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We study the triplet-singlet relaxation in two-electron semiconductor quantum dots. Both single dots and
vertically coupled double dots are discussed. In our work, the electron-electron Coulomb interaction, which
plays an important role in the electronic structure, is included. The spin mixing is caused by spin-orbit coupling
which is the key to the triplet-singlet relaxation. We show that the selection rule widely used in the literature
is incorrect unless near the crossing and/or anticrossing point in single quantum dots. The triplet-singlet
relaxation in double quantum dots can be markedly changed by varying barrier height, interdot distance,
external magnetic field, and dot size.
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I. INTRODUCTION

The application of semiconductor quantum dots �QDs� in
generating spin-based qubits1,2 is one of the focuses in the
field of spintronics.3 There are two types of qubits investi-
gated extensively recently.2 One is based on the transition
between single-electron Zeeman sublevels4,5 and the other is
based on two-electron triplet-singlet �TS� states.6–11 Among
these works, the decoherence time of the spin states, includ-
ing both the spin dephasing time7,8 and spin relaxation
time,5,9–11 has attracted much attention as a thorough under-
standing of it is one of the prerequisites of the application.
There are many works on spin relaxation reported, especially
in single-electron QDs.12–23 Recently, the TS relaxation time
of two-electron system has also been investigated.24–27 It was
proposed that various mechanisms, such as the electron-
phonon scattering together with the spin-orbit coupling,28,29

the hyperfine interaction,30,31 and the cotunneling effect,
could induce TS relaxation.24 However, the mechanism in-
volving electron-phonon scattering is usually treated as the
key because the nuclei-mediated relaxation32 and the cotun-
neling can be weakened via tuning external magnetic field
and tunneling rates,10 respectively.24 Specifically, Climente et
al. used exact diagonalization technique to calculate the two-
electron spectrum structure and the phonon induced TS re-
laxation in parabolic single QDs.24 They demonstrated the
crucial role of the excited states on spectrum structure and
showed a slow decrease of the relaxation time away from the
TS crossing in contrast to a sharp increase in the vicinity of
the crossing point, when the magnetic field is increased from
0 T. This feature agrees qualitatively with the recent
measurement.11 Furthermore, their results indicated that the
spin-down triplet state coupled with the singlet ground state
through the spin-orbit coupling has a much shorter lifetime
compared to the other two triplet states. This was understood
by the so called “selection rule” based on the perturbation
using the lowest two single-electron levels. Similar perturba-
tive discussion was also given in Ref. 25. Meunier et al.
obtained perturbative wave functions from the selection rule
and treated the spin-orbit coupling coefficient as a fitting
parameter.11 Using these functions, they fitted their experi-

ment a data with electron-phonon scattering-induced TS re-
laxation and obtained a particularly small spin-orbit coupling
coefficient. They attributed the reduction of the coupling co-
efficient to the neglect of high excited states. Sasaki et al.
pointed out that the selection rule was correct only in the
vicinity of the TS crossing point,10 which seems to be more
correct intuitively. According to the previous work by one of
the authors14 and confirmed by Destefani and Ulloa,17 the
spin-orbit coupling in quantum dots is very strong and a
large number of basis functions are needed in order to
achieve convergence even for the lowest few states. There-
fore, whether the selection rule based on the lowest few lev-
els remains unchanged when many upper levels are involved
remains questionable to us. Therefore, in this work we will
first reinvestigate the selection rule based on exact diagonal-
ization method, jointly with perturbation method with many
basis functions.

The investigation on TS relaxation in double QD architec-
tures is very limited. Recently, Wang and Wu studied the
single-electron spin relaxation in vertically coupled double
QDs and showed that the spin relaxation can be efficiently
manipulated electronically by the interdot barrier.20 This sug-
gests that the two-electron TS relaxation should also be ma-
nipulated by tuning interdot barrier height. This is another
issue we are going to explore in this work.

