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Constructing spin interference devices from nanometric rings
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The study of nanospintronic devices utilizing coherent transport through molecular scale multiply connected
geometries in the presence of moderate magnetic fields is presented. It is shown how two types of simple
devices, spin filters and spin splitters, may be constructed from molecular nanometric rings utilizing the
Aharonov-Bohm effect. The current is calculated within a single-electron approximation and within a many-
body master equation approach where charging effects are accounted for in the Coulomb blockade regime. We
provide rules and tools to develop and analyze efficient spintronic devices based on nanometric

interferometers.
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I. INTRODUCTION

In recent years, a great deal of attention has been devoted
to the study of useful electronic devices utilizing the
Aharonov-Bohm' (AB) phase in multiply connected
geometries.>® In particular, there has been interest in spin-
sensitive devices™!? that are the single-electron analog of
semiconductor spintronics.'! Most of the research conducted
in this direction has focused on mesoscopic systems, where
the AB flux quantum matches weak magnetic fields, inter-
electronic dependencies can be relatively negligible, and the
Rashba'? and Dresselhaus'? spin-orbit coupling or inhomo-
geneous magnetic fields'*!> provide a large and controllable
dependency of the electron Hamiltonian on directionally sig-
nificant spin eigenvalues.!%-10-23

At the nanometric scale, it has been shown that spin-
independent AB molecular interferometers may be possible
at reasonable magnetic fields when the coupling of the de-
vice to the leads is small.?*~2" For such small AB interferom-
eters there are striking differences in the properties of mag-
netic versus electric gates, and the magnetic gate becomes
advantageous over electrical gating.’>?® For example, the
current in a multiterminal molecular device can be tuned by
changing the polarity of the magnetic field, utilizing its sym-
metry breaking nature.”® Another example includes funda-
mental differences between magnetic and electric gates with
respect to inelastic effects.?®

Previous studies of nanometric molecular AB interferom-
eters have ignored the spin degree of freedom. In such
molecular-scale systems, if the likes of atomic spin-orbit
coupling and magnetic ions are not prevalent,?*° the lack of
a Rashba and/or Dresselhaus field and the difficulties in lo-
cally manipulating the external magnetic field at such scales
leave only the much smaller Zeeman term to differentiate
between spins.3! The Zeeman effect has not been of great
interest in mesoscopic systems due to the availability of
other effects that differentiate between spins to a greater de-
gree. This is an important difference between molecular and
mesoscopic spintronics.

In addition, the small size of such devices further compli-
cates matters by introducing large charging effects.3> These
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should become especially noticeable when the coupling be-
tween the device and the leads is weak (as required for na-
nometric devices operating at reasonable magnetic fields),
since electrons spend a longer time on the device. Despite
these inconveniences, one may very well wonder whether it
is possible to develop molecular AB interferometers as
single-electron spin devices such as a spin filter or splitter.
This is the question that interests us here.

In this paper, we provide the basic physical foundation
required to develop such devices at the molecular scale. We
discuss two limiting cases corresponding to fully coherent
transport within an independent electron model suitable for
strong lead-device couplings, and a master equation model
dominated by charging effects appropriate for weak lead-
device couplings. The former is sufficient if the charging
energy is smaller than both the temperature and the coupling
between the leads and the device.>® The transition between
these two limits is quite difficult to describe and requires a
full many-body treatment.

The paper is structured as follows: In Sec II, we describe
the types of devices we wish to model and define their effi-
ciency in terms of the spin-dependent current. This includes
a two-terminal spin filter and a three-terminal spin splitter. In
Sec. I, Zeeman splitting is introduced into the two models
developed by Hod et al.?**27 for independent spinless
electrons—a simple continuum one-dimensional model and a
more detailed tight-binding model. The tight-binding ap-
proach is particularly suitable for molecular scales where in-
coherent effects can be ignored, and the validity of the con-
tinuum approach to molecular systems has been discussed
elsewhere.?*?” Within the simple continuum model, we pro-
vide an exact solution for the spin-dependent conductivity
for the two- and three-terminal devices. The role of the dif-
ferent model parameters is studied and comparison between
the simple continuum model and the tight-binding results are
made. In Sec. IV the tight-binding levels are used in a master
equation calculation®3#? to examine charging effects in the
Coulomb blockade regime. From this basic analysis, some
interesting conclusions are drawn regarding the properties
and limitations of AB nanospintronics, and a few potential
avenues for further research are pointed out in Sec. V.
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FIG. 1. (Color online) A sketch of the two prototype devices: a
molecular spin filter (upper panel) and a molecular spin splitter
(lower panel). Up and down refer to the two spin-polarized states.

II. DEVICES

We will examine two types of elementary nanometric de-
vices with and without charging effects: a spin filter and a
spin splitter, as illustrated in Fig. 1. Such devices might be
built from molecular rings such as polycyclic aromatic
hydrocarbons,>>*>#* or from atomic corrals (with the advan-
tage of controlled structure and electron density).*>*¢ Such
corrals can be constructed atom by atom using scanning tun-
neling microscopy techniques.*’” A more exotic example in-
volves three-dimensional nanostructures such as torus knots,
where a periodicity of more than 27 can be achieved, pro-
ducing a stronger AB effect than simple rings. In such mo-
lecular structures, control over the structure’s geometry is
possible at the atomic level (unlike the case of mesoscopic
rings).

The filter does not really require something as complex as
an AB ring for its realization. One only requires two single-
spin levels which can, by manipulation of the magnetic field,
be moved in and out of the conduction energy window, and
any atom, quantum dot, or other discrete system can meet
this requirement. This case is treated because it provides a
simple example with only two terminals and yet may still be
useful. The splitter is a molecular analog of a Stern-Gerlach
device, not in the sense of operating at a nonuniform field,
but in the more general sense of differentiating between par-
ticles according to their spin degree of freedom. It is some-
what more interesting than the filter device: having three
terminals, it actually requires a device which, like an AB
ring, has some sort of inherent asymmetry in either its con-
struction or in the spinor wave function.

It is useful at this point to examine the energy scales of
the problem. The Fermi energy is the most important param-
eter. For a half-filled conduction band the Fermi wavelength
is of the order of four bond lengths Np=4a. This gives a

2
Fermi energy of €,= 2:—)\7 ~10 eV if we set the lowest level
F

to zero, regardless of ring size and assuming atomic spacing
of about a=2 A. To a good approximation, the molecular
orbital energy (at zero magnetic field B=0) is given by an
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2,2
effective mass model e,,F%, where m=0, +1,..., R is the
radius of the ring, and m* is the effective mass. This gives a
value for the Fermi quantum number of mF:%R. Electronic

levels on the rings near the Fermi energy are separated by
2
Ae=-2T which reduces linearly with R. For rings of the

ordermoRfa several nanometers in diameter, the separation be-
tween levels near the Fermi energy is of the order of sub-
electron volts. This is also the order of magnitude of the
charging energies €. Other energy scales involve the mag-
netic field splitting which can be as large as the level spacing
and the Zeeman splitting 2.89 X 107 eV/T, which is only
about a third of the thermal energy at 1 K.

