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Electron density distribution in a-iron: A y-ray diffraction study
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High-accuracy single-crystal structure factors, complete up to sin §/A=1.9 A~! have been measured from
a-iron at 295 K using 316.5 keV gamma radiation. A detailed description of the electron density distribution is
presented in terms of a multipolar atomic deformation model. The charge asphericity due to preferential
occupancy of the 7,, subshell is much smaller than that reported hitherto from x-ray measurements but is in
quantitative agreement with ab initio calculations, laying to rest discussions about failures of theory in repro-
ducing the aspherical charge. The 3d” electron distribution in the solid is contracted by 8.9% relative to the free
atom. The atomic radial scattering factor deduced from +y-ray diffraction is found to be in contradiction with
earlier experimental and theoretical work. Achievement of a reliable Debye-Waller factor is of vital importance
in this context. The directed metallic bonds are characterized by topological parameters at the bond critical
points. Attention is paid to the 3d-4s occupation problem. A consistent interpretation of the 3d spin and charge

form factors favors the occupation d’ in the metal as against d° for the atom.
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I. INTRODUCTION

The electron density distribution in a crystal, p(r), is ex-
perimentally accessible from high-quality x-ray diffraction
data. The diffracted intensities are connected with the struc-
ture factors, the discrete Fourier components of p(r). The
diffraction experiments are demanding since extremely accu-
rate measurements are needed to move from standard crystal
structure analysis toward addressing the rearrangement of the
electron density due to binding in the solid. Though iron has
been a subject of charge-density related experiments for a
few decades now, the studies have been restricted either to
reduced sets of low-order data or to the display of merely
qualitative deformation-density features. In all cases, the ma-
jor issue has been the comparison between experimental and
theoretical scattering factors but a detailed examination of
the resulting electron density is missing. There is thus the
need for better and more extensive data. It is the purpose of
this work to bridge this gap and to deduce an accurate charge
density of crystalline iron from an extended set of structure
factors by employing y-ray Bragg diffraction.

Studies of crystals composed of heavier atoms demand a
much higher accuracy than studies of compounds with lower
atomic number, because the scattering from the valence elec-
trons forms a smaller part relative to the dominating core
contribution. Furthermore, the small unit cells encountered in
highly symmetric elemental solids lead to only few reflec-
tions in the low order region where valence scattering is
concentrated, calling again for an exceptional accuracy if
meaningful information is to be obtained. These handicaps
explain the rather limited number of available diffraction
data in the case of the transition metals which in view of
their importance clearly deserve more experimental atten-
tion.

The use of 316.5 keV gamma radiation offers two basic
advantages to circumvent these obstacles for inorganic crys-
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tals with simple structures. The first advantage is the realiza-
tion of the high-energy diffraction case (photon
energy > K-shell binding energy), thereby avoiding a number
of experimental and theoretical sources of uncertainty in the
process of deriving structure factors from the observed inte-
grated intensities. The second advantage is brought about by
favorable experimental conditions besides the high photon
energy, such as the very narrow spectral spread of AN/\
=107°, the perfect space-time stability of the wide homoge-
neous incident beam, or the absence of any optical device
providing a simple instrumental resolution. It is noteworthy
that the photon energy used in this work is considerably be-
yond 100 keV presently employed in synchrotron-radiation
charge density studies.

The benefits offered by high-quality y-ray structure fac-
tors data sets have been exploited and realized during the
past years in exhaustive electron density studies on arche-
typal compounds such as the antiferromagnetic transition-
metal monoxides and difluorides as well as on SrTiO;.! The
present work is a follow up to our recent investigation of
chromium.? After the presentation of results, a detailed criti-
cal assessment of agreement and disagreement will be given
with earlier results, deduced from laboratory x-ray, electron,
and neutron diffraction work as well as from ab initio band-
structure calculations.

II. EXPERIMENTAL AND DATA REDUCTION

The structural modification of pure iron at room tempera-
ture is called a-iron and has a body-centered-cubic (bce)

structure (space group Im3m, a=2.86645(1) A at 295 K),?
in which each atom is surrounded by eight nearest neighbors
along the cube diagonals and six next-nearest neighbors
along the cube axial directions.

The single crystal used in the present investigation was a
cube with dimensions of 2.480X2.485X2.565 mm?, pur-
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chased from MaTecK/Jiilich (Germany). Double-crystal
y-ray diffraction, using a perfect Si crystal as a collimator
with an angular resolution of 1.5”, was employed to measure
the diffraction profiles along three perpendicular directions.
An isotropic angular full width at half maximum (FWHM) of
around 30” was found, and consequently, secondary extinc-
tion in the sample crystal is expected to be pronounced.

