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An analytic theory is developed for the conductivity across the layers �zz in a layered conductor in perpen-
dicular magnetic field under the conditions of interlayer incoherence. The latter assumes a small hopping
integral between the layers t�� /� and the presence of localized states in the tails of broadened Landau levels
�LLs� �� is the electron scattering time within the layers�. In the incoherent regime, �zz strongly depends on the
in-plane conductivity mechanisms because electrons spend most of their time within the weakly coupled layers.
At high fields ���1, an integer quantum Hall effect �IQHE� within the layers develops which changes
dramatically magnetic quantum oscillations in the �zz compared to the standard Lifshitz-Kosevich theory �� is
the cyclotron frequency�. At low fields, �zz displays Shubnikov–de Haas �SdH� oscillations which in the limit
���1 transforms into sharp peaks. The peaks reach their maximum values �zz�

��
T when LLs cross the

chemical potential �. When � falls into the tails between the LLs, the �zz displays first a thermal activation
behavior �zz�exp�−���−�� /T� and, then at lower temperatures T, crosses over into a variable-range-hopping
regime with �zz�exp�−�T0 /T�, where T0� �B−B0�	. Above B0, the in-plane electrons are in the quantum-Hall-
insulator regime and the background interlayer magnetoresistance Rb has an insulatorlike temperature depen-
dence. Below B0, the in-plane electrons are in the conventional SdH oscillation regime and Rb has a metal-like
temperature dependence. On the insulating side, Rb displays a universal dependence on the scaling variable
�B−B0� /T
. Scaling is destroyed in tilted magnetic fields at angles corresponding to the spin zeros. All the
above features in the �zz have been observed in the ��-�BEDT-TTF�2SF5CH2CF2SO3, in which the critical
exponent is equal to 
=1 /	=0.65. The IQHE regime at high fields in this quasi-two-dimensional organic
conductor is favored by the fixed value of the chemical potential. It is shown that at low temperatures �T
�� /��, oscillations of the conductivity and magnetization are related by the condition �zz�B2�M̃ /�B, in
agreement with observations in ��-�BEDT-TTF�2SF5CH2CF2SO3. The analysis shows that the above features
in the conductivity cannot be explained within the model with a narrow-band dispersive electron transport
across the layers because the model is incompatible with the incoherence condition t�� /�. Moreover, in the
self-consistent Born approximation, this model yields a nonphysical negative conductivity �zz�0.
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I. INTRODUCTION

Magnetic quantum oscillations in layered organic con-
ductors �ET salts, i.e., the ones which contain a mole-
cule BEDT-TTF �bisethylenedithio-tetrathiafulvalene� often
strongly deviate from the Lifshitz-Kosevich �LK� theory
developed for conventional metals with arbitrary shape of
the Fermi surface �FS�.1–5 The most striking example is
the highly anisotropic layered organic superconductor
��-�BEDT-TTF�2SF5CH2CF2SO3 ��� salt�,1,2 which dis-
plays an incoherent �nondispersive� electron transport across
the layers and presumably has a FS corresponding to a two-
dimensional �2D� rather than a three-dimensional �3D� con-
ductor because the momentum across the layers is not pre-
served. Experimentally, the interlayer incoherence in the ��
salt has numerous manifestations in anomalous magnetic
quantum oscillations.1,2,6 Some of these anomalies will be
discussed later.

The prime evidence of the incoherence is the absence
of beats in magnetic quantum oscillations as well as the
fact that a resistive peak in parallel to the layer’s
magnetic field never has been observed in the �� salt.1–4

The absence of beats means a very small value of the
hopping integral between the layers t. In organic salt

��-�BEDT-TTF�2SF5CH2CF2SO3, an estimate yields t
�10−6 eV,6 which is caused by large anion molecules
SF5CH2CF2SO3 between the layers. The dispersion across
the layers ��pz� and related 3D FS have no meaning in that
case for a very simple reason: the warping of the cylinder FS
caused by the electron interlayer hopping, �t, is much less
than its smearing by the disorder potential, �� /�. In other
terms, the inequality � / t�� means that interlayer hopping
time is large and electrons scatter many times within the
layer before hopping to a neighboring layer, so that there is
no coherent wave function perpendicular to the layers.

Under such conditions, the conductivity across the layers
�zz is carried out through uncorrelated electron tunneling be-
tween impurity-broadened 2D Landau levels belonging to
the neighboring layers.7 The same concept of interlayer in-
coherence is well established in anisotropic high-Tc
cuprates.8–13

Although both Subnikov–de Haas �SdH� and de Haas–van
Alphen �dHvA� oscillations are strongly influenced by the
interlayer incoherence, to treat this effect in thermodynamic
dHvA oscillations is much easier. A theory of dHvA oscilla-
tions in intercalated layered conductor with disorder in layer
stacking was developed in Ref. 14. The disorder across the
layers means nothing but incoherence since pz, the momen-
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tum component perpendicular to the layers, is not preserved
and the related dispersion ��pz�, as well as the corresponding
warped cylinder FS, has no meaning in that case. It was
established in Ref. 14 that local defects in layer stacking
result in additional frequencies in the spectrum of dHvA os-
cillations. As will be shown in this paper, the influence of the
interlayer incoherence on magnetic oscillations of the con-
ductivity �zz is more complex.

In less anisotropic �than the �� salt� organic conductors of
the ET family, electrons have a dispersion across the layers.
In that case, the accepted standard is to take the electron
interlayer kinetic energy in the form ��pz�= t cos�pza /��. If
t�� /�, the corresponding 3D FS is a warped cylinder pro-
ducing beats in the SdH and dHvA oscillations. The beats in
the dHvA oscillations in layered conductors have been stud-
ied in Ref. 14. In the SdH conductivity across the layers,
these beats are known as the “slow oscillations.” They are
well established experimentally and explained theoretically
in Ref. 15 within the standard cosine-dispersion model for
the interlayer electron hopping. It was also demonstrated in
this paper that under the conditions t����� /�, the mag-
netic oscillations of conductivity in layered conductors such
as ET salts cannot be described correctly without taking into
account a quantum correction to the quasiclassical Boltz-
mann conductivity �zz.

A formal application of the standard model with the co-
sine interlayer dispersion ��pz�= t cos�pza /�� to calculations
of the SdH oscillations in the highly anisotropic �� salt was
done in Refs. 16 and 17. In this connection, a remark is in
order. It is clear that any approach to the problem in question
based on a dispersive interlayer electron transport cannot ex-
plain neither metal-to-insulator transition nor scaling in the
background magnetoresistance observed in Ref. 1. As will be
shown later, the model and approximations used in Refs. 16
and 17 are in principal conflict with the concept of the inter-
layer incoherence both mathematically and physically. More-
over, they result in a negative nonoscillating conductivity
across the layers �zz�0.