The effectiveness of these devices can be judged not only
by output polarization, but also by unitarity: a perfect device
always sends the correct electrons into the correct lead. More
precisely, the two devices that will be discussed are judged
by the following quantities:

J1
€1 filter = . (13)
Jrt+J|
J
€\ fitter =T > (1b)
Jrt+J|
d 0 vy 2 2
(- _
. Ui =JPG =4y (10)

splitter (]% +]D(]i +]%)

Here, j;| is the up or down current for the two-terminal
device, and jhz is the up or down current for channel 1 or 2
for the three-terminal device. The only important properties
these quantities need to have, for the purpose of this work,
are that they should be bounded from above by 1 and should
reach 1 only in the case of perfect operation. For the two-
and three-terminal devices, both requirements are satisfied.
We refer to them from now on as “efficiencies.”

The problem of building a perfect device can thus be
mathematically restated as the problem of optimizing its ef-
ficiency to the desired value, usually unity, over the space of
all controllable parameters. These include the magnetic field,
the ring’s radius and structure, the gate and bias voltages (or
the chemical potential), and the lead placement and coupling.
Reasonable ranges for these parameters must be assumed:
magnetic fields of more than a few tesla may pose a technical
limitation, as are large rings where disorder effects begin to
dominate.*® The leads cannot be too close to one another to
avoid direct tunneling and should be coupled strongly
enough to make the environmental coupling unimportant.
Even within these limits, the problem remains numerically
formidable in all models. We will, therefore, also discuss a
conceptually simpler if less systematic way of designing per-
fect devices.

III. SINGLE-ELECTRON PICTURE

In this section, we describe the physical principles re-
quired to construct molecular spin filter and spin-splitter de-
vices in the limit where charging effects can be ignored and
the complexity of the many-body physics can be reduced to
a simplified one-electron picture.
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A. Basic concepts

To identify the physics, let us first regard a simple ana-
lytical model for the transmission through an AB
ring.!%1415.1822 The physics of this model for molecular con-
ductors was recently discussed by Hod ef al. in the absence
of Zeeman splitting and spin-orbit coupling.?*~?” Consider a
one-dimensional AB interferometer as shown in Fig. 1. It
consists of a conducting ring of radius R, coupled to two or
three conducting wires, and placed in a perpendicular uni-
form magnetic field B. The device is described by the Pauli
Hamiltonian:

HZ
s=5 — +V(r)+guzo-B, (2)
2m

e

where IT=P+%A(r), A(r) is the vector potential (B=V
X A), V(r) is the electrostatic potential on the ring, and m, is
the electron mass. The last term in Eq. (2) represents the
coupling of the magnetic field to the spin angular momen-
tum, where o are the Pauli matrices, g is the gyromagnetic
ratio (we take g=2 for the spin), and MB:z%_, is the electron
Bohr magneton. The lack of a Rashba field in molecular
conductors allows us to safely ignore spin-orbit coupling ef-
fects. In the common case where the scalar potential V(r)
governing the system is periodic or nearly so, the effective
mass approximation can be used and the Pauli Hamiltonian
can be reduced to

2

Hs=%+gMBU'B=Hring+HU’ (3)
where m”* is the effective mass of the electrons. Since the two
additive terms in the Hamiltonian must commute (one de-
pending only on the orbital part and the other on the spin part
of the wave function), we can adopt the solution of Hod et
al.>*?® for the transmission of electrons through the two pro-
totype devices (spin filter and splitter). We adopt a transfor-
mation €— €— €, which allows us to project spin effects onto
a calculation where spin was previously neglected, noting
that the spin-dependent part of the Hamiltonian under a con-
stant field must have the two eigenvalues €,=+guzB for
spin up or down electrons. This transformation is not limited
to the specific Hamiltonian described above: the only re-

quirement is that H,;,, does not contain a spin dependency.
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Furthermore, even for inhomogeneous magnetic fields,
where the spin-dependent term in the Hamiltonian does not
commute with H,;,,, a similar transformation in the limit of
adiabatic spin dynamics can be made, where in addition to a
shift in energy one has to introduce a shift in the magnetic
flux.4

Using the standard analytical approach of treating a one-
dimensional (ID) ring based on a scattering matrix
formalism,’® the transmission as a function of energy, previ-
ously calculated for spinless electrons,?*?® need only be
modified by the Zeeman energies for up (down) electrons,
which affect only the kinetic phase angles ¢ in the expres-
sion

, 7R 5 TR <
b= dile])) = 7\/2m € = 7\/2771 (exgupB). (4)

The transmission itself is the solution of the linear scattering
problems, with the final results for the two-terminal device
shown in the upper panel of Fig. 1, given by

A (1 +cos2d¢,,)
T, ()= — L ruti6)
R; |+ Py cos 2, + Q| cos™ 26,

where ¢m=77;fo is the ratio between the magnetic flux ¢
=mR’B and the quantum flux ¢O=@, and we have defined

Ay =1677(1 - cos 2¢}1),
P =2(c=1)*c+1)*=4(c*+ 1)(c + 1)* cos 24},
QTL = (C+ 1)4

Ry =(c—1)*+4c*+4 - 4(c*+ 1)(c - 1)* cos 24}
+8¢? cos 4¢”, (6)

with V7 the transmission amplitude into the junctions and
c=1\1-27 the junction scattering amplitude.?*

A similar calculation can be made for the more cumber-
some case of a three-terminal device shown in the lower
panel of Fig. 1. We focus on the case where all three junc-
tions have identical scattering amplitudes. The transmittance
for channels 1 and 2 is given by the ratio T%f(e):N%f(e)
X[D‘% l(e)]‘l. The denominator of the transmittance probabil-
ity for both output channels is given by

Df/(e)= 11—6((:2 +1)(19 = 12¢ +2¢® = 12¢% + 19¢*) + 32¢3 cos(4 ) + 2(c — 1)*c{cos[4 ¢} (1 = 2a)] + cos[4 ¢} (1 - 28)]

+cos[4p (1 =291t = 8(c — 1)%c(c? + 1){cos[4¢) (a— 1)] + cos[ (4} B— 1)] + cos[4 ¢ (y— D]}
—4(c— 1)) 2 -c+2c* =3 +2cH)[cos(4 ¢y a) + cos(4h B) + cos(4h) )]+ 2(c — 1)H(c? + 1){cos[4 ¢ (a— B)]

+ cos[4d>,1i(a -]+ cos[4¢,[l(ﬂ -y} - %(c + DH=4[1 +clc- 1)]cos(2d),ll) +(c— 1)2{cos[2d),ll(l -2a)]

+ cos[2d>,1l(l -2B8)]+ cos[2q§,ll(l -2y 1}}cos(2¢,,) + %(c +1)% cos’(2¢,,). (7)
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The numerator of the transmittance probability through output channel 1 is given by

N}l(e) =- %772{— 4(1+cA)2(c—1)%cos(dp}a) + (c + 1) cos(4d ' B) + 2(c — 1)* cos(4 ¢t y) + 4c cos[4 ¢ (a + y)]