The diffraction data have been collected on the four-circle
gamma-ray diffractometer installed at the Hahn-Meitner-
Institut, where the most intense line of a '**Ir source (7 P
=73.83 d) with a wavelength of 0.0392 A (316.5 keV) is
used. The flux at the sample position from a 200 Ci source
amounts to 10° photons/s cm?. The angular profiles of the
diffraction peaks were recorded in w-step scan mode (100
steps with length of 0.007°) with an intrinsic germanium
detector. The data set, complete up to sin §/A=1.9 10%‘1, was
collected at room temperature. The data collection lasted
10 weeks.

An absorption correction was carried out (u
=0.845 cm™!),* resulting in a transmission range from 0.808
to 0.825. 380 diffraction data were measured corresponding
to 89 independent reflections with an unprecedented
counting-statistical overall precision of Xo(I)/=I=0.0030
for the averaged data. The absorption-weighted mean path
lengths through the sample varied between 2.258 and
2.517 mm. It was therefore considered necessary to process
each reflection with its individual path length in the calcula-
tion of the extinction correction and to treat symmetrically
equivalent reflections separately. Data reduction was carried
out using the XTAL suite of crystallographic programs.’

The data were corrected for the contribution of inelastic
thermal diffuse scattering (TDS) from the acoustic phonons
to the total intensity. The formalism of Skelton and Katz®
was applied using the sound velocities from Ref. 7 and the
instrumental parameters defining the sampled volume in re-
ciprocal space: w-scan peak width=0.5° and full circular de-
tector window=0.46°. The maximum TDS contribution was
11%.

III. RESULTS

Structure refinements were performed with the program
system VALRAY,® minimizing y*=3w(|F,|*~|F.|*)?, where
F, and F, are the observed and calculated structure factors,
respectively. The observations were weighted by their
counting-statistical variances.

Except for Cr and Cu, the free 3d atoms have 3d"4s’
electronic ground-state configurations. In going to the metal,
the number of 4s electrons is no longer equal to 2, and the
lowest state is commonly assumed to be close to 3d"*'4s
based on band theoretical results.” For metallic iron, impor-
tant details include the following: (i) evaluation of the band
structure for several configurations of the valence electrons
indicated 3d"4s'? to be the only stable one, for which self-
consistency was obtained with the apparent Fermi level in
the 3d and 4s bands at the same energy and'? (ii) population
analysis of the occupied d bands from the Green’s function
method gave a d-electron count of 6.78.!! The energies of the
two free atom configurations (d%?* and d’s') are so close
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together that an electron transfer from 4s to 3d is not surpris-
ing. Accordingly, the charge density analysis will be based
on the atomic configuration 3d’4s (°F5) with the scattering
factors calculated from the Hartree-Fock wave functions
given in Clementi and Roetti.'> However, implications of the
occupation 3d%4s will also be paid attention for.

The diffraction data analysis is based on the classical form
factor approximation of nonrelativistic scattering theory
where corrections due to electron binding are neglected and
where the Fourier transform relation between scattering am-
plitude and target distribution holds. A brief exposure of the
relevance of relativistic effects is given in Ref. 2 and will not
be repeated here.

A. Independent-atom model (IAM)

The fit parameters were the scale factor of the observed
structure factors, a secondary extinction parameter using the
Becker-Coppens formalism,'* and the mean square vibra-
tional amplitude. The observed structure factor contains a
contribution from nuclear Thomson scattering, fy
=(Ze)*/ Mc?. For iron, fy=0.006 64 electron units, which has
been accounted for. It turned out, however, that its inclusion
has no substantial consequences (Ax?=1.2 for the final mul-
tipole model). In order to reduce the influence of charge-
density deformations in the outer shell, high-order refine-
ments were carried out, taking into account only reflections
with sin 8/X>0.7 A~'. The resulting scale factor was fixed
in later refinements with improved scattering models.

B. Multipole model

In the aspherical atom multipole model, the electron den-
sity distribution is projected onto a small basis set of
nucleus-centered real spherical harmonic functions with the
local density rigidly following the motion of its associated
nucleus.'* The atomic density of Fe is represented by three
components of the core, 3d spherical valence, and deformed
valence electrons,

pFe(r) = pcore(r) + K3p3d(Kr) + PhexK3p3d(Kr)K4(r/r) .

For site symmetry m3m, the lowest nonvanishing higher pole
is the Kubic harmonic K,(r/r), which is a linear combination
of y40 and yy4,.

