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Charge transport through metal–Mott insulator interfaces is studied and compared with that through metal-
band-insulator interfaces. For band insulators, rectification has been known to occur owing to a Schottky
barrier, which is produced by the work-function difference. For Mott insulators, however, qualitatively differ-
ent current-voltage characteristics are obtained. Theoretically, we use the one-dimensional Hubbard model for
a Mott insulator and attach to it the tight-binding model for metallic electrodes. A Schottky barrier is intro-
duced by a solution to the Poisson equation with a simplified density-potential relation. The current density is
calculated by solving the time-dependent Schrödinger equation. We mainly use the time-dependent Hartree-
Fock approximation and also use exact many-electron wave functions on small systems for comparison.
Rectification is found to be strongly suppressed even for large work-function differences. We show its close
relationship with the fact that field-effect injections into one-dimensional Mott insulators are ambipolar. Ex-
perimentally, we fabricated asymmetric contacts on top of single crystals of quasi-one-dimensional organic
Mott and band insulators. Rectification is strongly suppressed at an interface between metallic magnesium and
Mott-insulating �BEDT-TTF��F2TCNQ� �BEDT-TTF=bis�ethylenedithio�tetrathiafulvalene; F2TCNQ
=2,5-difluorotetracyanoquinodimethane�.
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I. INTRODUCTION

When a new function of some material like an organic
molecular crystal is sought, one often considers a possible
electronic device made of the material. Around the device,
there always exists an interface between two materials with
different transport properties and different work functions.
Charge transport through metal-insulator or metal-
semiconductor interfaces has been studied long ago.1,2

However, most of the theories are restricted to metal-
band-insulator interfaces.3 Now, it has been clarified that
many organic conductors and insulators are strongly
correlated electron systems.4 Their insulating phases cannot
be explained on the basis of band structures. Electron-
electron interactions play an essential role in the insulating
phases of the �BEDT-TTF�2X �BEDT-TTF
=bis�ethylenedithio�tetrathiafulvalene� salts. Then, conven-
tional theories cannot be applied to charge transport through
metal–Mott insulator interfaces.

As is well known, two different materials generally have
different work functions. When they are attached to each
other, the energy levels are modified around the interface by
transferring electrons to match their Fermi levels. This is
often called band bending and forms a Schottky barrier at the
metal-insulator interface. The electronic state in the close
vicinity of the interface can be modified physically and/or
chemically and depends sensitively on the two materials.5

Nevertheless, the overall band structure is governed by the
long-range Coulomb interaction, i.e., by the Poisson equation
if the band structure can be continuously treated.3

When a Schottky barrier dominates the characteristics of a
field-effect transistor fabricated on an organic insulator, the
field-effect characteristics indeed depend on whether it is a

band insulator or a Mott insulator. For instance, when such
transistors are fabricated on semiconducting carbon nano-
tubes, which are band insulators, the field-effect characteris-
tics are generally unipolar unless the work function of the
metallic electrodes is matched with that of the carbon
nanotube.6–9 Now, fine control of p-, n-, and ambipolar-type
operations is available in single-crystal organic field-effect
transistors with the use of chemically tunable Fermi energies
in tetrathiafulvalene-tetracyanoquinodimethane-based or-
ganic metal electrodes.10 On the other hand, when metal-
insulator-semiconductor field-effect transistor device struc-
tures are based on organic crystals of the quasi-one-
dimensional Mott insulator �BEDT-TTF��F2TCNQ�
�TCNQ=tetracyanoquinodimethane�, the field-effect charac-
teristics are ambipolar even if its work function is quite dif-
ferent from that of the metallic electrodes.11 We have theo-
retically shown that backward scatterings at interfaces and
umklapp scatterings inside the Mott insulator are balanced,
leading to collective charge transport insensitive to the band
bending.12

Then, how about a simpler structure of just a metal-
insulator interface without gate electrode? In order for the
current-voltage characteristics to be observed, two different
metallic electrodes need to be attached to an insulator in such
a way that only one interface has a large work-function dif-
ference. The magnitude of the current density depends on the
sign of the applied voltage: the forward �reverse� voltage
lowers �raises� the Schottky barrier at this interface, leading
to a larger �smaller� current density for band insulators in-
cluding ordinary semiconductors.3 If this asymmetry is large,
it can be regarded as rectification. Such rectifying nature is
observed in single-crystal organic devices without gate di-
electric layers.10 Then, what happens to the current-voltage
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characteristics if they are replaced by Mott insulators? In this
paper, we show that the rectification is strongly suppressed
for Mott insulators. Preliminary theoretical results are pre-
sented in Ref. 13.

