest electron state
�which arises from the state with L=0 in a circularly sym-
metric ring� and the first excited state �which arises from the
state with L=−1 in a circularly symmetric ring� is strongly
enhanced due to strain. Also, the zero-field splitting between
the first and second excited states �which correspond, respec-
tively, to L=−1 and L=1 in a circularly symmetric ring� is
significantly reduced when taking into account the strain-
induced effects.

In Fig. 6, we plot the calculated ground-state magnetic
moment of an electron, �, as a function of the applied mag-
netic field. As seen from Fig. 6, the main effect of strain on
the behavior of � versus H is a shift of the transition fields
toward higher H. This shift, already noticed when discussing
the electron energy spectra, appears because strain leads to a
more shallow potential well in the rim. When decreasing the
depth of this potential well, the electron states tend to those
in a flat disk. Correspondingly, strain effects also lead to an
overall shift of the curve ��H� �at nonzero H� toward larger
negative values.

Figure 6 shows that oscillation amplitudes for ��H� are
not significantly influenced by strain. In fact, there occur two
competitive effects of strain on the above oscillation ampli-
tudes. On the one hand, due to the strain-induced reduction
of the potential-well depth, there is an increasing penetration
of the electron wave function into the barriers. This means an
increase of the effective width of the ring. Such an increase
of the ring width tends to decrease the oscillation amplitude.
On the other hand, as mentioned above, the strain-induced

reduction of the potential-well depth weakens the influence
of shape anisotropy on the electron states. Correspondingly,
the suppression effect of shape anisotropy on the oscillations
of � versus H is weakened, too.

C. Temperature effect

Here, we consider the temperature dependence of the
Aharonov-Bohm oscillations in SAQRs. For arbitrary tem-
perature T, the magnetic moment of an electron in an applied
magnetic field H is calculated as

� = −
�B

Z
�

ñ

exp�−
Eñ

�e�

kBT
� �Eñ

�e�

�H
, �23�

where the index ñ labels the energy levels Eñ
�e� of an electron

in a SAQR and

Z = �
ñ

exp�−
Eñ

�e�

kBT
� . �24�

Calculations of � were performed for a SAQR, using the
electron energy spectra displayed in Fig. 5�b�, taking into
account strain. In Fig. 7, the calculated magnetic moment �
of an electron in a SAQR is shown as a function of the
applied magnetic field at different temperatures. As seen
from Fig. 7, an increase of T tends to smooth out the
Aharonov-Bohm oscillations of ��H�. The smoothing effect
is stronger at higher magnetic fields. Note that the suppres-
sion of the first Aharonov-Bohm oscillations �at relatively
low H� is not dramatic for liquid He temperatures.

As implied by our results, for the SAQRs under consid-
eration, the first magnetization jump, related to the
Aharonov-Bohm effect, appears at magnetic fields �14 T. In
the experiment on SAQRs,23 appreciable oscillations of the
magnetization are detected just in this region of magnetic
fields at T=4.2 K and T=1.2 K. A detailed comparison with
the experimental data,23 taking into account the dispersion of
the geometric parameters of the SAQRs in the statistical en-
semble, will be performed elsewhere.

[
]

FIG. 6. �Color online� Ground-state magnetic moment of an
electron in a SAQR, calculated with �solid curve� and without
�dashed curve� effects due to strain.

[
]

FIG. 7. �Color online� Calculated magnetic moment of an elec-
tron in a SAQR as a function of the applied magnetic field at vari-
ous temperatures.
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VI. CONCLUSIONS

Based on the structural information from the X-STM
measurements, we calculated the magnetization as a function
of the applied magnetic field in SAQRs. Well-pronounced
oscillations of the magnetization are expected even for
SAQRs with a strong shape anisotropy because the rim width
fluctuates as a function of the azimuthal angle in opposite
phase with the rim height.

Our calculations indicate that in realistic
InxGa1−xAs /GaAs SAQRs, the oscillatory behavior of the
electron magnetic moment persists at relatively low magnetic
fields H�20 T for temperatures below 10 K. Even though
the SAQRs are singly connected and exhibit a pronounced
shape anisotropy, they still show a magnetization behavior

characteristic of an ideal-ring geometry that allows the ob-
servation of interference patterns revealing the quantum na-
ture of electrons.
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