The core density is the unperturbed Hartree-Fock (HF)
electron density of the appropriate atomic orbitals. The
square of the radial part of the 3d canonical HF orbitals is
used to construct both the monopole and the hexadecapole.
The « parameter allows for expansion (k<1) or contraction
(k>1) of the radial function. A single « parameter is used
for both the spherical valence shell and the deformation
function. This constraint is necessary for the subsequent cal-
culation of 3d-orbital occupancies (see Sec. IV B). P, is a
variable population coefficient. The spherical surface har-
monics are expressed relative to a global Cartesian frame
which is oriented parallel to the unit cell axes.

In Table I, the quality of fit is given for the reference
scattering models. The very high precision of the data is
reflected by the large value of x? for the IAM. A large im-
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TABLE 1. Quality of fit for the various 3d’ scattering models
based on 380 observations; N,=number of adjustable parameters.
In all cases, the scale factor was fixed to the value obtained from a
high-order refinement (sin /x>0.7 A™).

1AM Monopole Multipole
X 4648 1536 1371
N, 2 3 4

provement of fit is obtained with a spherical atom model
allowing for a contraction of the 3d shell. Addition of the
higher multipolar deformation leads to a further improve-
ment of ~10% in x?. The data thus strongly support the
multipole model, also reflected by the narrow confidence
limits of the fit parameters which are listed in Table II. Yet,
the actual value of y? is considerably larger than the ideal
one which should approach the number of degrees of free-
dom (for a complete model). Simple reasons for a large x°
are underestimated data uncertainties (lower limit set by
counting statistics) or an error distribution with longer tails
than a normal distribution. No systematic trend is revealed in
the standardized residuals as a function of sin 6/A. Finally,
one should note that the statistical errors are related to the
change in y? when the parameters are varied away from the
fitted values, and not to the absolute value of X2 itself.

The 4s form factor falls to immeasurably small values
before the first Bragg reflection, so that the observations are
insensitive to the 4s population which has been fixed to 1,
and included in pg.

Adjustment of the extinction parameter gave the best fit
for a Lorentzian mosaic-spread distribution. The maximum
reduction of |F,|> is 38.8%, and a total of six independent
reflections have a reduction of more than 5%. Tentative
omission of the two most severely extinguished reflections
affected only the mosaic and « parameters which changed by
less than two standard deviations, thus supporting the ad-
equacy of the applied corrections. Extinction is further dis-
cussed in Sec. IV A.

The static model density, with the Debye-Waller factor
omitted, was evaluated in direct space and proved to be posi-
tive everywhere which is the simplest condition the total
electron density must satisfy. Figure 1 shows the static model
deformation density (aspherical components only). The ob-
served features exhibit magnitudes up to 0.8 ¢ A=3 about
0.24 A from the nucleus. The charge asphericity will be fur-
ther discussed in Sec. IV C.

Transition metal atoms require a multipole expansion at
least up to [=4. Inclusion of one more symmetry-allowed

TABLE II. Mean square vibrational amplitude and multipole
model parameters of a-Fe at room temperature. Reliability factors
for the 380 observations: R(F)=X|F,-F,|/2|F,|=0.0050 and
WR(F?)=[Sw(F2-F2)?/SwF!]2=0.0102.

U (A?) 0.00423(1)
K 1.089(2)
Py (le]A%) -0.220(23)
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FIG. 1. Aspherical contributions to the static model density in
the (110) plane. The density range is from —0.84 to 0.56 ¢ A=3.
Solid lines represent regions of excessive density and dashed lines
depleted regions in steps of 0.1 e A=3. The zero contour is omitted.
The densities are truncated at £0.5 ¢ A=,

term, yq, with a Slater-type radial dependence, led to no
significant improvement in the least-squares fit, and so was
discarded.

C. Metallic bond characteristics

The topological approach to chemical bonding!? is a use-
ful and convenient interpretation tool, according to which the
interatomic interactions are characterized by local properties
of the charge density at the bond critical saddle points r,
between two nuclei. There are basically two kinds of bond-
ing interactions: shared-electron (covalent) interactions have
V2p(r,) <0, whereas closed-shell (ionic) interactions have
V2p(r,) > 0. Metallic systems show a flat near-uniform elec-
tron density throughout the valence region, and the Laplacian
is dominated by the positive curvature along the bond path,
V2p(r,)>0. A quantitative measure of the valence electron
density flatness is provided by the ratio r=p;n(r)/ Pmax(Te),
where ppi,(r) is the absolute minimum of the electron den-
sity and p,,.«(r,) the maximum density found at a bond criti-
cal point.'® The flatness index r separates metals (r—: 1)
from nonmetals (r—0).