On the other hand, the incoherence condition � / t��, as
was proved in Ref. 7, does not change the angular-dependent
magnetoresistance oscillations �AMROs�, which is not a sur-
prise since AMRO hold even in bilayers in tilted magnetic
fields.18 To the contrary, the SdH and dHvA oscillations in
the incoherent layered conductor deviate dramatically from
the standard LK picture and display very unusual behavior
below the upper critical magnetic field Bc2. The experiments
of Ref. 19 show that both SdH and dHvA amplitudes are
enhanced in the �� salt in the superconducting state in
contrast to all previous observations and all theories so
far, which predict a decrease of magnetic oscillations in
the vortex state of a 2D superconductor due to several
specific mechanisms of damping.20 This anomalous en-
hancement of the dHvA and SdH oscillations in the
��-�BEDT-TTF�2SF5CH2CF2SO3 salt below the Bc2 is most
likely related to the restoration of the interlayer coherence in
the superconducting state.21 The latter enhances the layer-
stacking factors, modulating the amplitudes of magnetic os-
cillations. These factors are absent in purely 2D models of
magnetic quantum oscillations in the superconducting
state.20

The spin factor in the LK theory oscillates with the angle
between the magnetic field and the conducting plane so that
the amplitudes of harmonics became zero at some tilt angles.
This spin-splitting zero effect is anomalous in the �� salt as
well.6 The spin zeros are shifted compared to the LK theory
in the dHvA oscillations, but in the SdH measurements, they
exactly follow the LK predictions.22 A theory of this unusual
phenomenon based on a combined effect of the small chemi-
cal potential oscillations and interlayer incoherence will be
considered elsewhere.

Here, we will concentrate on another puzzling manifesta-
tion of the interlayer incoherence in the �� salt. It was found
in Refs. 1 and 6 that the SdH oscillations in this layered
conductor in perpendicular magnetic field B display a metal-
to-insulator transition at the critical field B0=3.5 T. Below
B0, the background magnetoresistance Rb has a metal-like
temperature dependence, i.e., it decreases with the decrease
of temperature. Above B0, the temperature dependence of the
Rb is insulating. Moreover, a normalized background magne-
toresistance Rb displays a universal monotonously increasing
dependence on the scaling variable �B−B0� /T
, with the
critical exponent 
=0.65.

The purposes of this paper are �i� to develop a theory of
the SdH oscillations in the conductivity across the layers in a
regime of incoherent electron hopping between the conduct-
ing layers, and �ii� to explain the metal-to-insulator transition
induced by a perpendicular magnetic field in the �� salt and
the scaling behavior of the background magnetoresistance in
this compound based on the assumption that the integer
quantum Hall effect �IQHE� holds in this compound at high
magnetic fields.

The paper is organized as follows. In Sec. II, basic equa-
tions are derived and the analogy with the IQHE is dis-
cussed. The SdH oscillations in the interlayer conductivity is
considered in Sec. III. Metal-to-insulator transition and scal-
ing in the background magnetoresistance as well as the role
of the variable-range-hopping mechanism in the total con-
ductivity are explained in Sec. IV. Results and conclusions of
the paper are summarized in Sec. V. In Appendix A, the
effective quantum hopping amplitude across the layers is
considered. The incompatibility of the interlayer incoherence
with the models based on the dispersion across the layers and
the self-consistent Born approximation �SCBA� is discussed
in Appendixes B and C.

II. BASIC EQUATIONS AND ANALOGY WITH THE
INTEGER QUANTUM HALL EFFECT

A theory of the SdH oscillations for the case of incoherent
electron transport across the layers was developed in Ref. 23.
Equations for the conductivity obtained in this paper are
written in terms of the density of states �DOS� g��� and
velocity vz

2��� of electrons within the broadened Landau lev-
els �LLs�. They can be applied both to the dispersive and
nondispersive electron transport, including the case when
some fractions of states within the broadened LLs are local-
ized as in the IQHE.24 The latter means that vz

2���=0 for
energies belonging to the localized states at the tails of Lan-
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dau levels, and vz
2����0 for the stripes of delocalized states

at the center of LLs.
The SdH conductivity �zz, obtained in Ref. 23, is a sum of

the Boltzmann ��B� and quantum ��Q� terms: �zz=�B+�Q,
where

�B = �0� d�
dE

�
g���vz

2���	−
�f

�E

�S��,��E,��� , �1�

�Q = �0� d�
dE

�
g���vz

2���	 �f

�E

2�

�

�

��
S��,��E,��� . �2�

Here, ��E�=2� /��, ��E ,��=2��E+�� /��, �0=e2NL /��,
�=eB /mc, B is the magnetic field, m is the electron mass, c
is the speed of light, NL=� /S�0 is the electron density at the
LL, � is the flux through a sample, �0=2��c /e is the flux
quantum, f = f�E−�� is the Fermi function, � stands for the
chemical potential �CP�, and

S��,�� = �
p=−�

�

�− 1�pe−�p�� cos p� =
sinh �

cosh � + cos �
. �3�

The Landau levels in the problem in question are broadened
by the intralayer disorder and by the interlayer incoherence.
The variable � describes the LLs’ broadening. The shape of
this broadening is given by the DOS g���:

En��� = ���n + 1/2� + � . �4�

The electron velocity in the direction perpendicular to the
layers, vz, is related to the tunneling matrix elements be-
tween the layers by

vz��� =
�t�,��a

��2
, �5�

where a and ��2 / �t�,�� are correspondingly the distance be-
tween the layers and the time of tunneling.

Experiment2 shows a nonmetallic temperature behavior of
the resistance across the layers �zz�T�=1 /�zz�T� in the �� salt
even at B=0, which displays a broad maximum at 35 K. This
insulating resistance testifies in favor of the hopping mecha-
nism of electronic transport across the layers in this organic
compound.

Although little is known about the mechanism of incoher-
ence, a strong point of the above equations is that we can
learn much about the �zz�B ,T� from Eqs. �1� and �2� under
rather general assumptions on this mechanism and yet with-
out resorting to any specific shape for the DOS g���. In this
connection, one can argue first that the interlayer electron
hopping in the incoherent regime is a random one-
dimensional �1D� walk yielding nonzero conductivity in the
direction perpendicular to the layers.

As is well known, the 1D walk is a special case, in which
for any type of disorder the DOS g��� has mobility edges
separating a stripe of delocalized states from the energy tails
at which velocity vz���=0. In principle, all states can be
localized for strong enough disorder, but this is not the case
for the �� salt since the conductivity �zz�B ,T��0 in experi-
ments. Thus, there is at least a narrow stripe of delocalized

states in this ET salt, where the vz����0, which provides the
nonzero conductivity across the layers. We can assume then
in a most general way that as in the IQHE the delocalized
states are centered at �=0, where g��� has a narrow peak �of
the order of t� and wide tails spreading between the LLs.25–27

The analogy with the integer quantum Hall effect is rel-
evant and important for the problem in question because un-
der the condition of incoherence, � / t��, electrons moving
across the layers spend most of their time within the 2D
layers. By scattering many times within the layers, electrons
then hop to the neighboring layer, providing thereby a con-
ductivity across the layers which bears a strong impact of the
2D conductivity mechanism within the layers. On the other
hand, under the condition ���1, for which Eqs. �1� and �2�
have been obtained in Ref. 23, the IQHE regime develops
within the weakly coupled conducting layers. This regime in
the �� salt is favored by the fixed value of the chemical
potential at the Fermi level ��EF and relatively small Lan-
dau level occupation index �see also Sec. IV C�. Small oscil-
lations of the chemical potential with amplitudes much less
than the separation between LLs can be neglected in this
problem. The Landau levels in the IQHE regime are broad-
ened by disorder and have a narrow stripe of delocalized
states in their center.24–26 The localization is a crucial ingre-
dient of the IQHE. The idea that the IQHE within the layers
can hold in some organic ET salts has been discussed in the
literature,3 although a direct experimental proof of this is
absent so far.