—(c-1)? cos[4¢,[l(oz —v)]=2c(c+1)cos[2¢,, — 2¢,[l] —2(c+ 1)cos[2¢,, + 2(;5,[1]
— (2= 1)cos[2¢,, + 2(1 = 2a) P} ']+ (2 = 1)cos[2¢h,, — 2(1 = 2a) B} '] + 2(c + 1)cos[2 ¢, + 2(1 = 28) )]
+2¢(c+ 1)cos[2¢, = 2(1 = 2B) ] = (¢? = 1)cos[2¢,, + 2(1 = 29) plH ] + (2 = )cos[2¢,, — 2(1 = 29) 4 TF (8)

and the numerator of the transmittance probability through output channel 2 is given by

N7 (e)=- % H=4(1+ D)+ (c+ 1) cos(4¢) @) + 2(c — 1) cos(4 ' B) + 2(c — 1)% cos(4 ) y) + 4c cos[4 (B + y)]

—(c—=1)2 cos[4¢}H(B— )] - 2¢c(c + 1)cos[2¢,, + 21— 2(c + 1)cos[2,, — 2] + 2¢(c + 1)cos[2,, + 2(1
—2a) ]+ 2(c + 1cos[2¢, — 2(1 = 2a) G} '] + (2 = 1)cos[2¢, + 2(1 = 2B) h) '] = (2 = 1)cos[2¢,, — 2(1 - 28) )]
+(c? = Deos[2¢,, +2(1 = 29) ] - (c* = Dcos[2¢,, — 2(1 = 29) ;' T} 9)

In the above equations «, B3, and y=27— a— 3 are the angles
between all three leads as defined in Fig. 1.

The current is related to the transmittance through the
Landauer formula.>! For the two-terminal device, the current
is given by

jleéf de{f(e— p)) — fle= po)iTy (),  (10)

—0

where u; o are the chemical potentials of the input and out-
put channels, and the Fermi function is f(e):ﬁw. For the

three-terminal device, the current is given by

o0

Jit= ﬁ delfle= w) = fle= 1o, 0ITi{(9). (1)

where Mo,.0, is the chemical potential for output channel 1
or 2, respectively. Conductance can be obtained from the
current by taking the derivative with respect to the bias volt-
age.

B. Spin filters

We now turn to discuss the application of the above re-
sults to the construction of a spin filter device. While for the
case where the Zeeman effect was neglected®*?>?7 it was
always desirable to vary the gate voltage so as to shift the
conduction peaks near zero magnetic field, in Zeeman spin
devices this heuristic is complicated by the dependence of
the splitting on the magnetic field strength. In practice, a
compromise between realistically low magnetic fields and
usable energy shifts restricts the sought after set of param-
eters. These include the kinetic phase angle gi),zl

2% . . .
:%R\/ 2m*(ei ej:f ¢m) and the transmission amplitude into

the junction \«"77 [cf. Egs. (5) and (6)]. Note that the kinetic
phase angle depends on the magnetic phase angle ¢,,. This is
precisely where the aforementioned complication enters.

With the above convenient expressions, one can calculate
the spin-dependent and spin-independent conductions for
different ring configurations and external parameters. Typical
results are shown in Fig. 2 for zero-bias voltage w;=u, and
for T=0 K. As expected, the spin-independent conduction is
periodic with a period that is equal to ¢,. Therefore, we plot
only the first period, namely, 0=<¢/dy=<1. We find that
within each period the spin-independent conduction has a
symmetric structure around ¢/ ¢o=1/2, characterized by a
double peak.?*?’ This structure is caused by resonance trans-
mission through the energy levels of the ring. The spin-
dependent conduction follows closely the behavior of the
total conduction. The up or down conduction peaks are sepa-
rated by the Zeeman splittings, which increase with increas-
ing magnetic flux.

Similar to the case of spinless electrons,’* changing the
coupling strength between the leads and the ring, modeled
here by 7, changes the width of the peaks as shown in the
left panels of Fig. 2. The effects of changing the kinetic
phase angle are more involved than the case studied before.?*
In the case of spinless electrons, the kinetic phase angle de-
pends only on the product R\m*e. Therefore, changing the
energy of the conduction electron by the application of a gate
voltage, changing the ring dimensions, and changing the ef-
fective mass of the conduction electron can be mapped onto
a universal curve.’*?” In the present study, there are three
independent parameters that affect the kinetic phase angle in
different ways. For example, the position of the conduction
peaks can be shifted by adjusting the energy of the conduc-
tion electron by the application of a gate voltage. This is
depicted in the lower left panel of Fig. 2. However, the
change in the energy of the conduction electron also affects
the splitting between the conduction peaks of the up or down
spins as previously discussed. Altering the effective mass
within the ring with the chemical potential held constant, for
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FIG. 2. (Color online) Plots of the conduction (in units of the quantum conduction g0=2782) of a spin filter device computed within the
analytical model at zero temperature and zero bias. Left: The conduction as a function of the magnetic flux for different model parameters.
The parameters used are R=5 nm, 77=%, m*=m,, and A\p=12 A (thick) and \p=4 A (thin lines) for the lower left panel; R=5 nm, 7

=1lﬁ’ m*=m,, and A\p=12 A for the upper left panel; R=10 nm, 17=L m*=m,, and \p=12 A for the lower right panel; and R=5 nm, 7

10°

=1—10, m*=10m,, and A\p=12 A for the upper right panel. Right: The spinless conductance as a function of the energy and the magnetic flux.

The value of the conduction for the spin up and down are given by the values at the ends of the white lines. This figure contains the same

information as that shown in the left panels. Gray scale color scheme used where light color indicates high conductance of =~1g.

instance, by a change of composition or interatomic distance
in the ring atoms, modifies the kinetic phase and can, thus,
increase or decrease the splitting as shown in the upper right
panel of Fig. 2. Finally, as the ring radius is increased, the
splitting for a set flux ratio decreases since this ratio then
represents a smaller field as depicted in the lower right panel
of Fig. 2. However, for the same reason, greater magnetic
flux ratios become accessible for larger rings.

It is often more instructive to look at the results shown in
the right panel of Fig. 2, where the familiar diamond-shaped
conduction pattern within the energy/phase ratio plane be-
haves more simply and predictably, in order to gain a better
intuitive understanding of the system. Here, the two ends of
the white conduction lines represent up or down conduction,
where the chemical potential and magnetic field are at the
middle of such lines. Varying 7 still affects only the peak
widths, modifying R changes the lengths of the conduction
lines, changing m* scales the diagram in the energy axis
without changing the length of the conduction lines, and al-
tering the energy of the conduction electron scales the dia-
gram along with the lines in the same axis. Thus, in order to
construct an efficient spin filter, one has to construct this
diagram and control the position of the white conduction
lines by the application of a proper magnetic field and gate
voltages to achieve a desired behavior.

Good molecular spin filters can be made when two con-
duction peaks with different spins are sufficiently separated
in energy and magnetic field to allow only electrons of one
spin to traverse the ring. This is best achieved for molecular
devices with a large effective mass for the conduction elec-

tron and small couplings between the leads and the ring
(“bad contact™). In Fig. 3, we plot the magnetoconduction for
a molecular device with relatively high effectiveness. We
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FIG. 3. (Color online) Plots of the conduction versus magnetic
flux for the analytical model (upper panel) and for an atomistic
calculation based on a tight-binding model (lower panel). The ring
radius in both cases is R=5 nm. Other parameters in the analytical
model are 7;:51—0, m*=4m,, and \p=12 A. Tight-binding parameters
are defined in the text.
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zoom on the region of the first magnetoconductance peak.
The upper panel shows the results for an analytical model
discussed above, and the lower panel shows the results of an
atomistic calculation for a molecular AB interferometer as
illustrated in the upper panel of Fig. 1. As can be clearly
seen, depending on the value of the magnetic gate, one can
open an output channel for spin up or down while, at the
same time, close this channel for the other spin.