Additional information about the bonding type is avail-
able from the local electron energy densities [G(r,)=kinetic
energy density, V(r.)=potential energy density, and H(r,)
=G(r,)+V(r,)=total energy density] that can be calculated
from p(r.) and V?p(r,) using the approximation for G(r,)
proposed by Abramov!” in combination with the local virial
theorem from which V(r,) can be estimated. For shared-
electron interaction, there is a predominance of the (nega-
tive) local potential energy, so that H(r,) <0, while for
closed-shell systems H(r,)=0 is observed.!

Table III summarizes the characteristics of the bond criti-
cal points of the static model electron density. There are
closed-shell-type bonds [V?p(r,) > 0] between first and sec-
ond neighbors with the distinguished features of a low elec-
tron density and a balance of the kinetic and potential energy
densities. The flatness index has the value r=0.634, quite
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TABLE III. Characteristics of the bond critical points. \; denotes the curvature of p(r.) along the inter-
nuclear line (the two negative perpendicular curvatures are degenerate). Values of p in e A3 and values of
V2p(r,) and N, in e A™. G, V, and G/p are given in a.u.

r. p(re) V2p(r,) N G(r,) V(r,) G(r)/p(r,)
g 0.227 2.57(1) 3.66 0.0279(2) -0.0290(4) 0.829
5.3.0 0.147 0.93(1) 1.07 0.0113(3) -0.0129(6) 0517

remote from the free-electron value of 1. The kinetic energy
per electron, G(r,)/p(r,), is found to be less than 1 (in a.u.),
a property the metallic and the covalent bond have in com-
mon. Remarkably, the absolute values of the critical point
parameters are essentially the same as those found in the case
of chromium, also having bce structure.?

IV. DISCUSSION
A. Extinction

The boundary between kinematical (intensity coupling)
and dynamical (wave coupling) diffraction theories is set by
the extinction length, t.=V/(AF) (V=unit cell volume, A
=wavelength, and F=structure factor in units of scattering
length), and its magnitude with respect to the size of the
perfect-crystal microdomains (called mosaic blocks). If they
are not sufficiently small, then the incident beam is attenu-
ated by coherent multiple scattering before it reaches the
next mosaic block, that is, primary extinction occurs. The
extinction coefficient y, defined as the ratio of the observed
integrated intensity to its kinematical value, may be approxi-
mated (y>0.5) for primary type by the simple expression
y,~exp[—(8/2)%], where & is the average domain size in
units of #.,..!® The coherent domains are expected to be of the
order of 1 um in diameter. In the present y-ray study, the
smallest value of z,,, is 57 um for the 110 reflection. For a
perfect block of thickness one-tenth of ., the intensity is
reduced by 0.25% relative to the kinematical value. Hence, if
there were perfect regions of ~6 um diameter, then primary
extinction could introduce an apparent form factor error of
~0.1%. This has to be contrasted with f.,=3.2 um for
Mo Ko radiation, where primary extinction will necessarily
occur, irrespective of the use of single-crystal or powder ma-
terial (see Sec. IVD 1).

Secondary extinction, the other deviation from kinemati-
cal diffraction conditions, is due to incoherent multiple scat-
tering from different mosaic blocks with the same orientation
so that the incident beam does not remain constant but will
be weakened as it traverses the crystal. Examination of the
wavelength dependence of extinction by y-ray diffraction in
the energy range of 200—600 keV has confirmed and sub-
stantiated the validity of the standard theory of secondary
extinction.!%20

The intensity reduction due to secondary extinction de-
pends upon wavelength and specimen properties via the pa-
rameter \>T/I" (T=absorption-weighted mean path length of
diffracted beam and I'=FWHM of mosaic distribution func-
tion for which generally a Lorentzian or Gaussian is as-
sumed). It can be important even in y-ray diffraction despite

the very short wavelength, as relatively large samples are
required to compensate the low crystal reflectivity. The high-
resolution rocking curves, recorded with a perfect Si-crystal
collimator, did not allow clear distinction between a Lorent-
zian and Gaussian shape, so that the choice was made on the
basis of the chi-square statistic, and a preference for a
Lorentzian mosaic distribution was found (Ax?>=8.8%),
yielding the refined width I';=12.4(1)" It is, however, the
corresponding Gaussian width I';=32.8(2)", which repro-
duces the observed value of ~30". The physical meaning of
I, thus appears to be dubious at first sight. The disparity in
width, however, is not unexpected since the expressions de-
scribed by Becker and Coppens'® predict equal intensity
losses for I'; =0.481"; under otherwise identical conditions.
The relation I',,=I';=2I"; between observed and fitted mo-
saic spreads has been noted before in a study of MnF,.?!