Thus, assuming the presence of a narrow stripe of delo-
calized states in the DOS g���, we can simplify Eqs. �1� and
�2�, and rewrite them as follows:

�zz =� dE

�
	−

�f

�E

��Gzz��,E� , �6�

Gzz��,E� = GB��,E� + GQ��,E� , �7�

GB��,E� = S��,��E��, GQ��,E� = − �
�

��
S��,��E�� ,

�8�

where ��E�=2�E /�� and

�� =
e2NL�
vz

2�
��

. �9�

The average of the velocity squared is given by


vz
2� =

a2

2�2�
�min

�max

d�g����t�,��2. �10�

The integral in Eq. �10� is taken within the narrow stripe of
delocalized states at the center of the LLs. The tails in the
DOS g��� can be wide, but the width of the delocalized
states stripe is small, so that ��max−�min�� t�� /�. This im-
portant point simplifies equations for the conductivity and
yet stresses a similarity of the physics behind the �zz to that
in the 2D IQHE systems �see Secs. IV and V for more de-
tails�.
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III. SHUBNIKOV–de HAAS OSCILLATIONS
OF THE CONDUCTIVITY

The scattering time ��E�, in general, is a model-dependent
function of the energy, which is inversely proportional to the
scattering probability of electrons by impurities. The latter
depends on the DOS of the system, which oscillates in ex-
ternal magnetic field and makes, in general, ��E� an oscillat-
ing function of the inverse magnetic field, too. However, in
our model, these oscillations are small because conducting
�delocalized� electrons belong to a narrow stripe in the DOS,
while the rest of the electrons are localized and produce a
reservoir of states, stabilizing oscillations in ��E� which can
be approximately set �=const �see Appendix A for more
details�.

Under the conditions �=const and ��1, the functions
GB�� ,E� and GQ�� ,E� are sharply peaked at E=En, and be-
tween the LLs they nearly compensate each other, as shown
in Fig. 1. Correspondingly, the conductivity �zz tends to zero
between the peaks like in the IQHE. The amplitude of the
peaks in Fig. 1�c� is twice larger than in Figs. 1�a� and 1�b�.
Therefore, one can approximate the function Gzz�� ,E�
=GB�� ,E�+GQ�� ,E� by a periodic set of �-like Lorentzians
�see Fig. 1�c��

Gzz��,E� �
2

�
�

n=−�

�
�

�n + 1/2 − E/���2 + �2 , �11�

where �=� /2�. The sum in Eq. �11� can be written in a
simple analytic form with the help of the identity

1

�
�

p=−�

�
�

�n + a�2 + �2 =
sinh 2��

cosh 2�� − cos 2�a
. �12�

The width of peaks in Fig. 1 in the energy scale is of the
order of � /�. If T�� /�, the peaked function −��f /�E� is
broader than peaks in the function Gzz�� ,E�. Correspond-
ingly, Eq. �6� for T�� /� yields

�zz�B� � ��

��

2�T�
n

cosh−2	En − �

2T

 . �13�

The oscillations of the conductivity as a function of magnetic
field are completely determined by Eq. �13� provided that the
shape of the chemical potential ��B� is known. Experiments
tell that the chemical potential in the �� salt vary very little
with magnetic field and is approximately equal to the Fermi
energy EF.1 Although reasons behind such behavior of the
CP are not completely known, it is clear that the function
��B� in layered organic ET salts differs from that in a 2D
electron gas because of the electronic miniband structure at-
tached to each Landau level. This miniband structure in the
occupation below the Fermi energy EF, as was shown in Ref.
28, strongly reduces the amplitude and changes the shape of
the chemical potential oscillations through a specific integral
factor depending on the DOS within the minibands. In a 2D
electron gas, the LLs are flat and, at zero temperature, ��B�
jumps between them with the amplitude ��.29–32 In the 3D
case, the amplitude of the CP oscillations is dramatically
reduced to the value ��c

���c /EF. Because of that, ��EF in
the LK theory. In superlattices and layered conductors, the
amplitude is between the 2D and 3D values. It depends on
the layer-stacking parameters through the DOS of the occu-
pied miniband structure below the EF �Ref. 28�. �More pre-
cisely, through the layer-stacking factor introduced in Ref.
14.� Although the miniband structure in the �� organic salt is
unknown, one can assume that the electron population of
these states below the EF is the physical reason that stabilizes
the chemical potential at the EF in this layered conductor.1

In view of the above reasoning, and in accordance with
the experiment,1 we can put ��EF in Eq. �13� for the con-
ductivity �zz. This equation then yields �zz as an oscillating
function of the �� �i.e., magnetic field�, which is shown in
Fig. 2. Under the condition �� /T�1, the conductivity �zz
becomes a sharply peaked function which has maxima when
one of the LLs exactly coincides with the chemical potential,
En=�. The conductivity at maxima is equal to �zz=��

��
2�T . At

minima, as well as at all other magnetic fields at which the
chemical potential � falls between the LLs, the conductivity
�zz becomes an exponentially small function of temperature
and ��:

0.5 1 1.5 2 2.5 3
X

1
2
3
4
5
6

GB

0.5 1 1.5 2 2.5 3
X

�1

1
2
3
4
5
6

GQ

0.5 1 1.5 2 2.5 3
X

2
4
6
8

10
12

Gzz

FIG. 1. �a� The Boltzmann, GB=S�� ,2�X� and �b� the quantum,
GQ=−�

�
��S�� ,2�X� contributions into the conductivity �zz in Eq.

�6�, and �c� their sum Gzz=GB+GQ. X=E /��, �=0.3.
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�zz = ��

��

2�T
exp	−

�� − ��

T

 , �14�

where �� is a separation between the CP and the center of
the nearest partially filled broadened LL. Such thermally ac-
tivated dependence of the conductivity across the layers
�zz�T� was established experimentally in the �� organic
salt.1,2

At lower temperatures, T�� /�, the conductivity regime
changes. In that case, one can approximate the derivative
�−�f /�E� in Eq. �6� by the delta function ��E−��, which
yields

�zz � ��„GB��,����� + �GQ�,�����… . �15�

As a function of magnetic field, the conductivity �zz �15� in
the low-temperature regime, T�� /�, is given by the sharply
peaked function Gzz�� ,����� of the variable ����
=2�� /�� shown in Fig. 1. The Boltzmann and quantum
terms in Eq. �15� nearly compensate each other between the
peaks, which in the limit �→0 become narrow Lorentzians
of Eq. �11�. The same type of behavior is also typical for the
diagonal conductivity of conventional 2D semiconductor
quantum Hall effect �QHE� systems,25–27 which makes the
analogy with the QHE important for further consideration
based on the approach developed in Ref. 24.