To calculate the magnetoconductance of a molecular AB
interferometer, we have used a simple tight-binding model,
where we assume a single electron in a spherical s level for
each site on the molecular ring. We add the proper magnetic
terms to the tight-binding (TB) Hamiltonian of the system:

= [ L S
H‘Y_HTB+MBL'B+2melu“BB R} +gugo-B, (12)

where L is the angular momentum operator, B is the mag-
netic field vector, and R is the projection of R onto the
plane perpendicular to B. A gauge invariant basis is used to
evaluate the tight-binding Hamiltonian matrix: |1s>2I
=|15) e~ ¢/M AT where |15), is a 1s type orbital centered on
site «, and Aa:—%(Ra X B,) is the vector potential evaluated
at the position R, of site . We take the diagonal matrix
elements of Hyp to be equal to zero (energy scale), and the
off-diagonal elements are proportional to the overlap be-
tween the gauge invariant basis on the different electron
sites, as described in more detail in Refs. 24 and 27.

The conductance is calculated using the Landauer
formalism,’! which relates it to the scattering transmittance
probability through the system. The transmittance is given by
T()=4 TG (T (e)G(e)Ty(e)]. Here, G(e)=[eS—H,
+i(I';+T)]" is the retarded Green function, S is the overlap
matrix, and I'; , are the imaginary parts of the self-energy
(%) of the input and output channels. For the results pre-
sented in Fig. 3, we use both imaginary absorbing
potentials?*>? and an iterative semi-infinite bulk Green func-
tions calculation scheme>-3-3 to calculate the self-energies
of the leads.

Comparing the results of the simple analytical model to
the results obtained from the tight-binding model indicates
that the same physical picture emerges for the tight-binding
approach. This is expected based on previous studies where
the Zeeman effect was neglected.’»>>?” The agreement be-
tween the two approaches indicates that the diffraction pat-
tern is insensitive to the perturbations caused by an ionic
potential, and the results will not be invalidated by a more
thorough (single-particle) treatment. The only free parameter
used in the analytical theory is the scattering amplitude 7,
which was adjusted to match the width of the conduction
peaks. The effective mass entering the analytical model can
be calculated directly from the tight-binding parameters. For
a single s level within tight binding for a 1D crystal with
inversion symmetry and a site distance of a, one can show
that the dispersion relation can be approximated by>°

€ = Ey+a*y(a)k*. (13)

This can be compared directly with a nearly free electron of
2
mass m* and energy €,=F,+ #kz’ allowing us to identify
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* hz
" T e (e

Here, y(a) is the resonance integral, i.e., the off-diagonal
nearest neighbor matrix element of the tight-binding Hamil-
tonian.

C. Spin splitter

The physics of the three-terminal device shown in the
lower panel of Fig. 1 was recently discussed for the case
where the Zeeman splitting was ignored.?® Hod et al. showed
how cyclic molecular rings can be used as parallel magne-
toresistance logic gates (in contrast to the switching devices
based on two-terminal rings).?® The basic idea was to couple
the cyclic molecular system to three leads creating a three-
terminal device and to apply an external magnetic field. By
carefully selecting a narrow resonance through which con-
ductance occurred, they showed that such a setup can be
used to simultaneously switch one channel “on” and, at the
same time, switch the other channel “off.” This was achieved
by carefully adjusting the phase of the conducting electron
with diminishing amplitude on one exit channel and a large
amplitude at the other channel. A proper combination of a
gate potential and realistically low (compared to the full AB
period) magnetic fields was used to obtain parallel logic op-
erations such as AND and AND+NOT. This was demonstrated
for a molecular system composed of conjugated Benzene
rings, and further discussed in terms of a single channel con-
tinuum model.

The goal of the present study is to develop a spin-splitter
device by extending the approach presented in Ref. 26 to
include the Zeeman effect. Specifically, we will show how
the phase of the conducting electron can be tuned such that
one exit channel is turned on for up spins (off for the down
spins) and, at the same time, the other exit channel is turned
on for down spins (off for up spins). To achieve this, we need
to increase the parameter space necessary to provide means
to control the efficiency of the device. As will become clear
below, the angles between the different channels («, B, and
vy=2m—a-B, cf. Fig. 1) will be used as control parameters
to access the many ways by which the spin-splitter device
can be implemented.

We begin with a close examination of the results for the
three-terminal Zeeman spin splitter described by the simple
continuum model. The conduction given by Egs. (11) and
(7)—(9) for the case of zero bias is plotted in the upper panels
of Fig. 4 for the two output channels for the case of spinless
electrons. Following the analysis of the spin filter shown in
the right panel of Fig. 2, we observe the familiar diamond-
shaped conduction pattern within the energy/phase ratio
plane for each output channel. As before, the two ends of the
white conduction lines represent up or down conduction,
where the chemical potential and magnetic field are at the
middle of such lines. The ring parameters are R=20 nm,
m*=125m,, and \77:%0 We take a=15.9° and B=19.7°
such that the conduction through one channel is related to
that of the other by a mirror symmetry around the field B,
=5T: gOI(B,e)zgoz(Bo—B,e). These angles are obtained
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FIG. 4. (Color online) Transmittance through a three-terminal
ring device as a function of the flux ratio (magnetic field) and the
kinetic energy of the conducting electrons. Left and right panels
correspond to output channels 1 and 2, respectively. The ring has a
radius of R=20 nm, which corresponds to an AB period of about
3 T. Upper panels: m*=125m,, zero bias, and the two endpoints of
the white line represent electrons of the two spins. Lower panels:
m*=10m,, small bias of 6 meV, and, here, spin-independent con-
duction occurs all along the gray line, while along the white (black)
lines, still of length gug, only up (down) electrons are transmitted,
as their conduction windows shift in energy according to their spins.
Gray scale color scheme used where light color indicates high trans-
mittance of =~1.

through an optimization procedure to achieve maximal effec-
tiveness.

A spin splitter is obtained when one end of the Zeeman
split line conducts for one channel only (the up spin for the
upper left panel of Fig. 4) while, at the same time, the other
end of the Zeeman split line conducts for the other channel
only (the down spin for the upper right panel of Fig. 4). The
structure of the conduction allows this for points where the
Zeeman separation is equal to the separation between two
ring energy levels that conduct, a very stringent requirement.
If a satisfying choice of lead angles is always available
(which appears to be the case), then, using the simple ana-
lytical model of the ring, this happens when

h2
2gupB = W[(m+2)2— (m-2)], (15)

or, rewriting B as :—;fﬂ and up as 2%, we find that the

condition where the Zeeman separation is equal to the sepa-

ration between two ring energy levels
2m, 2m, mR

¢ _2m
=—m
by m'g

F= s (16)
gm” a

where, as before, a is the separation between the sites on the
ring. The condition given by Eq. (16) is a necessary but not
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sufficient condition for a spin splitting device. When the con-
dition is met, the angles between the input and output chan-
nels are optimized to achieve a desired efficiency such that a
mirror symmetry around the magnetic field given by Eq. (16)
is achieved. From this equation, we can also see why the ring
dimensions are important: as the ring radius is increased, the
flux ratio (;;%) required to meet this criterion also increases.
Since interference effects are dampened at large flux ratios,*®
this suggests that nanometric rings have an advantage over
mesoscopic rings in exploiting the Zeeman effect for this
particular scenario.