B. Vibrational parameter

The mean-square amplitude of atomic vibrations obtained
in this work, U=0.004 23(1) A2, is considerably smaller than
the value reported by Ohba et al?? in their x-ray charge
density study at 297 K, U=0.005 07(2) A2 It is known since
a few years that the use of a graphite-monochromated
Mo Ka beam causes systematic intensity errors via scan-
angle truncation.?? Since the reflection width A is linked to
the wavelength dispersion AN/N by the relation A6
=(AN/N)tan 6, the large wavelength window of the brems-
strahlung component is progressively truncated at higher
Bragg angles, inevitably resulting in biased vibrational pa-
rameters that are systematically too large. Atomic displace-
ment parameters were shown to increase by ~0.0006 and
0.0028 A2 for measurements with tube voltages of 50 and
25 kV, respectively, i.e., by an amount matching the ob-
served discrepancy.”® The spectral width of the 316.5 keV
photon beam is AA/A=10° and no monochromator is
needed.

Other experimental methods have also been used in the
determination of the iron vibrational parameter at ambient
temperature. From measurement of x-ray high-order powder
reflections at two temperatures, U=0.004 32(13) A% was
obtained.?* The values, 0.004 32, 0.004 22, and 0.004 18 Az,
were calculated by Merisalo and Paakkari?® from force con-
stant models based on the results of inelastic neutron scatter-
ing measurements performed by three different experimental
groups. There is thus remarkable agreement between the in-
dependent estimates of U.

The possible influence of anharmonic contributions to the

Debye-Waller factor has been investigated. For m3m point
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symmetry, there is one isotropic and one anisotropic quartic
term in the Gram-Charlier expansion of the atomic probabil-
ity density function. Combined multipole-anharmonicity re-
finement leads only to an insignificant improvement of fit.
There is thus no noticeable anharmonic component in the
atomic potential.

An adequate description of thermal motion is a necessary
condition for a meaningful extraction of charge density in-
formation from the diffraction data. Validation of the thermal
parameter is therefore an important issue lending support and
credibility to the further conclusions.

C. Asphericity of charge distribution

The 3d electron density of a transition metal atom may be
described by spherical harmonic functions or, alternatively, it
may be expressed in terms of the orbital components of its
atomic wave function. By equating the two descriptions of
the density, a set of linear equations is obtained from which
the orbital occupancies can be derived from the multipole
populations (I,,,,=4).2° With an octahedral environment, the
atomic d orbitals split into doubly degenerate e, and triply
degenerate f,, orbitals. In a bec metal, the #,, orbitals point
toward the nearest neighbors along the body diagonal direc-
tion, while the e, orbitals are directed toward the second
nearest neighbors along the cube edges.

From the refined multipole parameters follows 62.5(3)%
t, and 37.5(3)% e,. Note that the same percentage is ob-
tained by assuming six 3d electrons instead of seven. The
population of the #,, orbitals is thus larger than the 3:5 ratio,
the value for a spherical charge distribution. The orbital oc-
cupancies are clearly reflected in the deformation map (Fig.
1) where the dominant features are electron buildup along
(111), pointing toward the nearest neighbors, and electron
depletion toward the second nearest neighbors. The experi-
mental charge asphericity of a-Fe displayed by Ohba et al.?
is qualitatively reproduced. The number of d electrons which
contribute to the aspherical charge density is given as Z,
=n(t2g)—(%)n(eg), with n indicating the number of electrons
having symmetry #,, or e, the deduced value is Z,
=0.44(3).

In the bcc metals, there occur pairs of reflections with
different wave vectors of equal magnitude such as (330/411)
or (442/600), and differences of the intensity ratios from
unity are a direct measure of the anisotropy in the charge
density. From measurement of a couple of such reflections,
the 7, population in Fe was estimated to be 64.8(1.4)%;* in
an earlier study?’ about 69% (no standard deviation is given)
was found. There is thus agreement concerning a preponder-
ance of 1,, over e, charge density though the asphericity
turns out to be smaller than that indicated by the earlier ex-
periments, with the present work providing a substantial ad-
vance in accuracy.

A discrepancy between theory and experiment for the
paired reflections has been considered a remaining problem
in band structure calculations.?® It is therefore important to
compare the respective deviations from spherical symmetry.
In Table IV, a number of form factor ratios are given, and it
is seen that the ratios from the multipole model are fairly

g;
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TABLE IV. Form factor ratios for paired reflections with scat-
tering vectors of equal magnitude from the present multipole model
and band structure calculations.