We organize the paper as follows: In Sec. II we set up the
model and lay out the formalism. Then in Sec. III we show
our numerical results. We discuss the single dot case in Sec.
III A. We first show the exact diagonalization results with
sufficient basis functions. We then reexamine the selection
rule by using more basis functions instead of the lowest two,
both perturbatively and exactly. We show that the selection
rule widely used in the literature is not correct except near
the TS crossing and/or anticrossing points. In Sec. III B, we
show the results of double QDs. We summarize in Sec. IV.

II. MODEL AND FORMALISM

We start our investigation from a vertically coupled
double QD: Electrons are confined by a parabolic potential
Vc�x ,y�= 1

2m*�0
2�x2+y2� �corresponding to the effective dot
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diameter d0=��� /m*�0� along the x-y plane,33,34 with m*

representing the effective mass. Along the z axis, a strong
confinement is given by

Vz�z� =�V0, �z� �
1

2
a

0,
1

2
a � �z� �

1

2
a + d

� otherwise,
� �1�

with V0, the interdot barrier.35 By taking a=0, one comes to
the single dot configuration. The single-electron Hamiltonian
with magnetic field along the growth direction �z� is given by

He =
P2

2m* + V�r� + Hso�P� + HZ, �2�

in which V�r�=Vz�z�+Vc�x ,y� and P=−i��+e /cA with A
= �B /2��−y ,x ,0�. Hso represents the spin-orbit coupling
which is the key to the spin flip. In this work, we only con-
sider the Dresselhaus spin-orbit coupling28 as the Rashba
coupling29 is comparably small in GaAs QDs.36 Hence Hso
=�h ·�, with h= �Px�Py

2− Pz
2� , Py�Pz

2− Px
2� , Pz�Px

2− Py
2��.37 For

small well width, it reduces to

Hso =
�

�3 	Pz
2
�− Px�x + Py�y� , �3�

with 	Pz
2
 the average of Pz

2 over the electronic states defined
by Vz�z�. HZ= 1

2g	BB�z is the Zeeman splitting with g being
the Landé factor. We define H0= P2

2m* +V�r�, whose eigenval-
ues and eigenfunctions can be obtained from the Schrödinger
equation

H0�

 = E�

 . �4�

Previous work on single-electron QDs gives the solution of
the lateral part of this equation,14,33,34 where the exact energy
levels are given by

Enl = ���2n + �l� + 1� + �l�B, �5�

with �=��0
2+�B

2 and �B=eB / �2m*�. The wave functions
read

	r�nl
 = Nn,l��r��l�e−��r�2/2Ln
�l�
„��r�2

…eil, �6�

with Nn,l= (�2n! /��n+ �l��!)1/2 and �=�m*� /�. Ln
�l� is

the generalized Laguerre polynomial. In these equations,
n=0,1 ,2 , . . .. is the radial quantum number
and l=0, ±1, ±2, . . .. is the azimuthal angular momentum
quantum number. By solving the z component of Eq. �4�, we
obtain the lowest two electronic states along the z axis as
follows:


z
0 =�

C1
0 sin�k�z −

a

2
− d� ,

a

2
� z �

a

2
+ d

C2
0 cosh��z� , �z� �

1

2
a

C1
0 sin�k�− z −

a

2
− d� , −

a

2
− d � z � −

a

2

�
�7�

and


z
1 =�

C1
1 sin�k�z −

a

2
− d� ,

a

2
� z �

a

2
+ d

C2
1 sinh��z� , �z� �

1

2
a

C1
1 sin�k�z +

a

2
+ d� , −

a

2
− d � z � −

a

2
,
�

�8�

in which k2=2m*Ez /�2 and �2=2m*�V0−Ez� /�2 with Ez de-
noting the energy along this direction. We use the super-
scripts “0” and “1” to denote the even and odd parities, re-
spectively. The total spatial wave function is then denoted by
�nlnz
, with nz=0 and 1 in this work to distinguish the above
even and odd states along the z axis. Due to the strong con-
finement along the z axis, levels higher than nz=1 are ne-
glected. It is noted that when we refer to the single QDs, we
only keep the lowest state �the even one� due to the small
well width.