Similar sets of configurations with odd or half-integral
flux ratio can be found in much the same way, due to the AB
splitting. Clearly, for rings with nanometer scale dimensions,
where a flux ratio of 1 corresponds to thousands of tesla, this
is not a viable option unless m*>m,. However, at tens of
nanometers, many configurations are possible at fields of a
few tesla. The main problematic issue that remains is the fact
that in order to conduct through very low levels on the ring
in this simple model, the Fermi energy must be lowered very
significantly. If we assume that the Fermi level is of the order
of %R, one can show that in this simple model the magnetic
field required to build this device at the Fermi energy be-
comes reasonable only when R is of the order of microme-
ters. However, if one manages to increase the spin g-factor>’
or the effective mass in the device m* [see Eq. (14)], a na-
nometric device would be feasible at mere tesla. This may
hint that, here as well, a realistic device is a matter of choice
of materials—one would, in principle, need to customize a
system in which the density of states is high enough at low
kinetic energies that only levels of such low energies are
occupied in the ground state, or where conduction sites are
far apart and weakly connected.*647

The problems just mentioned are no longer present if one
considers biased conduction (we assume the voltage falls
symmetrically across the junctions to avoid complication), as
shown in the lower panels of Fig. 4. The application of a
finite bias voltage allows realistic configurations with the
same structure at various effective masses. The example
shown in the lower panels of Fig. 4 correspond to m*
=10m, and a bias voltage of 6 meV. The conduction window
can be tuned to contain two quite distant levels. If levels with
the transmissive properties of the ones previously discussed
are selected, the Zeeman energy need not span the space
between them. This can be done by the bias voltage, and the
Zeeman term must be no more than the level broadening (or
a few kgT if this is more) to ensure conduction of only one
spin per level. However, the conduction of electrons in the
entire window of bias voltage should vanish in order to make
efficient spin-splitter devices, since the biased current is the
integral of the transmission over this energy range.

In an extension of the graphical method shown, the biased
conduction window could be represented by a line of length
eVy (gray line), where Vj is the bias voltage. All “spinless”
levels on this line conduct. Centered on the line’s ends are
two parallel lines of length 2guB (black and white), where
only one spin level is shifted into the window—therefore, at
these ends, only one spin type takes part in conduction, while
on the rest of the lines, both do. Now, if this line is placed
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FIG. 5. (Color online) Plots of the spinless current versus magnetic field and gate voltage in the tight-binding approximation for the two
exit channels of a 20 nm three-terminal ring device (left and middle panels). The spin-dependent current is represented by the value of the
current at the ends of the black lines. The right panel shows the corresponding current effectiveness. Gray scale color scheme used. In the
right panel, color is adjusted for maximum detail, such that the areas with light color represent a maximum effectiveness of approximately
0.6. The best polarization achieved here is =90% for one channel and =75% for the other.

like the white lines in the upper panels of Fig. 4, with the
levels at the ends in the one spin zones, the desired result is
achieved as long as the conduction is zero for all other en-
ergies covered by the bias voltage. This can, however, be
done at much higher energies and lower fields than those
shown in the upper panels, since the level spacing spanned
by the bias voltage can easily be orders of magnitude greater
than 2gugB.

In order to make a stronger argument that the spin-
splitting configurations are a physical phenomenon rather
than an idiosyncrasy of the simple one-dimensional analyti-
cal model used here, one might proceed by reproducing them
in a more detailed numerical model. While remaining in the
independent electron picture, an obvious and flexible choice
is a ring of atoms represented by a tight-binding Hamil-
tonian, for which conductance can be calculated with the
methods described above. The wealth of parameters makes it
problematic to fine tune exactly corresponding arrangements
between the two models, and yet it is quite a simple matter to
construct in one model a ring and lead configuration which
worked well as a splitter in the other, and to try and see how
well it works at some choice of parameters which should
have analogous physical meaning. This should be more simi-
lar to what might be done in an actual experiment.

Since in the analytical model of a 20 nm ring we have
already located, as shown in Fig. 4, a good splitter configu-
ration near 10 T, the same configuration (with some effective
mass) would be a convincing place to look for a splitter
using the tight-binding model. We focus on the more realistic
low effective mass regime where a bias voltage is needed
and on a finite temperature of 1 K, which should still leave
the system well within the quantum regime. In Fig. 5, we
plot the current as a function of the experimentally available
parameters—the gate voltage and the magnetic field strength.
The familiar asymmetric structure from the previous plots is
blurred, but still readily recognizable in the two left panels,
while the right panel shows the high effectiveness which can
be reached when the magnetic field, the gate voltage, and the
bias voltage are all appropriately tuned. The location of the
effectiveness peak could be easily predicted by the transmis-
sion line method previously discussed. Obviously, it would
be practically impossible to stumble upon such a fortunate

combination of conditions by accident, and any experiment
must search for them under the explicit guidance of a model
such as the analytical model suggested above.

IV. COULOMB BLOCKADE CALCULATIONS
A. Charging energy

So far, we have ignored the energy it takes to inject mul-
tiple charges into the small region of the ring. This is of some
concern since, as will be discussed below, the charging en-
ergy can be very significant here and, especially when ring-
leads coupling is weak, charging effects can play a major
role. To stress this point, consider a device (ring) that is
charged with an electron of spin up. The energy it takes to
bring another electron with a spin down can be significantly
different than in the single-electron picture. Can this addi-
tional degree of freedom provide a means to construct more
efficient molecular spin filter and spin splitter devices, or
will it prevent their realization?

In general, under our set of assumptions, one can expect
that when charging effects are neglected, states on the ring
will be grouped into pseudobands with the same total occu-
pation, having widths of around a few level separations and
separated by the order of the Fermi energy (which is usually
much greater than the level spacing). The addition of the
charging term will shift non-neutral bands up linearly in the
charging energy with an increasing slope for charged con-
figurations. One should be able to compensate for these
changes by using a gate or bias voltage, as discussed below.

One of the simplest ways of taking the charging energy
into consideration in the regime of strong charging energy
and weak lead binding is within a multielectron master equa-
tion approach.>**? The correctness of the method requires
that the effects of broadening be negligible, which is quite
generally not true, but the approximation, nevertheless, pro-
vides some insight into the behavior of nanometric devices
when charging has been accounted for, particularly when a
nonzero bias has been applied. This formalism is statistical
only, and unfortunately, this makes discussion of perfect de-
vices that send every electron to the right place more difficult
than it is in the single-electron formalism. Alternatively, one
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FIG. 6. (Color online) The charging energy of a nanometric ring
is plotted against the ring’s geometric parameters. The model used
is a cylinder of radius b and height & with a cylindrical hole of
radius a, where b is taken as a+h to provide a square profile. Note
that the sharp divergent peak at the origin has been cropped at U
=2 eV in order to show greater detail.

can utilize a perturbation treatment in the lead-device cou-
pling, recently suggested by Konig and Gefen for an AB
mesoscopic ring;58 however, this approach is limited to off-
resonant transport only.