Theor. Theor. Theor.
Present study (Ref. 34) (Ref. 28) (Ref. 33)
f(330)/f(411) 1.0033 1.0032 1.0031 1.0025
f(431)/£(510) 1.0052 1.0046
f(433)/£(530) 1.0030 1.0025
£(442)/£(600) 1.0072 1.0059 1.0060
f(532)/f(611) 1.0048 1.0040

well reproduced by the calculations. Previous directly mea-
sured ratios are up to four times larger than the theoretical
ones.”? It is also noteworthy that Wakoh and Yamashita'!
predict a #,, percentage which coincides with our observed
value.

Similarly, when discussing the charge asphericity in terms
of Z,, it was noted that the value derived from x-ray diffrac-
tion is twice that obtained from theory.?® The disagreement
has been connected to a basic failure of theory. In Ref. 29
(Fig. 3), the aspherical charge for Fe from theoretical data
reads Z,=0.4, which is the value found in the present work.

There is thus no disparity but rather substantial agreement
between experiment and theory about the charge asphericity
in a-iron.

D. Form factors
1. X-ray radial form factor

For the radial scaling parameter , a very pronounced
deviation from the IAM is observed. The 3d’ valence shell
exhibits a spatial contraction of 8.9%, which corresponds to
a form factor expansion relative to the free atom. The atomic
form factor fj;, is related to the fitted structure factor F,
through f,;=F/2, so that for a monatomic crystal, the
static values are simply obtained by multiplication with the
inverse Debye-Waller factor. Absolute values of the atomic
crystal scattering factor for the first 16 diffraction vectors are
listed in Table V, where also the numerical contributions of
both the core and valence electrons have been individually
identified. Our experimentally derived values are now com-
pared with earlier x-ray and electron diffraction measure-
ments, performed on an absolute scale.

Paakkari and Suortti* used a powder sample and Mo K«
radiation to measure the five lowest-order reflections, result-
ing in scattering factors (corrected for anomalous dispersion)
that are reduced between 4.5% for f(110) and 1.7% for
f(310) with respect to the values of the present study. The
mean size of the powder particles was 3—5 um. With perfect
blocks of 2 wm diameter, primary extinction introduces sys-
tematic errors that perfectly match the observed discrepan-
cies, though the coherent domain size has been claimed to be
smaller by 2 orders of magnitude in Ref. 30.

Later, single-crystal experiments with Mo K« radiation
were performed on a plate of 0.04 mm thickness.>' The in-
tegrated intensities of the (110) and (200) reflections, ob-
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TABLE V. Static scattering factors from the multipole model fit for a-iron in units of e/atom. f,, and
Fuatence denote the contributions from the core and 347 valence electrons, respectively. f is the total contri-
bution from all electrons. fiay is calculated from Ref. 12 for a 3d’4s' independent atom, and JSincory 18 taken

from Ref. 33.

hkl sin 0/\ (A7) Seore Sratence S S1fiam S fineor
110 0.2467 15.130 3.886 19.016 1.018 1.039
200 0.3489 13.161 2.453 15.614 1.021 1.034
211 0.4273 11.728 1.677 13.405 1.024 1.025
220 0.4934 10.656 1.173 11.829 1.023 1.020
310 0.5516 9.840 0.810 10.650 1.020 1.017
222 0.6042 9.207 0.615 9.822 1.022 1.015
321 0.6527 8.707 0.432 9.139 1.018 1.013
400 0.6977 8.304 0.263 8.567 1.011 1.010
330 0.7400 7.974 0.215 8.189 1.014 1.010
411 0.7400 7.974 0.188 8.162 1.011 1.009
420 0.7801 7.698 0.129 7.827 1.011 1.008
332 0.8181 7.463 0.104 7.567 1.013 1.009
422 0.8545 7.260 0.051 7.311 1.010 1.007
431 0.8894 7.080 0.020 7.100 1.008 1.007
510 0.8894 7.080 -0.017 7.063 1.003 1.005
521 0.9554 6.773 -0.041 6.732 1.003 Not given

tained at different spots from the crystal surface, were plotted
as a function of the reciprocal half-width. Extrapolation to
infinite half-width gave crystal form factors, after correcting
for anomalous dispersion, which are 9% smaller than our
values. Besides extinction, surface irregularities are effective
in decreasing the measured intensity.