For two-electron system, the total Hamiltonian is written
as

Htot = �He
1 + He

2 + HC� + Hep
1 + Hep

2 + Hp. �9�

In this equation, the third term HC= e2

4��0��r1−r2� describes the
Coulomb interaction between the two electrons with � rep-
resenting the static dielectric constant. Hp=�q���q�aq�

+ aq�

represents the phonon Hamiltonian, and Hep=�q�Mq��aq�
+

+aq��exp�iq ·r� is the Hamiltonian of the electron-phonon
interaction. The superscripts “1” and “2” label the two elec-
trons.

We construct two-electron basis functions from the single-
electron wave functions. To see the physics clearly, we con-
struct our two-electron basis functions in either singlet or
triplet forms. Taking two single-electron spatial wave func-
tions �n1l1nz1
 and �n2l2nz2
 �denoted as �N1
 and �N2
 for
short� as an example, the singlet functions can be constructed
by

�S
 = ��↑↓
 − �↓↑
� � �
1
�2

�N1N2
 , N1 = N2

1

2
��N1N2
 + �N2N1
� , N1 � N2,�

�10�

and the triplet functions for N1�N2 by

�T+
 = 1
�2

��N1N2
 − �N2N1
� � �↑↑
 , �11�
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�T0
 = 1
2 ��N1N2
 − �N2N1
� � ��↑↓
 + �↓↑
� , �12�

�T−
 = 1
�2

��N1N2
 − �N2N1
� � �↓↓
 . �13�

Here, N and N�, in the ket �NN�
, represent the spatial quan-
tum numbers of the first and the second electrons, respec-
tively. We define the total angular momentum L= l1+ l2 and
denote the total spin �S ,Sz� with Sz representing the z com-
ponent of the total spin S.

Then, we calculate the matrix elements of the Coulomb
interaction and the spin-orbit coupling14 under these basis
functions. The Coulomb matrix elements can be expressed in
the form

	N1N2�HC�N1�N2�
 =
e2

4�2�0�
�lN1

+lN2
,lN1�

+lN2�
Q�N1,N2,N1�,N2�� ,

�14�

in which Q is given in detail in the Appendix. Thus we
obtain the two-electron Hamiltonian. By diagonalizing the
two-electron Hamiltonian, one obtains all the energy levels
and eigenfuctions. We identify a state as singlet and/or triplet
if its amplitude of singlet and/or triplet components is larger
than 50%. We rewrite the spin-orbit coupling Hamiltonian
�Eq. �3�� using the ladder operators as24

Hso = �c�P+S+ + P−S−� , �15�

with the coupling coefficient �c= �

�3 	Pz
2
. Then it is noted that

P± and S± change L and Sz by one unit, respectively. It sug-
gests that a state with �L ,Sz� can only be coupled with the
states with �L+1,Sz+1� and �L−1,Sz−1�.

Treating �i
 and �f
 as the initial and final states, we can
calculate the phonon-induced relaxation rate from the Fermi
golden rule

�i→f =
2�

�
�
q�

�Mq��2�	f ���i
�2�n̄q���� f − �i − ��q��

+ �n̄q� + 1���� f − �i + ��q��� , �16�

in which ��q ,r1 ,r2�=eiq·r1 +eiq·r2 comes from the total
electron-phonon interaction Hamiltonian Hep=Hep

1 +Hep
2 .

Here, n̄q� represents the Bose distribution of phonon with
mode � and momentum q. In our calculation, the tempera-
ture is fixed at 0 K. Therefore only the phonon emission
process occurs.