Before we proceed to discuss the calculation of the cur-
rent within the multielectron master equation approach, we
briefly digress to the matter of estimating the charging en-
ergy and its variation with ring geometry. Calculating the
energy needed to (uniformly) charge a ring or torus is an
elementary electrostatics problem, though not one to which
an analytical solution exists to our knowledge. The calcula-
tion below provides a qualitative estimate of the magnitude
of the charging energies, and the numbers should not be
taken as being accurate to within more than an order of mag-
nitude.

The details of the calculation are as follows. As a model,
we used for simplicity a cylinder of radius @ and height A,
with a cylindrical hole of radius b through its axis (see inset
of Fig. 6 for a sketch of the model). The potential ¢(r,z) at
r and z can be obtained following a standard procedure,>
and is given by

a 2 h
&(r,2) =f r'dr'f d(,DJ d7’
b 0 0

p
\/(r— r' cos @)+ r'?sin® p+ (z -7
(17)

The charging energy for a single electron may then be found

by setting p to m inside the ring, and zero otherwise:

1
U0=Efdrp¢(r,z). (18)

The charging energy for N electrons is then given by Uy(N
—N,)?, where N, is the neutral number of electrons.

In Fig. 6, we plot the charging energy of a nanometric
ring as a function of the cylinder radius a and height h. For
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typical rings considered in this work with a radius of a
=5 nm, a height of =1 nm, and b=a+h=6 nm, the charg-
ing energy is of the order of U0<% eV. For smaller dimen-
sions, the charging energy increases considerably and can
exceed several electron volts for subnanometer rings.

B. Calculating the spin current

If one neglects spin-dependent multielectron effects, then
it is formally straightforward to construct from the set of
one-electron Hamiltonian and spin eigenfunctions an anti-
symmetric basis of multielectron wave functions:

‘Pnlnz...nizAl...iH @n[~ (19)
n=1

Here, A, ; is the antisymmetrization operator and the states
are identified by their (spin-dependent) level occupations n;
(0 or 1 for fermions). Using this antisymmetric multielectron
wave function, we can uniquely and conveniently determine
the matrix elements of a general many-body operator G ac-
cording to the Slater-Condon rules where only single-
electron integrals are taken into account:

<<Pi|G|€°j> =8ij> (20a)

M
<q,n1n2...nM|G|\I’nln2...nM> = ; gjjnj7 (20b)
<‘Pnln2..‘nk...nM|G|‘Pn1n2..‘nl'c.‘.nM> = 8kk> (20’3)

<\Ifn1n2. Sl My .nM|G|\I,n1nz. . nj/n]: . '"M> = gjk‘snj—n]f—l 5nk—nli+1 s

(20d)

<\If :03

l’lll’lz. . I’lj . .Vlk. . .l’ll‘ . .nM

(20e)

where M is the number of single-electron levels taken into
account, and n; =|1-n,|. Multielectron effects will be consid-
ered only in the form of charging energy. Since these values
will be used in a rate-process calculation rather than a full
quantum formulation, constructing the multielectron states
themselves is actually redundant, and Egs. (20b)—(20¢) along
with the single-particle data will provide all the necessary
information.

In order to perform a master equation based estimation of
the current, the transfer rates between different multielectron
states must first be calculated.***> We will assume that only
levels near the Fermi energy will take part in conduction.
This implies that the N levels closest to the Fermi energy will
be used to construct the 2" multielectron states themselves
using Eq. (20b), with the additional charging term Uy(N
-Ny)>.

The transfer rate through lead € between two multielec-
tron states is given by
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Uap
R€,a—>[3= 1;11 Qa,B' (21)

We label multielectronic states by the Greek indices «
E{n(l“),n(z”‘), ,nﬁf‘)} and BE{n(lB),n(ZB), ,n,(f)}. Single
electronic levels are labeled by the indices i and j. We also

define the total transfer rate summed over all leads:
Raﬂﬁ= ; Re,aﬂﬁ' (22)

In the above equations, I'y .4 is related to the the imaginary
part of the self-energy in the single-electron picture. To low-
est order, I ,5=",; if the two multielectronic states differ
only by the occupation of level i; I ,5=",; if they differ
only by n; and n;, and n;,—n;=1. Otherwise, I'y ,5=0. This
follows from the Slater-Condon rules [cf. Egs. (20c) and
(20d)]. ¢ ; is the matrix element of the imaginary part of the
self-energy. O,z in Eq. (21) is related to the Fermi-Dirac
function, f(e):

flea—€g— me), N,> Ng
Qup=\1-flea—€g— ), No<Np (23)
1’ Na=NB,

where Na=2,-nf.a) is the number of electrons in state «.
With the rates known, the linear master equation system
can be written as the condition for steady state:

ERO[—nBPa_ERﬁ—u}PlBZO’ (24)
B B

where P, is the probability that the system is in a multielec-
tron state a. Once the steady-state occupation probabilities

have been solved, the current can be expressed as>>+2
I;=—¢X2 Ry pPuSap: (25)
aB
where
+1, N,<Ng
Sa,BZ —1, Na>Nﬁ’ (26)
0, Na = NB

Intuitively, this expression states that current flows out of
lead € whenever an electron flows from it into the device,
with the inverse also true. Following a similar line of physi-
cal reasoning leads to an expression for spin-polarized cur-
rent: up or down current flows out of lead € whenever an up
or down electron flows from it into the device. Assuming no
coupling between levels with different spins, the spin-
dependent current is given by

Ioyy=- eEﬁ RiapPaS1())ap (27)
(23

and
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+1(O), Sa<SﬂANQ’<Nﬁ
O(+1), Sa>SBANa<NB
Sthap= o (28)
0(=1), Se<SzAN,>Njy
~1(0), Su>SsAN,>Np.

Here, Sa=2is§“), where sl(.a)= +1 for spin up or down, respec-
tively.

Peaks in the differential conduction as a function of the
bias voltage V3 can be expected whenever there exists a
difference in energy between two states differing in their
number of electrons by 1, which is occupied in one lead but
not the other, i.e., when the conduction window grows to
contain a spectral line. This is why levels spaced more than
about eVz+kgT from the Fermi level should not take part in
conduction within this formalism: transfer through them in-
volves electrons or holes (referring here to level vacancies)
not present in the leads.

C. Spin filter

A filtering device remains straightforward in this formal-
ism, and the previous discussion in Sec. III B pertains to it as
well. Several differences are, nevertheless, evident. In the
single-electron formalism, a device will conduct at zero bias
when the chemical potential coincides with an energy level
on the device. In the master equation formalism, this still
happens when the charging energy is zero. Under such con-
ditions, the difference in energy between the neutral state and
the first charged state always equals the Fermi energy, and
this difference is obviously contained in the zero-bias con-
duction window.