High-energy electron diffraction allows determination of
the structure factor for a first-order reflection by exploiting
the critical-voltage effect. Owing to destructive interference,
the intensity of the second-order reflection will show a mini-
mum for a particular accelerating voltage. The first-order
value is determined from the measured voltage by many-
beam calculations covering higher-order Fourier coefficients
for which the independent-atom approximation has to be as-
sumed. Two x-ray scattering factors have been determined,
f(110) and £(200), which are 3.6% and 2.7% smaller than the
present values.3> An important source of error of the critical-
voltage method appears to be in the calculated second-order
structure factors which in the present case are definitively
affected by bonding (see Table V).

A comprehensive band-structure calculation for ferromag-
netic iron was performed by Callaway and Wang,?* who em-
ployed the self-consistent linear combination of Gaussian or-
bitals method, and used the computed wave functions to
determine the x-ray form factor, tabulated up to sin /A
=0.9 A~!. In Table V, it is shown that the three lowest-order
values are 3.9%-2.5% smaller than the model fit values,
while the deviation for the higher orders smoothly ap-
proaches 0.5%. The observed disagreement between theory
and experiment therefore cannot be attributed to an inad-
equate experimental scaling factor. Rather, it is an indication
that the d orbitals have a radial extension different from the
predicted one. The charge density is more concentrated
around the nuclei.

Other ab initio calculations, based on the augmented
plane wave method** and the Green’s function method,?
gave quite similar results, with the low-order Fourier coeffi-
cients again smaller than the model fit values. The three the-
oretical studies are thus in substantial agreement with each
other. Core and valence contributions to f have been given
individually in Ref. 28, so that the source of discrepancy
between theory and experiment can be identified unambigu-
ously. There is agreement concerning the inner electrons,
whereas the theoretical valence form factors appear to be
systematically reduced in the order of 30%.

As in the case of Cr, the results from the literature share
one common feature, that is, an apparent expansion of the
valence charge distribution is found, whereas the y-ray data
require an opposite behavior, namely, a large contraction of
the valence shell relative to the free atom.

2. The 3d-4s problem

Assuming the atomic ground state configuration 3d%4s?
(5D4) with Hartree-Fock wave functions from Clementi and
Roetti'? results in a deterioration of x> by 6.4% relative to
the metal electron configuration. The different d-electron
counts are associated with different radial parameter values,
k(d®)=1.062(2) as compared to k(d’)=1.089(2), to which
correspond the following mean radii: (r(d®))=0.533 A and
(r(d")=0.578 A [{r)=(r),/ k, with the subscript denoting the
IAM value]. Otherwise, it appears to be impossible to infer
the number of 3d electrons in a direct way from the y-ray
diffraction data without extra information. The lowest-order
Bragg reflection has sin #/A=0.247 A2, so that the region
where the scattering factor curves differ most is not acces-
sible, with an inevitable loss of sensitivity.
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FIG. 2. The difference between the spherically averaged spin
form factor (=(j,)ops from Ref. 38 and experimental uncertainties
from Ref. 39) and the radial charge form factors for 3d’(x
=1.089) and 3d%(k=1.062) as deduced from neutron and y-ray dif-
fraction. The form factors are normalized to unity at sin 6/\=0.

The missing extra information is encoded in the average
Coulomb potential (mean inner potential) of the total
(nuclear and electronic) charge density in the unit cell. It is
defined by ®y=(1/V)[.q®(r)d’r, with the zero potential
taken at infinity, outside the bounded crystal, and equals the
zero Fourier component of the potential. The well-known
Bethe formula reads ®y=(2m/ 3V)Efe”Z,-<ri2>, where Zi<rl-2>
=[rp{(r)d®r is the second moment of the electron density of
an atom with atomic number Z;.3>36 @, is therefore primarily
determined by the spatial distribution of the outer electrons
and proportional to the diamagnetic susceptibility. For an
IAM crystal, one finds ®(3d%4s?)=29.5 V and ®,(3d74s")
=22.5 V for the two configurations in question. Essentially,
all the difference comes from the N shell, so that bonding
effects in the real crystal play only a minor role. The large
difference in ®, suggests a possibility to resolve the 3d-4s
problem directly by comparison with experimental values.
For a number of materials, ®( has been measured by electron
interferometry. However, this technique seems to be imprac-
ticable for ferromagnets such as iron, and an experimental
value of @ is missing in the literature.