Using Eqs. �11� and �12�, we can rewrite Eq. �15� in the
following simple analytic form:

�zz � 2��

sinh�2���
cosh�2��� + cos�2��/���

, �16�

which permits establishing a relationship between the SdH
and dHvA oscillations in the considered system. Indeed, the
magnetization oscillations in a layered quasi-2D conductor
with the fixed value of the chemical potential ��EF and a
weak coupling between the layers can be described at zero
temperature by the sum33

M̃ = M0�
p=1

�
�− 1�p

p
exp�− 2��p�sin	2��p

��

 . �17�

Neglecting small corrections of the order of � /���1, we
can establish a relation between the SdH conductivity of Eq.

�16� and the oscillating part of magnetization M̃:

�zz

��

� AB2 �

�B

M̃

M0
, �18�

where A=2e� /�mc�. Since AB��� /���1, one may
conclude that the relative amplitude of the SdH oscillations
�zz /�� is much less than the relative amplitude of the mag-

netization oscillations M̃ /M0. Equation �18� was established
experimentally in the �� salt.1 It is worthy to note here that a
proportionality of the SdH conductivity oscillations to the

B2�M̃ /�B in the LK theory is a consequence of a simplifying
assumption, fulfilled in many isotropic conventional 3D met-
als, that both SdH and dHvA oscillations are determined
completely by the DOS oscillations. This is not the case in
general. In particular, in some anisotropic and quasi-2D con-
ductors, electron velocities are oscillating functions of the
magnetic field because of the Landau bandwidth oscillations.
The most prominent example is the Weiss oscillations ob-
served in periodically modulated 2D electron gas.34–36 In our
case, the average velocity within the delocalized stripe Eq.
�10� is determined by the variable-range-hopping mechanism
and does not oscillate. We consider the conductivity due to
this mechanism in the next section.

IV. VARIABLE RANGE HOPPING,
MAGNETORESISTANCE OSCILLATIONS,

AND METAL-TO-INSULATOR TRANSITION

A. Integer quantum Hall effect regime and variable range
hopping

The background conductivity �� in Eq. �9� depends on the
hopping amplitude �t�,��. Below we argue that in �� salt, this
amplitude is a function of temperature and magnetic field.
The point is that under the condition of incoherence, t
�� /�, which holds in the �� salt, electrons scatter many
times within the layers before hopping to the neighboring
layer. In other words, by moving from the top layer to the
bottom layer, electrons spend a major fraction of time within
the layers. The corresponding quantum amplitude related to
the electron path across the layers is a product of the hopping
amplitudes within and between the layers. We argue below
that because of the weak coupling between the layers and the
fixed value of the chemical potential, the �� salt is a good
candidate for establishing the IQHE regime within the layers
at high fields. If this is the case, then the amplitude �t�,�� in
the �� salt is proportional to the average hopping amplitude
within the layers, which is the Mott exponent.

Although, so far, the quantum Hall effect has not been
observed directly in layered organic ET salts, numerous in-
direct experimental evidences testify that at fields ��� t, the
IQHE regime is achieved within the layers in these conduc-
tors �see Ref. 3 for a review�. Among the whole family of ET
salts, the �� salt has the smallest hopping integral t and a
fixed value of the chemical potential, which make conditions
for the IQHE regime within the layers the most favorable.
Also, that compound has a much smaller Fermi surface than
other ET salts, which is equal only to 1 /5 of the value given
by the band structure calculations. As a result, the �� salt has
the smallest Landau orbit occupation index �for example, n

1 2 3 4 5
X

2

4

6

8
Σzz

FIG. 2. The conductivity �zz �see Eq. �13�� in units of �� as a
function of X=��. The conventional energy units are accepted, in
which T=0.5 and EF=10.
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=11 at 18 T, while in the other ET salts, it is usually three
times larger37�. The small Landau index in 2D conductors
favors the localization effects necessary for the IQHE.

Therefore, taking into account all the above reasoning, we
will assume that the IQHE regime holds in the �� salt under
the conditions ���� /�� t. In the IQHE regime, the diago-
nal conductivity evolves on the background of localization
which plays a crucial role in the IQHE physics. The hopping
amplitude between localized states within the layers in the
IQHE regime is determined by the variable-range-hopping
�VRH� mechanism, with the amplitude proportional to the
Mott exponent exp�−�T0 /T�.38,39 The latter means that the
amplitude �t�,��2 at low temperatures T�� /� is proportional
to this factor, too. The factor exp�−�T0 /T� depends not only
on temperature but through a characteristic temperature T0
=T0�B� on the magnetic field B, too. That point will be dis-
cussed later. �More details on the Mott VRH mechanism can
be found also in Appendix A.�

Thus, the temperature and field dependencies of the con-
ductivity �zz at low temperatures are governed by the IQHE
physics within the weakly coupled layers. It is believed that
in 2D conductors in perpendicular magnetic field, the ex-
tended states are at the center of the broadened Landau levels
and all the other states are localized.25–27 The picture of lo-
calization, in general, is rather complex. Qualitatively, at
high enough fields, the localization within the layers means
that Landau orbits drift along the closed equipotential con-
tours of the random impurity potential.26,27 At places where
contours come close, electrons can tunnel from one contour
to another, providing thereby a conductivity mechanism
through the extended states. In the �� salt, this process in-
cludes as well contours lying in the neighboring layers,
which yield nonzero conductivity across the layers.

The energies of the equipotential contours depend on the
random potential relief, and have some dispersion in values.
Therefore, the hopping between contours includes a thermal
activation and tunneling, i.e., it goes through the Mott VRH
mechanism. Because of that, the effective interlayer hopping
amplitude �t�,��T�� can be written as follows: �t�,��T��2

= �t�,�
0 �2 exp�−�T0 /T�. Equations �9� and �10� then yield a

well-known Mott law for the background hopping conduc-
tivity

���T0/T� = ���0�exp�− �T0/T� . �19�

Here, ���0� is given by Eqs. �9� and �10�, in which �t�,�
0 �2

substitutes the amplitude �t�,��T��2. The characteristic tem-
perature T0 in the IQHE conductors is inversely proportional
to the correlation length �, which has a singular dependence
on the magnetic field so that T0�1 /�� �B−B0�	. Such type of
dependence of the correlation length on a magnetic field
manifests a transition to the quantum-Hall-insulator
state.40–42

In the GaAs /AlGaAs heterostructures, the critical expo-
nent index 	�2.35 determines the scaling properties of the
conductivity near the plateau-to-plateau or plateau-to-Hall-
insulator phase transitions.38–41 The numerical values of the
critical index 	 and critical field B0 in the �� salt should be

taken from the experiment. To this end, we will first derive in
the next section the conductivity �zz as a function of tem-
perature.