III. NUMERICAL RESULTS

In the numerical calculation, we include the electron-
acoustic phonon scattering due to the deformation potential
with �Mqsl�2=��2q /2Dvsl,

38 and due to the piezoelectric
field with �Mqpl�2= �32��2e2e14

2 /�2Dvsl���3qxqyqz�2 /q7� for
the longitudinal mode39 and � j=1,2�Mqptj

�2 = �32��2e2e14
2 /

�2Dvstq
5 � �qx

2qy
2+qy

2qz
2+qz

2qx
2 − �3qxqyqz�2 / q2� for the two

transverse modes.40 Here, �=7 eV stands for the acoustic
deformation potential; D=5.3�103 kg /m3 is the GaAs vol-
ume density, e14=1.41�109 V /m denotes the piezoelectric
constant and the static dielectric constant � is 12.9, vsl

=5.29�103 m /s corresponds to the longitudinal sound ve-
locity, and vst=2.48�103 m /s corresponds to the transverse
one.41

In our calculation, g factor is −0.44,4,41 and the Dressel-
haus coefficient � is 21.5 Å3 eV.42 The typical electron ef-
fective mass m* in GaAs is 0.067m0,41 with m0 being the free
electron mass.

A. Single dot

We first set a=0 to investigate the single dot case by exact
diagonalization method with the lowest 800 singlet and 2220
triplet basis functions. Under the basis, the energy levels and
the TS relaxation rates are well converged. The magnetic
field dependence of the first four levels and that of the TS
relaxation rates are plotted in Fig. 1. In the calculation, we
take the well width 2d=10 nm and the effective diameter
d0=30 nm. From Fig. 1�a�, one notices that the ground state
is a singlet denoted as S, in a wide range of the magnetic
field �from 0 to 2.6 T approximately�. In this region, the first
three excited states are triplet states, labeled as �T+
 �spin up�,
�T0
 �spin zero�, and �T−
 �spin down�, and the energy of �T−

is the highest one among the three because of the Zeeman
effect. When the magnetic field increases from 2.6 T, one
further observes a TS crossing between the singlet and the
two triplets ��T+
 and �T0
�. Moreover, a TS anticrossing
point �with a small energy gap shown in Fig. 1�a�� also exists
between the singlet and �T−
 triplet state due to the Dressel-
haus spin-orbit coupling. From the calculation, we notice
that the major components of �S
, �T±
, and �T0
 are �S1
, �T±

1
,
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FIG. 1. �Color online� �a� The lowest four energy levels vs mag-
netic field B in single QD. The TS anticrossing point between T−

and S is shown and the range near this point is enlarged in the inset.
�b� �−1 of the three transition channels vs the magnetic field. In the
calculation, d=5 nm and d0=30 nm.
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and �T0
1
, which are the lowest singlet and triplet basis func-

tions. Specifically, using the lowest two single-particle wave
functions, �nlnz
 with n=nz=0, l=0 and −1, one can con-
struct �S1
 with �000
 and �000
, and �T±

1
 and �T0
1
 with �000


and �0−10
 according to Eqs. �10�–�13�. Therefore, the quan-
tum numbers �L ,Sz� of �S1
, �T+

1
, �T0
1
, and �T−

1
 are different,
i.e., �0,0�, �−1,1�, �−1,0�, and �−1,−1�, respectively.

From Fig. 1�b� one observes that the TS relaxation rates
increase slowly with the magnetic field away from the cross-
ing and/or anticrossing points, but decrease dramatically in
the vicinity of the crossing and/or anticrossing points, in
agreement with the measurement qualitatively.11 The relax-
ation rate reaches maximum where the wavelength of the
emissive phonon is comparable with the dot size.43 In our
calculation, the TS splitting, i.e., the energy between the trip-
let and the singlet, �TS�0.2 meV. The corresponding half-
wavelength of the transverse phonon is therefore about
30 nm as the dot diameter d0. This feature was interpreted as
the competing effects of the magnetic field on the electron-
phonon coupling and the spin-orbit coupling.24 Actually, the
strength of the spin-orbit coupling is proportional to � �see
Eq. �6�� which increases with the magnetic field,14 whereas
the electron-phonon scattering becomes rather weak when
the emissive phonon momentum decreases.24

Surprisingly, our results are very different from those
shown in the previous work, where the transition rate of �T−

is much larger than those of the other two triplet states �T+

and �T0
.24 In that work, the authors interpreted their results
by the selection rule based on the perturbation method in-
cluding the lowest four basis functions, i.e., �S1
, �T+