In the presence of charging, the picture is somewhat more
involved. The same states discussed above are now shifted
differently by charging since they have a different number of
electrons. For the sake of clarity, we will first consider the
simplest case where only two levels, and thus four states, are
included. We assume that the system can have Ny—1 elec-
trons, N, electrons, or Ny+1 electrons with energies U,
exgupB, and 2€+U,, respectively (€ is the single-electron
level energy). Furthermore, N, is the neutral occupation and
we assume it is such that one of the aforementioned levels is
occupied when the systems are neutral. The value of these
energies was calculated by taking the single-electron level e
and adding charging terms (U, for both Ny—1 and Ny+1)
and magnetic field splittings (for the N, state).

When the chemical potential in one of the leads equals the
energy difference between multielectron states, a peak will
appear in the differential conductance. For the case described
here, when the bias voltage falls symmetrically on both junc-
tions, conduction peaks will occur when the energy differ-
ence between two multielectron states of different occupa-
tions is equal to the value of the lead Fermi energy combined
with half the applied bias voltage. By taking the Fermi en-
ergy as that of the lower of the two single-electron conduc-
tion levels, the conduction peaks are expected to appear at
eVp=2U, and eVz=2(Uy+2gugB) (these peaks are doubly
degenerate).

Typical behavior of a spin filter device is illustrated in
Fig. 7, where U0=% eV, e=1¢eV, and T=% K. On the left,
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FIG. 7. (Color online) (a)-(d): surface plots of the current versus gate and bias voltages. (a),(c) and (b),(d) correspond to up-spin and
down-spin currents, respectively. The lower panels zoom into a region of the voltage plane in which a realization of an up-spin filter is
possible. (e)—(h): a cut through constant gate voltage plane of the current (e), the effectiveness (f), the conduction (g), and the state
population (h) as a function of the bias voltage. In all panels, the ring is composed of 40 single electron sites with metallic leads at opposite
ends, and a magnetic field of 10 T is applied. The charging energy is % eV and Tzé K.

surface plots of the current as a function of the gate and bias
voltages are shown [Figs. 7(a)-7(d)]. Upper panels show the
current of spin up (left) and spin down (right) electrons for a
wide range of gate and bias voltages. Note how current steps
(or conduction peaks) occur whenever the conduction win-
dow cuts across a difference between state energies as dis-
cussed above. For instance, with no gating, transitions with
N— N=1 occur simultaneously at eVz=2U,, and with a gate
voltage of +U,, the first step occurs at zero bias. On the scale
of the plots shown in Figs. 7(a) and 7(b), the currents for the
two different spins are almost indistinguishable. The differ-
ence in current between the two polarizations can be seen in
Figs. 7(c) and 7(d), where we zoom in on a specific area of
the line described by eV;=Uy—eV3y/2, where V,; is the gate
voltage. Here, one spin starts to flow at slightly lower bias
voltages, the current rising with the voltage to a high peak
and then falling back down as the other spin begins to flow
as well. A plane cut through this surface is shown in Fig.
7(e), where it is clearly demonstrated how, by tuning the
voltages, a spin filter can still be constructed when charging
is taken into account. A symmetric filter for the opposite spin
type is found when inverting the gate voltage. As can be seen
in the figure, the first conduction peak occurs at eVz=2(U,
—2gupB) and the second occurs at eVy=2U,. As a result of
the broken symmetry, these peaks are nondegenerate and cor-
respond to transition with N—N—1. The other two peaks
corresponding to N—N+1 will occur at a significantly
higher bias voltage. This is in contrast to the simple example
where only four states were considered, as described above,
where the current peaks are degenerate and appear simulta-
neously.

One of the interesting features shown in Fig. 7 is the
negative differential spin conductance of the spin up electron
[Fig. 7(g)]. This is explained by the sudden drop in the popu-
lation of the 01> state (corresponding to a conduction elec-
tron of spin up) as the change in chemical potentials begins
to allow the population of state |[10> (corresponding to a

conduction electron of spin down). This population switch-
ing is reminiscent of the nonmonotonic change of occupation
in two electrostatically coupled single-level quantum
dots.%%1 The state populations are shown in Fig. 7(h). The
drop in the spin up state population is correlated with the
occurrence of negative differential spin conductance (the
conduction is normalized to the maximal value®*). This can
be explained in the following way: the current for each spin
is determined by the product of the probability that the sys-
tem is in state « and the rate of transitions between state «
and state [00> (which is the state with no conducting elec-
trons), where « is [10> for spin up conducting electron and
|01> for spin down conducting electron. We, therefore, ex-
pect that at chemical potentials, where the relevant Fermi
functions and, hence, the rates are nearly constant, the cur-
rent will be approximately proportional to the population.

D. Spin splitter

The discussion of the spin splitter within the multielectron
master equation is more involved than the spin filter and
requires at least four levels (16 states). We assume that at N,
(the neutral occupation) two of the four conduction levels are
occupied. Having previously established a way in which
single-electron levels suitable for spin splitting can be found
on a ring, we focus on the effects of charging. First, and for
the moment neglecting charging energies, we assume that we
have found two levels with energies e+A that are spin de-
generate without Zeeman splitting, with the following prop-
erties: they should be adjacent (other than perhaps for non-
transmissive levels, which will not qualitatively affect our
results) and should both be coupled symmetrically to the
input lead, while each is coupled to a single different output
lead. Other levels should be at least 2A away in energy. All
couplings are taken to be the same, and diagonal couplings
are ignored. Accounting for Zeeman splitting will simply
shift each of these levels in energy by +gugB without modi-
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FIG. 8. (Color online) A spin splitter made from two levels 1 eV
apart where A:% eV, each of which is further split by the Zeeman
energy at 10 T. The upper diagrams show the conductance through
the two output channels when the charging energy is ignored, and
the lower diagrams show the conductance of the two output chan-
nels at a charging energy of Uy=0.6 eV. We have adjusted the gate
potential so that in both cases the current rises at Vz=1 V and, at
this value, only one spin conducts through each lead.

fying the coupling. As before for the single-electron picture,
the coupling between levels with different spins is neglected.
An example of such a case is discussed above in Sec. III C,
where A is given in terms of the ring level spacing [cf. Eq.
(15) and Fig. 4].

Setting the chemical potential of the input lead to u;=¢€
eVp . . eVp .
+— and both output chemical potentials to wo=€--", it
should now be clear under both formalisms that without
charging energy a perfect spin splitter exists at eVz=2A
—2gupB, as shown in the upper panels of Fig. 8. In the
single-electron picture, this happens as two levels with op-
posite spins and different lead bindings enter the conduction
window. In the multielectron master equation, this happens
when the difference in energy between N=N, states and N
=Ny+1 states enters the conduction window. These two con-

ditions are equivalent for Uy=0.

Including charging effects will cause the N=N;+1 states
to move up in energy by U,. This has the effect of reposi-
tioning the conductance peaks at eVz=2A+2gupB+U,. If
U, is of the order of the Zeeman term, then the charging
energy will interfere with the structure that allowed our spin
splitter for U,=0, since the energy difference between states
that differ by one electron of both spin up and spin down can
become similar. On the other hand, if the charging energy is
increased further, the transitions N=Ny<—N+1 and N
=Ny<>N-1 become distinguishable in energy. One way to
take advantage of this is to apply a gate potential in order to
shift the state energies by —U, so that only the N=Ny—N
+1 transitions are in the conduction window (new transitions
may appear at similar energies if other levels are too close,
but since level spacing for a ring generally increases with
energy, we can neglect such contributions). Once again, at
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eVp=2A-2gupB, perfect splitting occurs, though at a
smaller total current, since fewer state transitions are in-
volved. This is apparent in the lower panels of Fig. 8.