B. Temperature behavior of the Shubnikov–de Haas
conductivity

Consider the temperature behavior of the conductivity �zz.
Using Eq. �3� for the series expansion of the function
S�� ,��E��, Eq. �19�, and the integral relation

�
0

�

dE	−
�f

�E

cos	2�pE

��

 � RT�p�cos	2�p�

��

 , �20�

one can write Eq. �6� for the conductivity �zz in the follow-
ing form:

�zz = ���0� �
p=−�

�

�− 1�pRD�p�RT�p�cos	2�p�

��

 . �21�

Here, RD�p�=exp�−2��p���� is the Dingle factor,

RT�p� =
Xp

sinh�Xp�
exp�− �T0/T� �22�

is the temperature factor, and X=2�2T /��.
The temperature factor RT�p� �22� differs from the stan-

dard LK temperature factor by the Mott VRH exponent. In
the LK theory, the temperature dependence of the harmonics
is the same for the SdH and dHvA oscillations. This is not
the case in the quasi-2D layered conductors with the inco-
herent transport across the layers. The temperature factors
RT�p� for the dHvA oscillations �upper curve� and SdH os-
cillations �lower curve� are shown in Fig. 3. Remarkably, the
same shape deviation from the LK theory in the RT�p� �bent
down at low temperatures� has been observed in the SdH
experiments on the �� salt �see Fig. 4 in Ref. 37�. We will
discuss this in more detail in Sec. V.

2 4 6 8 10
X

0.2

0.4

0.6

0.8

1
RT

FIG. 3. Temperature damping factor RT�1� of the fundamental
�p=1� harmonic as a function of the variable X=2�2T /�� for the
SdH �lower curve� and dHvA �upper curve� oscillations in the case
of incoherent electron hopping across the layers �see Eq. �22��. The
upper curve displays a standard LK temperature factor �RT�1� with
T0=0�. The most pronounced difference between the SdH and
dHvA factors is at low temperatures T�T0, where the VRH
conductivity mechanism gives an additional Mott exponent

exp�−�T0 /T� in the SdH case. Temperature is measured in conven-
tional units in which T0=3.
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A similar anomalous behavior of the RT�p� in SdH experi-
ments with some ET salts has been reported before.4 Inter-
estingly, the above anomaly was observed only in those ET
salts which display an indirect evidence of the IQHE within
the layers and show no beats in the magnetoresistance. Direct
measurements of the in-plane diagonal and Hall conductivi-
ties have not been done so far in ET salts because it is not
easy to do experimentally as explained in a review paper.4

C. Scaling and the metal-to-insulator transition

The appearance of the Mott VRH exponent in the SdH
temperature factor RT�p� caused by the incoherence has very
important consequences. One of these is a scaling of the
background conductivity. This scaling means a universal de-
pendence of the background conductivity on the variable
��B−B0�� /T0.65, which has been observed in the SdH experi-
ments on the �� salt in Ref. 1.

In our theoretical approach, the scaling follows from the
fact that the characteristic temperature T0 is inversely propor-
tional to the correlation length, which has a singularity at the
magnetic field B0. At this field, a transition to the Hall-
insulator state holds within the layers,40–42 and conductivity
across the layers is provided by the electron tunneling be-
tween equipotential contours belonging to the neighboring
layers. Putting then T0�1 /�� �B−B0�	 into the VRH factor,
we can write it in the form

exp�− �T0/T� = exp�− A��B − B0�/T0.65�0.77� . �23�

Correspondingly, for the hopping conductivity Eq. �19�, we
have

���B,T� = ���0�exp�− A��B − B0�/T0.65�0.77� . �24�

Here, we take into account the following relations:

�T0

T
���B − B0�	

T
= 	 �B − B0�

T1/	 
	/2

�25�

and set 	−1=0.65 in accordance with experiments.1

The magnetoresistance Rzz�B ,T�=1 /�zz�B ,T� is inversely
proportional to the conductivity given by Eqs. �21� and �23�.
The SdH oscillations of the magnetoresistance Rzz�B ,T� cal-
culated with the help of Eqs. �21� and �23� at different tem-
peratures are plotted in Fig. 4. This plot displays correctly all
specific features observed in the SdH experiments on the ��
salt in Refs. 1 and 2: the upturn of the background magne-
toresistance, the insulating type of magnetoresistance �the
background magnetoresistance is higher for lower tempera-
tures�, and the scaling. The scaling in the background mag-
netoresistance is illustrated in Fig. 5, in which the VRH ex-
ponent Rb /R�0�=exp�1.7�X�0.77� is plotted as a function of
the universal scaling variable X= ��B−B0�� /T0.65. The con-
stant A is taken equal to A=1.7 in these conventional units.

The logarithmic scaling plot of the ratio Rb /R�0� in the ��
salt is shown in Fig. 4 of Ref. 1. It approximately consists of
two straight lines crossing smoothly at X=10. Therefore, at
two-thirds of the plot, from X�10 to X�30, the scaling plot
is approximately a VRH exponent of Eq. �24� with the fixed
value of the coefficient A. Within the interval X��0–10�,

the line in the plot is more inclined toward the X axis, which
means a smaller coefficient A. Although a nature of this
crossover is unclear because the compound in question is too
complex, we may relate two crossing straight lines in the
logarithmic plot with the two types of the VRH conductivity
mechanisms of electrons caused by the intra- and interlayer
hoppings. Indeed, the VRH conductivity �19� within the
planes is well documented in the semiconductor 2D IQHE
systems �see Refs. 38 and 39, and references therein�. The
electron tunneling across the layers is a 1D VRH process
which yields the same exponent Eq. �19� in the conductivity,
but with the different coefficient A in Eq. �24�. In more de-
tails, the VRH is discussed in Appendix A.

The �� salt is a complex and not completely understood
compound. Even at B=0, a broad peak in the temperature
behavior of the interlayer resistance Rzz�T� is not explained
so far.2 Like in high-Tc cuprates, a sharp drop in the Rzz�T� to
the superconducting value Rzz�T�=0 at T=Tc�5 K follows
after a wide semiconducting region where Rzz�T� increases
with the decrease of temperature. The magnetic field de-
creases Tc and the upset of a superconducting mixed state at
low temperatures below the upper critical field changes the
physics of the interlayer transport. It is beyond the scope of
the present consideration and has not been taken into account
in Fig. 5, which is plotted for B�B0.

Certainly, the VRH and superconductivity compete in the
�� salt at low temperatures, resulting in the saturation of the
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25
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FIG. 4. Resistivity Rzz=1 /�zz in units of the ���0� �see Eqs. �13�
and �19�� as a function of the variable X=�� at different tempera-
tures �the lower temperature corresponds to the higher curve�. In
accepted conventional units, these temperatures and other param-
eters are T=0.7, 1, and 2; TD=2; T0=0.25; and EF=30.
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FIG. 5. The VRH exponent Rb /R�0�=exp�A�X�0.77� plotted as a
function of the universal scaling variable X= ��B−B0�� /T0.65. The
constant A is taken equal to A=1.7 in adopted conventional units.
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Rzz�T� at T of about a tenth of millikelvin, shown in Fig. 2
and Fig. 4 of Ref. 37. Because of this competition, a devia-
tion from the LK theory in the temperature dependence of
the Fourier amplitudes demonstrated in Fig. 4 of Ref. 37
differs at very low temperatures from that in Fig. 3. On the
other hand, at higher temperatures, where the superconduct-
ing effects are absent, the curves in Fig. 4 of Ref. 37, in
agreement with Eq. �24� of our approach, go higher and start
to bend down off the standard LK theory lines at higher
temperatures in stronger magnetic fields B�B0.