1
, �T0
1
,

and �T−
1
. Under that basis, only �T−
 is coupled with �S


through the Dresselhaus spin-orbit coupling according to Eq.
�15�. So only the transition from �T−
 to �S
 can occur. Thus
they concluded that the transition rate from �T−
 to �S
 is
much larger than those of the other channels even though
much more �instead of four� basis functions are included. In
fact, this selection rule is widely used in the literature.10,11

However, as one needs many basis functions to achieve con-
vergence even in the single-electron QD system,14 whether
the selection rule from the lowest four basis functions is
robust against the inclusion of higher basis functions remains
an open question. Here we reexamine the selection rule with
more basis functions. Assuming the perturbation based on
the lowest four states �S1
, �T±

1
, and �T0
1
 is adequate to de-

scribe the real physics, we expect that the selection rule
should always be valid when more basis functions are in-
cluded. Specifically, we now use four single-electron func-
tions �000
, �0−10
, �010
 and �0−20
 to construct the two-
electron basis functions. Keeping only the index of l from
�nlnz
 since the other two are fixed, the six lowest singlet
states are constructed by �0
�0
, �0
�−1
, �0
 �1
, �−1
�−1
,
�0
�−2
, and �−1
�1
 separately and the three lowest triplet
states are constructed by �0
�−1
 in the way of Eqs.
�10�–�13�. We denote these nine basis functions as �S1
, �S2
,
�S3
, �S4
, �S5
, �S6
, �T+

1
, �T0
1
, and �T−

1
 in sequence, and the
quantum numbers �L ,Sz� are �0,0�, �−1,0�, �1,0�, �−2,0�,
�−2,0�, �0,0�, �−1,1�, �−1,0�, and �−1,−1� respectively.
Therefore, only the singlet states �S1
 and �S6
 can mix with
�T−

1
; �S4
 and �S5
 can mix with �T+
1
, according to Eq. �15�

under these basis functions. No mixing occurs to the state
�T0

1
.
As the Coulomb interaction is too strong to treat pertur-

batively, we first diagonalize the Hamiltonian with the Cou-
lomb interaction included to obtain a set of basis functions,

i.e., �S̄1
=a1�S1
+b1�S6
, �S̄2
=a2�S1
+b2 �S6
, �S̄3
=a3�S4

+b3�S5
, �S̄4
=a4�S4
+b4�S5
, �S̄5
= �S2
, �S̄6
= �S3
, �T̄+

1
= �T+
1
,

�T̄0
1
= �T0

1
, and �T̄−
1
= �T−

1
. Here ai and bi are obtained from
the numerical diagonalization. The corresponding eigenval-
ues are E1 to E6, E+, E0, and E−, respectively. Then we treat
the spin-orbit coupling as perturbation under the basis func-
tions. The lowest four states then read

�T+
 = �T+
1
 + +

1�S4
 + +
2�S5
 , �17�

�T0
 = �T0
1
 , �18�

�T−
 = �T−
1
 + −

1�S1
 + −
2�S6
 , �19�

�S
 = s
1�S1
 + s

2�S6
 + s
3�T−

1
 , �20�

with +
1�2�=�i=3,4

�bi
*−ai

*�A
E+−Ei

�i
1�2�, s

1�2�=�1
1�2�, −

1�2�

=�i=1,2
ai

*A+bi
*B

E−−Ei
�i

1�2�, and s
3=

a1A+b1B
E−−E1

. Here �i
1�2�=ai�bi�,

A=−i�*��1−eB /2��2�, and B=− i
�2

�*��1+eB /2��2� with
�* being ��� /2d�2.