V. CONCLUSIONS AND DIRECTIONS FOR FURTHER
STUDY

We have investigated several ways in which rings or ring-
like structures with a radius of the order of nanometers,
coupled to metallic leads, might be used to construct simple
spin-sensitive devices. We have focused only on the Zeeman
splitting to differentiate between spins, since it is always
present while other effects commonly utilized in microscopic
structures, such as the Rashba and Dresselhaus effects, are
generally absent in molecular and/or nanometric structures.
We believe the niche this work occupies in the search for
nanospintronic devices is yet unexplored: very small coher-
ent structures and weak spin-dependent effects have not re-
ceived much attention, despite their formal simplicity and
significance. What we have shown here is that although
building devices under the burden of such limitations is dif-
ficult, it is possible. Considering the scientific and techno-
logical benefits of such devices, we believe it will also be
worthwhile.

The basic calculations we have performed are enough to
point one in the right direction as to the desired properties of
molecule-sized Aharonov-Bohm spin devices and the condi-
tions at which their desired operation might be observed. A
similar methodology can be applied to more complex de-
vices or sets of devices. The actual devices specifically dis-
cussed here were two of the most basic—a spin filter and a
spin splitter. However, the conclusions drawn and principles
laid out may easily be extended to many interesting systems,
from quantum gates (since in theory we can use interference
devices to perform general unitary transformations between
input and output gates) to molecular memory (since an elec-
tron trapped on the device will modify its electrical proper-
ties and, thus, may be detectable at a later time).

Several complementary methods were utilized during the
course of this investigation: first, a simple single-electron,
analytical model in which the parameter space can easily be
explored, and thus, basic intuition about the system can be
gained. Second, a tight-binding treatment in conjunction with
Landauer transport formalism, which incorporates a more re-
alistic physical structure that can be compared directly with
experimental data, but still assumes independent electrons,
was applied to similar systems studied within the simple ana-
Iytical model. Finally, a multielectron master equation ap-
proach that can be used to examine many-particle effects was
grafted onto the tight-binding results. Here, we choose to
focus on electric charging, since its effects are energetically
dominant.

Our analysis of the filter, meant to be a test case, was
based on the study of the spinless case, where it was possible
to create very narrow conduction peaks near zero magnetic
field by combining weak device-leads couplings and a gate
voltage to shift the conduction resonances to B=0.24"27 Since
the Zeeman splitting depends linearly on the magnetic field,
a spin filter always requires a finite magnetic field, at least
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high enough to separate the spin conduction peaks in energy
by more than k7. Control over the position of the spin-
dependent conduction peaks and their widths can be
achieved by carefully adjusting the kinetic phase d),[l
=’T7R\/ 2m*(ei z:fg ¢m) and the coupling between the device
and the leads, respectively. Unlike the spinless case where
¢k=%Rv'2m*e, the kinetic phase is now a function of the
magnetic flux itself, and thus the conduction is not a simple
periodic function of the parameters. High efficiency spin fil-
ters are constructed at the highest magnetic field possible,
where spin-dependent effects are strongest, and flexibility is
gained by selecting materials or structures with high effec-
tive mass (or large ring size, which is not desirable). Charg-
ing effects do not drastically modify this picture since spin
selectivity depends only on the Zeeman term and the appli-
cation of a gate voltage can compensate for the charging
energy itself. However, charging leads to a breaking of sym-
metries and, as a result, to negative differential spin conduc-
tion.

The physics of the spin-splitter device is similar to that
described above, with the added complication that differen-
tiated control of the spin-dependent wave function at the
different leads is required. Within the single-electron picture,
a spin-splitter device may operate when two spin-degenerate
levels exist such that one transmits through one lead only
and the other through the other lead only. Furthermore, the
level separation should equal exactly the Zeeman splitting.
Alternatively, the level separation can be compensated for by
the application of a bias voltage, as long as there are no
transmissive levels between the two spin-degenerate levels.
Here the parameter space includes the ring size, effective
mass, device-leads couplings, and the angles between the
output leads. Increasing the effective mass, as before, re-
duces the level spacing on the ring, thereby enabling the
construction of spin splitters at lower magnetic fields and
with smaller dimensions. Charging breaks the symmetry and
can reduce the overall current through the device. However,
charging does not abolish the general picture, and the appli-
cation of a gate potential can be used to overcome most of its
effects.

For both prototype devices, we have shown how the limits
of lead coupling, system geometry, and temperature at which
one might expect to see the desired effects can easily be
estimated, as well as several ways in which one can imple-
ment specific behaviors by systematically finding parameters
at which they occur, either exactly or approximately. We
have also shown that even within the parameter space of a
device formed by a single ring with two or three leads, non-
trivial behaviors with useful properties take place. In at least
two instances, we have made a case that our findings are
physical rather than a mathematical peculiarity of some
model by reproducing them under different assumptions and
formalisms. We have found an interesting example of nega-
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tive differential conductance for a spin-polarized current
with a simple explanation. Finally, we have described what
is, to our knowledge, the smallest Stern-Gerlach-like appara-
tus ever reasonably conceived of, and one which is fully
switchable in directionality at constant magnetic field by the
application of an external electric field.

Despite their simplicity, the calculations reported here
provide several predictions that seem to be model indepen-
dent. Nevertheless, more refined models are an important set
of directions to continue along. In particular, drawing from
the study of crystals and mesoscopic systems, we see ways
of enhancing the effect of Zeeman splitting which require a
more elaborate electronic structure description. One such
way is through the effects of spin-orbit coupling and the
local spin density exchange-correlation energy, both of
which have been used to explain the giant spin g-factor en-
hancement that has been observed in mesoscopic structures
under certain conditions.”’ It is quite possible that the same
effect can be recreated with discrete levels, although this
probably requires that only a small number of levels be oc-
cupied (corresponding once again to very low electron den-
sities).

While we have studied only two- and three-terminal de-
vices, with only one injective terminal, it is reasonable that
four-terminal devices will also be of interest as coherent
quantum gates. One of the reasons we have found it worth-
while to draw attention to the importance of many-particle
effects is our hope that in time-dependent calculations they
may be used to create sequential logical behavior without
sacrificing coherence—for instance, an electron may only be
able to enter the device through one lead, but when it enters,
it opens up another lead, and the inflow of another electron
causes both to be discharged through a third lead—a sort of
sequential AND gate, two of which could form a true AND
gate. Of course, to consider useful computation, it is neces-
sary to model entire networks of such gates where input elec-
trons enter on one set of leads, propagate throughout the
network, and leave it on another set of leads. Such a network
presents new delocalized challenges unless devices are
somehow coupled in such a way that no interdevice interfer-
ence takes place. However, even if the devices within the
network are all “imperfect” devices that only approximate
logic gates, as long as every device has independently adjust-
able parameters (like a gate voltage) such a network forms a
fascinating basis for a model of a quantum neural network.
These and related issues are still open for future study.
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