3. Magnetic form factor

Complementary information about the spatial distribution
of the unpaired 3d electrons is available from magnetic form
factor measurements, possibly also throwing new light on the
3d-4s problem. The magnetic form factor of metallic iron
has been extensively studied by Shull and Yamada’’ by
means of elastic scattering of polarized neutrons. The asphe-
ricity of the spin density is found to be inverse to that of the
charge density, with the unpaired spin population showing an
e, occupation of 53(1)%. A quantitative comparison between
charge and spin form factor must therefore rely on the
spherically averaged components. In Fig. 2, the comparison
is shown for a single 3d electron from the two different
atomic configurations under consideration. As it can be seen,
there are substantial systematic differences between f;, and
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Jfcharge- One should realize, however, that the two form factors
have somehow different origins, to be discussed further be-
low, and their simultaneous interpretation is not as straight-
forward as one might suppose.

In the ordinary Hartree-Fock method, electrons in the
same shell but differing in spin are required to have the same
radial wave function. This constraint is relaxed in the unre-
stricted HF (UHF) method for open-shell systems, which al-
lows different radial functions for electrons with opposite
spin, i.e., R,,7# R,z For an atom with unbalanced spin,
electrons with « or B spin will experience unequal a-« and
B-B exchange interactions [N, (a)—N3,(B)=2.2 for ferro-
magnetic iron]. Since the exchange interaction is attractive,
the majority (a) spin functions will show a contraction rela-
tive to the B-spin counterparts. For atomic Fe (5D4), the (r)
values found from an accurate UHF wave function are
(r3(a))=0.560 A and (r;,(B8))=0.614 A, whereas the re-
stricted HF value, (r3,)=0.568 A, is the weighted mean of
the former two values.*

According to the x parametrization (length scaling), a
contraction of the a-spin density relative to that of the total
charge implies fopin(k+AK)= foharge(k).  Seemingly, this
property is reflected in Fig. 2 by the large positive differ-
ences in the low-order region where better “agreement” is
achieved for the d° configuration. Because of the sign rever-
sal at medium sin /N, however, spin and charge density
cannot be made to agree closely by a single scaling param-
eter Axk.

It is remarkable that the integrated difference between the
scattering factor curves vanishes for the 3d° configuration,
whereas a positive value remains for 3d”. A clue to the origin
of this finding is offered by the Silverman-Obata sum rule*!
which connects the spherical form factor with the average
value of r: [ f(g)dg=(m/2)(r"'). As an obvious conse-
quence, both the spin and charge distribution would have the
same mean extension in the d° configuration, contrary to the
expectation outlined above. On the other hand, the predicted
inequality (r™")qin > (r"enarge is satisfied for d’, so that this
occupation number must be regarded as the more proper one.
From closer inspection of Fig. 2, (r™")gin—{("charge
=0.007 A~!, which should be compared with (r™ charge
=k(r'),=2.387 A~!, calculated from the HF d’ wave
function.!?

One should note at this point that form factor differences
are intimately related to energy differences. Since the
electron-nucleus electrostatic energy, —Ze*(r™'), is by far the
dominant contribution to the potential energy of the elec-
tronic charge distribution, the virial theorem for Coulombic
systems indicates that it is approximately equal to twice the
total electronic energy. A compensation of positive and nega-
tive differences, as observed for d°, thus corresponds to a
vanishing change in total energy AE (=Egyi,—Ecnaree). In the
same way follows from the positive integrated difference for
d’ a lowering in energy of the « electrons, Eqpin <Echarges a8
a consequence of the exchange interaction.

Joint interpretation of the charge and spin form factor has
thus revealed distinctive features associated with the two in-
teger occupation numbers of the 3d electrons. Only the oc-
cupation 3d’ is consistent with the general behavior pre-
dicted by the UHF method.
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V. CONCLUDING REMARKS

An extended set of high-quality structure factors,
achieved by the use of 316.5 keV gamma radiation, has pro-
vided the currently best possible representation of the elec-
tron distribution in a-Fe. Important findings include the fol-
lowing: (i) validation of data quality and scale factor
estimate by comparison with available values of the thermal
vibrational parameter; (ii) as in the case of chromium, the
3d-shell exhibits a pronounced contraction relative to the
free atom; (iii) the charge asphericity is small with a slight
preference for t,, toward the nearest neighbors; (iv) direc-
tional metallic bonding features are quantitatively character-
ized in terms of electron density properties; (v) consistency
between the expected behavior of charge and spin form fac-
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tor is achieved with the occupation d” rather than @°; and (vi)
no indication for a failure of the localized 3d electron model
is noticed. Finally, it should be emphasized that the high
accuracy of the present method serves as a sensitive and
useful test of ab initio calculations. The charge asphericity
shows pleasing agreement between theory and experiment,
but the revealed deviations in the radial extent of the valence
density underline the need for improved theoretical treat-
ments.
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