The experimental value of the critical field at which
metal-to-insulator transition in the background magnetoresis-
tance holds is B0=3.5 T. This value is very close to the upper
critical field at zero temperature, which in the �� salt is Bc2
=3.6 T. Below the Bc2�T�, the magnetoresistance Rzz�B ,T�
declines gradually toward zero and oscillations fade away.
The magnetoresistance curves go down more rapidly toward
zero resistance at lower temperatures since the critical field
Bc2�T� is higher for lower temperatures.1,6 This results in the
change of the type of magnetoresistance behavior from insu-
latinglike to metalliclike at fields below the Bc2. Moreover,
the IQHE regime within the weakly coupled conducting lay-
ers also vanishes at low fields, where it crosses over into the
conventional SdH oscillation regime as shown in Fig. 2. Cor-
respondingly, at low fields, the temperature factor RT�p� �22�
regains its standard form without the Mott VRH exponent
�see the upper curve in Fig. 3� and the temperature behavior
of the �zz �21� became metallic. Experimentally, this transi-
tion from the insulator quantum Hall regime to the SdH re-
gime within the conducting layers in the �� salt looks very
much like a phase transition from the insulatinglike to metal-
like type of the magnetoresistance across the layers.1 It is
worthy to note here that in conventional semiconductor-
based Hall systems, a transition from the IQHE regime to the
SdH regime in diagonal conductivity with the decrease of
magnetic field is a well-known phenomenon.

V. RESULTS AND CONCLUSION

According to the results of this paper, we arrived at the
following picture of the quantum magnetic oscillations of the
conductivity in the �� salt. The interlayer incoherence in ET
salt ��-�BEDT-TTF�2SF5CH2CF2SO3 is caused by a small
hopping integral between the layers t�� /�. It means that the
hopping time � / t�� is large and electrons scatter many
times within the layers before hopping to the neighboring
layer. The momentum across the layers is not preserved in
this case, and there is no conventional Fermi surface for 3D
metals. Nonetheless, the quantization of the closed 2D FS
�Fermi contour� in perpendicular magnetic field gives rise to
the SdH and dHvA oscillations, which deviate from the pre-
dictions of the standard LK theory valid for wideband con-
ventional 3D metals with arbitrary FS.

The conductivity �zz under conditions of the incoherence
is due to uncorrelated random electron hopping across the
layers. Between the hopping, electrons spend a lot of time
within the layers where they experience multiple scattering
on random impurity potential. Therefore, the conductivity
across the layers, to much extent, is determined by the elec-

tron dynamics within the layers. On the other hand, if ��
�1, the conditions for the IQHE regime are satisfied within
the layers in view of the small value of the hopping integral
and because the chemical potential � is fixed at the Fermi
energy EF in the ��-�BEDT-TTF�2SF5CH2CF2SO3 organic
salt. The physical reason behind this behavior of the chemi-
cal potential is unknown completely so far. In 2D electron
gas at zero temperature, the CP � jumps between the Landau
levels. This is not the case in layered conductors and in 2D
conventional quantum Hall heterojunctions, where the local-
ized states fix the chemical potential. In the �� salt, the elec-
tron population of the miniband structure attached to each
Landau level as well as the electrons populating the 1D
sheets at the 2D FS and electrons localized by disorder,
which do not take part in the quantum oscillations directly,
fix the CP �. In a varying magnetic field, the Landau levels
broadened by incoherence and disorder sweep through the
fixed chemical potential �=EF, giving rise to periodic quan-
tum oscillations of the conductivity �zz in inverse magnetic
field.

The localization play a crucial role in the IQHE because
nonzero conductivity in this phenomenon is due to a narrow
stripe of the delocalized states at the center of each impurity-
broadened Landau level. The mechanism of the conductivity
in the IQHE regime is the variable range hopping of elec-
trons within the narrow stripe of the delocalized states,38,39

which yields the Mott type of the background conductivity
�zz�exp�−�T0 /T� with T0�1 /�.

In conventional 2D semiconducting quantum Hall con-
ductors, the coherence length has a singularity �� �B−Bc�−	

near each plateau-to-plateau transition in the Hall conductiv-
ity. In increasing magnetic field, this series of transitions ter-
minates at B0, where a transition to the Hall-insulator state
holds.41,42 Plateaus in the Hall conductivity never have been
observed in the ��-�BEDT-TTF�2SF5CH2CF2SO3, and only
transition to the Hall insulator survives in this layered con-
ductor at B0. Above B0, the in-plane electrons are in the
quantum-Hall-insulator regime, the coherence length �� �B
−B0�−	, and the background magnetoresistance Rb has an in-
sulatorlike temperature dependence, which is clearly seen in
Fig. 4. The background magnetoresistance Rb displays a
universal monotonously increasing dependence on the scal-
ing variable �B−B0� /T0.65 as shown in Fig. 5. Such type
of behavior was observed experimentally in the
��-�BEDT-TTF�2SF5CH2CF2SO3 �Ref. 1� �for more details,
see discussion in Sec. IV C�. The Hall-insulator regime
means that percolation of 2D Landau orbits throughout the
whole planes is impossible, but electron tunneling between
equipotential contours from neighboring layers makes the
conductivity across the layers, �zz, nonzero. At low fields,
the IQHE regime is destroyed and the conductivity enters the
SdH regime as one can see in Fig. 2. In the SdH oscillation
regime, the background magnetoresistance Rb�T� has a
metal-like temperature dependence. At yet lower fields, the
��-�BEDT-TTF�2SF5CH2CF2SO3 salt becomes a supercon-
ductor and Rb goes to zero. The upper critical field at zero
temperature in the �� salt is Bc2=3.6 T. Below this field, a
wide transition region to the superconducting state with zero
resistance Rb�T�=0 is observed.1,6 The wide width of this
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transition is caused by the fact that the irreversibility line
goes well below the upper critical field Bc2�T� in �� salt.19

This physical picture is well supported by the calculations
of the conductivity on the basis of Eqs. �1� and �2� within the
model, which assumes a narrow stripe of delocalized states at
the center of Landau levels and long tails of localized states
between them caused by the intra- and interlayer disorders.
The adopted model leaves some freedom in the choice of the
electron scattering time ��E� and DOS g��� describing the
Landau level broadening. The principal simplification of
equations comes from the fact that a stripe of delocalized
states is very narrow �much less than � /�� so that �zz can be
written in a general form of Eq. �6�. The analysis of this
equation is summarized in Figs. 1–5. It shows full qualitative
agreement of the theory and experiments of Refs. 1 and 2. In
particular, the following unusual features are found: the mag-
netoresistance oscillations hold on the insulating background
�Fig. 4�, the background magnetoresistance Rb displays a
metal-to-insulator transition and the scaling properties �Fig.
5�, the magnetoresistance oscillations display a crossover
from the SdH to IQHE regime �Fig. 2�, and the temperature
behavior of harmonics in the SdH and dHvA oscillations
differs. The latter is because the extra Mott hopping expo-
nent in the temperature factor of the SdH conductivity oscil-
lations �22� is absent in the thermodynamic dHvA oscilla-
tions.