Obviously, the transitions from both �T+
 and �T−
 to �S

can occur according to Eqs. �17�–�20�. The matrix elements
�	f ���i
�2 in Eq. �16� now read

�	S���T+
�2 = �s
1*+

2	S1���S5
 + s
2*+

1	S6���S4
�2

= �xt�2���2I2�qz� , �21�

�	S���T−
�2 = �s
1*−

1	S1���S1
 + s
2*−

2	S6���S6


+ s
3*	T−

1���T−
1
�2I2�qz� = �2t�1 − tx�2�2I2�qz� ,

�22�

with x=k�
2 /4�2, t=e−x, I�qz�=�2 sin�dqz� / �dqz��2− �dqz�2��,

�1=s
3*+s

1*−
1 +s

2*−
2, �2=s

3*+2s
2*−

2, and �=s
1*+

2

+�2s
2*+

1. We calculate the relaxation rates of these two
channels and plot the results in Fig. 2. One notices that the
two sets of dots �� for �T+
 and � for �T−
� are quite close to
each other and even show a crossing. In other words, the
selection rule is violated. We also present the exact diagonal-
ization results under the same basis functions �S1
− �S6
, �T0

1
,
and �T±

1
 in Fig. 2 �dashed curve for �T+
 and solid curve for
�T−
�. It is seen that the diagonalization results almost exactly
match the perturbation results. This match further confirms
that both our exact diagonalization and the perturbation cal-
culations are correct. Compare Fig. 2 with Fig. 1�b�, it is
obvious that the high excited levels manifest themselves
markedly in the relaxation rates. From our calculation, we
notice that the coefficients in Eqs. �17� and �19� are compa-
rable. This is because the denominators E−−Ei in −

1�2� are
close to E+−Ei in +

1�2�. This explains the reason why the
curve of �T−
 is close to that of �T+
 in Fig. 2.

However, it is noted that the selection rule works well in
the vicinity of the crossing and/or anticrossing points both in
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Figs. 1�b� and 2.44 This can be understood from Eqs. �17�
and �19�. Near the TS crossing point where E+�E1, the en-
ergy splitting E+−E3,4 is finite. Therefore +

1�2� only changes
slightly compared with the region away from the TS cross-
ing. Similar is true for the coefficients of �T0
. In contrast,
−

1�2� is very large when E−�E1. Therefore the transition rate
from �T−
 would be much larger than those from �T+
 and
�T0
, i.e., the selection rule is valid in the vicinity of the TS
crossing and/or anticrossing point. Moreover, the effect of
the Zeeman splitting also makes the transition rate of �T−

larger than those of �T+
 and �T0
 because of the larger pho-
non momentum q. Specifically, the energy splitting between
�T−
 and �S
 is about 0.18 meV at B=2.5 T in Fig. 1�a�,
which is much larger than that between �T+
 ��T0
� and �S
,
i.e., �0.06 meV �0.12 meV�. As the transition rates are pro-
portional to qm with m�0 varying for different mechanisms,
the rate of �T−
 is much larger than those of �T+
 and �T0
.

B. Double dot

Now we turn to study the TS relaxation rate in weakly
coupled double QDs using basis functions including 400 sin-
glet and 1080 triplet states. In the calculation, a=8 nm and
d=7 nm. In this part we still use �T±
 and �T0
 ��S
� to denote
eigenfunctions of the lowest three triplet states �lowest sin-
glet state�. To determine the contribution of the energy levels
along the z axis, we take the barrier height V0=0.25 meV,
the lowest one in our calculation, as an example. In this
configuration the splitting between the first and the second
levels along the z axis is about 1 meV and that between the
second and the third levels is much larger, about 0.2 eV.
Compared with the lateral confinement ��4 meV for d0
=30 nm�, we only need to include the lowest two in our
calculation.

We first investigate the TS relaxation rate as a function of
the barrier height. In the calculation, d0=30 nm and B
=0.5 T. As shown in Fig. 3, each transition rate first in-
creases slowly until it reaches the maximum around V0
�0.28 eV where the TS splitting �TS�0.4 meV correspond-
ing to the wavelength of the emissive phonon being compa-

rable with the dot size d0.43 After that, the TS relaxation rate
decreases rapidly with the barrier height. This would offer us
a scheme to manipulate the TS relaxation in double QDs.
Similar features �not shown here� are obtained when we in-
crease the interdot distance. The dramatic decrease of the
relaxation rate can be understood as follows. When the bar-
rier height becomes higher or the interdot distance becomes
larger, the interdot coupling is weakened and the energy
splitting between the lowest two levels along the z axis be-
comes smaller. As a result, the splitting between �T±
 ��T0
�
and �S
 decreases too. This causes the decrease of the TS
relaxation rate as discussed in the previous subsection.