At T�� /�, the conductivity �zz exhibits a thermally ac-
tivated behavior which was observed in Ref. 2 �see Eq. �14��.
At lower temperatures, T�� /�, the conductivity crosses
over gradually to the Mott VRH regime �19� with the uni-
versal scaling variable �B−B0� /T0.65 in the exponent. This
regime holds for B�B0 �B0�3.5 K is very close to the up-
per critical field, which in �� salt is equal to Bc2�3.6 K at
T=0�. At fields B�Bc2�T�, the superconductivity sets up and
decreases the background magnetoresistance, the more the
lower the temperature, for Bc2�T� is smaller at higher tem-
peratures. Because of that, the Rb below B0 restores a metal-
like behavior. Therefore, the field B0 separates approximately
the metalliclike part of the plot Rb�T� from the VRH insula-
torlike one at B�B0.

The above reasoning explains qualitatively the metal-to-
insulator-like transition and scaling behavior found in the
background magnetoresistance in Ref. 1. Equation �19�
shows that at low temperatures T�� /�, oscillations of the
conductivity and magnetization are related as in the LK

theory by �zz�B2�M̃ /�B. This relation between the SdH and
dHvA oscillations was experimentally established in the
��-�BEDT-TTF�2SF5CH2CF2SO3 salt.1 A crossover from
one VRH regime to another in the logarithmic plot of the
background magnetoresistance in Fig. 2 of Ref. 1 is ex-
plained qualitatively in Sec. IV C by the two types �intra-
and interlayer� of the VRH hopping mechanisms. The Cou-
lomb effects in the VRH conductivity are discussed in Ap-
pendix A.

Thus, the approach developed in this paper picks up cor-
rectly all unusual experimental observations found in the
quantum magnetic oscillations of the highly anisotropic lay-
ered organic �� salt.

A few concluding remarks are in order. First, it is clear
that the model with dispersive electron transport across the

layers cannot describe either metal-to-insulator transition or
scaling in the background magnetoresistance because these
phenomena as well as the incoherence are incompatible with
conventional LK approach. The latter is valid only for 3D
metals with well defined 3D FS and electron dispersion. This
point is discussed in detail in Appendixes B and C in the
context of the model, with the cosine dispersion adopted in
Refs. 16 and 17 to explain the SdH oscillations in the
��-�BEDT-TTF�2SF5CH2CF2SO3.

Second, I would like to note here the following. Although
equations for the conductivity �1�–�5� have been obtained in
Ref. 23, the physical picture of the quantum magnetoresis-
tance oscillations in the ��-�BEDT-TTF�2SF5CH2CF2SO3

salt discussed in this paper differs from that adopted in Ref.
23. In this connection, I give an analysis of the drawbacks of
a model used in Ref. 23 in Appendixes B and C. In Appendix
B, I analyze the applicability of the SCBA approximation to
the problem in question and show the principal irrelevance of
a narrow cosine-dispersion model for calculations of the �zz
in a highly anisotropic layered conductor under the condition
t�� /�.

The scattering time calculation in quasi-2D organic con-
ductors in quantizing magnetic field is a very complex and
unsolved problem so far. In the model approach of the
present paper, it is taken as a constant. In the SCBA, this can
be justified by Eq. �C1�, in which tails in the DOS g��� and
the large value of the reservoir states R�1 smooth oscilla-
tions in �. The use of the SCBA raises problems only in the
model with a narrow-band dispersion across the layers
adopted in Refs. 16 and 17, and results in the nonphysical
negative and nonoscillating conductivity �zz�0 following
Eqs. �C2�–�C5�.

In conclusion, the approach developed in this paper is
rather general and open for further research of the problem in
question, in particular, within the frame of more specific
models of the incoherence in layered quasi-2D conductors.
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APPENDIX A: VARIABLE-RANGE-HOPPING
MECHANISM AND THE EFFECTIVE QUANTUM
HOPPING AMPLITUDE BETWEEN THE LAYERS

At high fields and low temperatures, the localization
within the layers means qualitatively that Landau orbits drift
along the closed equipotential contours of the impurity po-
tential. At places where contours �including contours from
the neighboring layers� come close, electrons can tunnel
from one contour to another, providing thereby the delocal-
ization and nonzero conductivity across the layers. The hop-
ping between contours includes a thermal activation and tun-
neling, i.e., it goes through the Mott VRH mechanism.

In the spirit of the VRH concept, we can estimate the
amplitude �t�,��2 as a quantity proportional to the electron
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hopping probability between the two 1D closed equipotential
contours at which Landau orbits are localized. If R is a dis-
tance of hopping, then

�t�,��2 � exp�− 	 1

RN�0�T
+

2R

�

� . �A1�

In this equation, we take account of the thermal activation
which helps the tunneling if the initial and final levels are
separated in energy by a stripe of the order of 1 /RN�0�.
Here, N�0� is a one-dimensional DOS at the closed equipo-
tential contours averaged over a random potential and taken
near the Fermi level. The optimal hopping distance is R
=�� /2N�0�T and the corresponding average amplitude is
�t�,��2�exp�−�T0 /T�, where T0=8 /N�0��. In fact, the quan-
tity T0 is a fitting parameter which can be found only from
the experiment. The quantity N�0� determines the average
energy separation �or the gap� between the initial and final
states in the electron hopping. This gap, in the case when all
states are localized and the Coulomb repulsion between elec-
trons plays a dominant role, can be estimated as C e2

4��R . The
appropriate Efros-Shklovskii VRH mechanism yields T0

=C e2

4��� as was shown in Ref. 38. Here, C is of the order of
unity and � is the dielectric constant.

Thus, both 1D Mott hopping mechanism and the Efros-
Shklovskii mechanism, which take account of the Coulomb
electron-electron effect, result in the same “square-root” ex-
ponent factor exp�−�T0 /T� in the VRH conductivity. This
factor is well established experimentally in the IQHE con-
ductivity site.38,39 The quantity T0 is a fitting parameter of the
experiment. This fitting does not answer the question in
which proportion 1D Mott and Coulomb-gap mechanisms do
contribute to the square-root exponent exp�−�T0 /T�. There-
fore, by taking effective DOS in the form 1 /Nef f =1 /N�0�
+C e2

4�� , one can qualitatively take account of the Coulomb
effect in the 1D VRH mechanism.

The VRH concept was originally applied to the problem
of the conductivity peak broadening �� in the IQHE in semi-
conducting heterojunctions.38 It was shown that the tempera-
ture, current, and frequency dependencies of the �� in the
quantum Hall conductors can be well described within this
paradigm. The square root �T0 /T in the hopping conductiv-
ity exponent is well established in conventional IQHE sys-
tems. According to our analysis, the same is true for the ��
salt �see discussion in Sec. IV C�. This means that the con-
ductivity in these systems is governed by the one-
dimensional VRH with plausible assistance of the Coulomb
effects. For two- and three-dimensional systems, there
should be another exponent �T0 /T��, with �=1 /3 and �
=1 /4, respectively. In our model, the square-root exponent is
because electrons tunnel from one 1D equipotential contour
to another. The contours may lie within the same layer as
well as in the neighboring layers, and the Coulomb correla-
tions may assist the tunneling as we discussed above.