To have a look at the role of the magnetic field, we cal-
culate the average relaxation rate 1 / �̄= �1 /�T+→S+1 /�T−→S

+1 /�T0→S� /3 as function of the barrier height at different
magnetic fields in Fig. 4�a�, but with the dot size d0
=30 nm fixed. It is seen from the figure that higher magnetic
field leads to relatively larger transition rate. It is due to the
enhanced spin-orbit coupling in strong magnetic field. The
influence of the effective diameter of QDs with V0=0.35 V
and B=1 T is also shown in Fig. 4�b�. One finds the transi-
tion rates increase with the effective diameter d0. The reason
lies on the different symmetry properties of the singlet and
triplet states. For the singlet state, the interelectron distance
decreases with the decrease of the dot size. The Coulomb
repulsion therefore lifts the corresponding energy levels.
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However, the energy lifts of the triplet states are smaller due
to the antisymmetry property of the triplet states which pre-
vents the electrons to be close to each other. Therefore, the
TS splitting becomes smaller with the decrease of the dot
size. This leads to the rapid decrease of the TS relaxation
rates.

IV. SUMMARY

In summary, we have investigated the TS relaxation in
single and double QDs. For the single dot case, we find that
the average relaxation rate first slowly increases with mag-
netic field until it reaches the maximum where the wave-
length of emissive phonon is comparable with the dot size.
Then it drops sharply. This result qualitatively agrees with
the recent measurement.11 Furthermore, our result shows the
transition rates of the triplet �T+
 and �T0
 can be comparable
with that of �T−
, which violates the selection rule in the
literature.24 We show that the selection rule obtained from
the lowest four basis functions does not hold in general cases
where much more basis functions are needed to converge the
triplet and/or singlet states. This is shown perturbatively by
calculating the TS relaxation rates based on nine basis func-
tions. Comparable transition rates of �T+
 and �T−
 are imme-
diately obtained away from the TS crossing point. The per-
turbation results are in good agreement with the exact
diagonalization results under the same basis functions. We
also show that the selection rule works well in the vicinity of
the TS crossing and/or anticrossing point due to the effects
from the Zeeman splitting and the anticrossing. For the
double QD case, we demonstrate that the TS relaxation rates
vary more than 2 orders of magnitude by tuning the interdot
barrier. This offers a feasible scheme to manipulate the TS
relaxation in double QDs. The relaxation rates also sensi-
tively depend on the dot size and magnetic field.
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APPENDIX: Q IN COULOMB INTERACTION

Following Ref. 14, we obtain Q in Eq. �14� as

Q�N1,N2,N1�,N2�� = �
0

�

dk�k�PN1,N1�
�k��PN2�,N2

�k���
−�

�

dkz

�
WN1,N1�

�kz�WN2�,N2

* �kz�

k2 , �A1�

where PN,N� and WN,N� come from the lateral and vertical
parts of the matrix element 	n , l ,nz �exp�ik ·r� �n� , l� ,nz�
, re-
spectively. P is given by14

PN,N��k�� =� n!n�!

�n + �l��!�n� + �l���!
exp�−

k�
2

4�2
��

i=0

n�

�
j=0

n

Cn�,�l��
i Cn,�l�

j n̄!Ln̄
�l−l��� k�

2

4�2
��sgn�l� − l�

k�

2�
��l�−l�

, �A2�

with Cn,l
i =

�−1�i

i!
� n+l

n−i
� and n̄= i+ j+ ��l � + �l� �−�l�− l � � /2. sgn �x�

represents the sign function. W reads

WN,N� = 	nz�exp�ikzz��nz�
 . �A3�
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