In a tilted magnetic field, the configuration of the closed
equipotential contours at the Fermi level would change �the
chemical potential is fixed at ��EF in the �� salt�. The
reason is that the separation between the LLs depends on the

perpendicular component of the magnetic field, while the
spin splitting depends on its absolute value. At special values
of the tilt angle, the ratio of the separation between LLs to
the spin splitting is an integer. At this angles, called the spin-
zero angles, the completely filled spin-polarized Landau lev-
els appear at the Fermi level. Correspondingly, the configu-
ration of the equipotential contours and their population at
the Fermi energy will change also. At the spin-zero angles,
additional completely populated spin-polarized contours ap-
pear between the partially populated equipotential contours
responsible for the VRH conductivity, which may destroy a
percolation in the Mott VRH mechanism as well as related
metal-to-insulator transition. Actually, this unusual phenom-
enon was really observed recently. According to Ref. 6, at
the tilt angle corresponding to the spin zero of the fundamen-
tal harmonic, the metal-to-insulator transition and the scaling
have been destroyed completely in the �� salt.

APPENDIX B: INCOHERENCE VERSUS COSINE
DISPERSION ACROSS THE LAYERS

In this section and in Appendix C, we discuss a crucial
role of the incoherence in understanding the unusual magne-
toresistance oscillations observed experimentally in �� salt.
We will show here that the narrow cosine-dispersion model
adopted in Refs. 16 and 17 is completely inconsistent with
the interlayer incoherence and yields nonphysical negative
and nonoscillating values for the conductivity across the lay-
ers �zz�0.

We first note here that Eqs. �1� and �2� result from the
summation of the harmonic series which, besides the stan-
dard Dingle and temperature factors, contains a new one,
specific only for the SdH oscillations:23

Nzz�p� =� d�g���vz
2���exp	2�ip�

��

 . �B1�

This kinetic factor depends on the DOS g��� and is valid
both for coherent and incoherent interlayer electron hoppings
across the layers. If, following Ref. 16, we assume a coherent
electron dispersion across the layers ��pz�= t cos�apz /��,
then a simple calculation yields Nzz�p�= a2t�

2��pJ1� 2�pt
��

�. Here,
J1�x� is a Bessel function. In Ref. 16, the authors, in view of
the smallness of the hopping integral t���, used the fol-
lowing approximation: J1�x��x /2. Then Nzz�p�� a2t2

2 be-
comes independent of the harmonics index p, which, at first
glance, makes possible a formal summation on p. This was
done in Ref. 16, yielding an expression for the conductivity
similar to Eq. �6�. However, there is a problem.

We must note in this connection that the above approxi-
mation assumes actually a stronger inequality 2�pt���,
which becomes invalid for large p even if t���. To make
summation on p with the approximate value Nzz�p�� a2t2

2 cor-
rect, the Dingle factor RD�p�=exp�−2��p� /��� must cut off
contributions from terms with larger p. This gives an addi-
tional condition, t�� /�, which means an interlayer incoher-
ence incompatible with the simple dispersion relation ��pz�
= t cos�apz /�� adopted in Ref. 16.
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Thus, contrary to the statement given in Ref. 43, Eq. �6�
was obtained in Ref. 16 incorrectly because the summation
on p in a narrow-band dispersive model can be done math-
ematically correct only with the help of an exact value for
the factor Nzz�p�= a2t�

2��pJ1� 2�pt
��

�. Otherwise, the approach is in
conflict with the incoherence. Unfortunately, this fact was
not recognized in Ref. 16, which contains yet another serious
mistake caused by misuse of the SCBA, as will be shown in
Appendix C.

As was pointed out in Ref. 23 and above in this paper, the
incoherence plays a crucial role in the derivation of Eq. �6�.
In that case, only a narrow stripe of delocalized states at the
center of the broadened Landau levels contributes to the fac-
tor Nzz�p�, which, therefore, can be approximated by Nzz�p�
�
vz

2�. The average velocity squared is independent of p and
given by Eq. �10�. The corresponding condition necessary for
the summation on p reads as ��max−�min�� t�� /�, and is
compatible with the incoherence condition.

APPENDIX C: SELF-CONSISTENT BORN
APPROXIMATION AND THE SHUBNIKOV–de HAAS

OSCILLATIONS

We discuss in this section the applicability of the self-
consistent Born approximation to the quantum magnetic os-
cillations in our problem, and show that in case of dispersive
electron transport across the layers, it yields either negative
or zero conductivity depending on the strength of the reser-
voir of nonconducting electronic states. It will be shown be-
low that this drawback of the SCBA is related only to the
narrow-band dispersive model and recovers in the case of
incoherent interlayer conductivity mechanism.

In the self-consistent Born approximation, the equation
for ��E� in the presence of the reservoir of states is

�0

��E�
=

1

1 + R
�R +� d�g���S��,��E,���� . �C1�

This equation comes from the assumption that the inverse
scattering time in the SCBA is proportional to the total DOS,
N�E�=NR�E�+NB�E�, i.e., N�E� /N�0�=�0 /��E�, where N�0�
is the DOS for the 2D electrons at B=0, NR�E� is the DOS of
the reservoir, NB�E� is the oscillating DOS in a quantizing
magnetic field B, R=NR�E� /N�0�, and �0 is the intralayer
scattering time. The reservoir DOS NR�E� is a smooth func-

tion of E due to the states localized at impurities within the
layers and electrons on 1D sheets of the FS which do not
take part in magnetic oscillations directly. Usually, the quan-
tity R�R�EF� is taken as a constant at the Fermi energy.30–32

In general, Eq. �C1� tells us that at large R�1, oscillations in
��E� are suppressed and ��const. This is really the case for
the incoherent electron hopping between the layers. The
DOS g��� in that case has a narrow peak and wide tails that
smooth oscillations in the integral term of Eq. �C1�.

In the dispersive model adopted in Ref. 16, the DOS g���
has sharp boundaries at �= ± t and, under the condition t
�� /�, Eq. �C1� takes the form

�

�0
�

1

1 + R
�R + S��,��E,0��� . �C2�

This is exactly Eq. �30� of Ref. 16, where it was derived
incorrectly since a transition from Eq. �C1� to Eq. �C2� as-
sumes the incoherence condition t�� /�, which is at odds
with the adopted narrow-band dispersion model. The conse-
quences of Eq. �C2� are the following:

�GB = �S��,��E,0�� = �0��1 + R� − R
�0

�
� , �C3�

�GQ = − �0�0
�

��
S��,��E,0�� = − �0�1 + R� . �C4�

Note that the Boltzmann term cancels partially with the
quantum term and both terms do not oscillate in this approxi-
mation. Substitution of these equations into Eq. �6� �Eq. �19�
in Ref. 16� yields a nonphysical negative conductivity

�zz =� dE

�
	 �f

�E

��R � 0. �C5�

In the absence of a reservoir, R=0 so that the Boltzmann and
quantum terms cancel each other and �xx=0.43

We see that the use of a narrow-band cosine-dispersion
model in the self-consistent Born approximation has serious
drawbacks. Such approach under the condition t�� /�
��� is mathematically incorrect and yields a negative
nonoscillating conductivity Eq. �C5�. On the contrary, Eqs.
�1� and �2� are free of the above problems. They provide a
basis for more general research including the incoherence
and localization effects in the �zz within the SCBA as well as
in other approximations.
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