II. ONE-DIMENSIONAL MODELS FOR METAL-
INSULATOR INTERFACES

We use the one-dimensional Hubbard model for a Mott
insulator �the one-dimensional tight-binding model with al-
ternating transfer integrals for a band insulator� attached to
two different metallic electrodes represented by the one-
dimensional tight-binding models with a common transfer
integral for simplicity. The total number of electrons is set
the same as the number of sites,

H = �
i

��i + vi�ni + �
i

Ui�ni↑ − 1/2��ni↓ − 1/2�

− �
i,�

�ti,i+1�t�ci,�
† ci+1,� + ti+1,i�t�ci+1,�

† ci,�� , �1�

where ci,�
† �ci,�� creates �annihilates� an electron with spin �

at site i, ni�=ci,�
† ci,�, and ni=��ni�. The site energy �i is set

at �L in the left electrode at 1� i� �Le−1� /2, at 0 in the
insulator at �Le+1� /2� i�L− �Le+1� /2, and at �R in the
right electrode at L− �Le−1� /2� i�L, where L is the total
number of sites and Le the number of sites in the electrodes
�Fig. 1�. The absolute value of the transfer integral �ti,i+1�t�� is
set at tc if either i or i+1 is in the insulator and at te other-
wise. When we consider a Mott insulator, the on-site repul-
sion Ui is set at U in the insulator and at 0 in the electrodes.
For a band insulator, U=0 and the transfer integral tc above
is replaced by tc− �−1�i�t.

A scalar potential vi is introduced above to account for the
redistribution of electrons at interfaces to form barriers, com-
pensating work-function differences �L and �R in equilib-
rium. The periodic boundary condition is imposed on vi: v0
=vL. The applied voltage V is so defined that it is positive
when the right electrode has a lower potential �for electrons�
than the left and the current �without multiplication of
charge� flows to the right. In order to maintain the periodic
boundary condition for finite V, we introduce the Peierls
phase into the transfer integral,

ti,i+1�t� = ti+1,i
* �t� = �ti,i+1�t��exp�− i

ea

�
�t

dt�E�t��	 , �2�

where t denotes time, e the absolute value of the electronic
charge, a the lattice constant, and E�t� the averaged electric
field defined by E�t�=−V / �La�.14

By adding the vector potential introduced into the Peierls
phase to the scalar potential vi, the total potential �i is given

by �i=vi−V�i /L−1 /2�. Although the potential �i is defined
on lattice points, we solve the Poisson equation in the con-
tinuum space,

d2�

dx2 = − VP�
n� − 1� for Le/2 	 x 	 L − Le/2, �3�

and d2� /dx2=0 otherwise, where the potential � and the
expectation value of the electron density per site 
n� are
functions of x, and VP comes from the long-range Coulomb
interaction. In order to match the Fermi levels, we set the
boundary condition, i.e., the potentials in the metallic elec-
trodes, as

��x� = − �L + V/2 for 0 	 x 	 Le/2,

��x� = − �R − V/2 for L − Le/2 	 x 	 L . �4�

In order to solve the Poisson equation analytically, we intro-
duce a simplified density-potential relation, which is known
to work well for the potential distribution even in strongly
correlated electron systems,15

−
dn���

d�
= 
 �

2

W − �
, �5�

with a constant compressibility 
, the bandwidth W, and the
gap �. We have confirmed, by using the expectation value

n� with respect to the wave function obtained from the time-
dependent Schrödinger equation and by solving the Poisson
equation for � simultaneously, that the current-voltage char-
acteristics are qualitatively unchanged �compare the present
results with those in Ref. 13�. For the expression of ��x�, see
the Appendix.

First, we set V at zero and obtain the ground state either
exactly �for small systems with L�14� or in the unrestricted
Hartree-Fock approximation. Then, we set V at a finite value
to solve the time-dependent Schrödinger equation. For exact
many-electron wave functions, the exponential evolution op-
erator with time slice dt=10−2 is expanded to the 15th order.
For self-consistent Hartree-Fock wave functions, the evolu-
tion operator with time slice dt=10−4 is decomposed with the
help of the Suzuki-Trotter formula so as to be accurate to the
order of dt2. The current density J�t� is averaged over the
period, 0	 t	�t with �t=2��L / �4eV�,14 to give I, where
J�t� is given by12,14,16

J�t� = �1/L��
i,�

�iti+1,i�t�ci+1,�
† ci,� − iti,i+1�t�ci,�

† ci+1,�� . �6�

III. NUMERICAL RESULTS

The analytic solution �i given in the Appendix plus the
site energy �i−Ui /2 is plotted in Fig. 2. The energy levels for
doubly occupied sites, �i+�i+Ui /2 in the case of a Mott
insulator, are also plotted as a guide. This result will be used
later in calculating the time evolution of the system. Here,
the work function of the right electrode is set to be matched
with the top of the lower Hubbard or valence band. The work
function of the left electrode is set to be much lower than

V /2 −V /2

L /2e L L /2e0 L−

FIG. 1. �Color online� One-dimensional model for an insulator,
to which two metallic electrodes are attached.
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that of the insulator or that of the right electrode. A Schottky
barrier is formed at the left interface. Its barrier height is
lowered �increased� for right- �left�-going electrons, so that a
positive �negative� V is a forward �reverse� voltage.

In this situation, one usually expects that the absolute
value of the current density I, �I�, is large �small� for V0
�V	0�, i.e., rectification behavior.3 It is indeed reproduced
for a band insulator, as shown in Fig. 3�b�. However, the
current-voltage characteristics for a Mott insulator are quali-
tatively different, as shown in Fig. 3�a�. Namely, the absolute
value of the current density is insensitive to the sign of the
voltage, so that the current density I is almost an odd func-
tion of V for a wide range of �L. The rectifying action is
strongly suppressed for the Mott insulator. This property is
maintained even for large �L. We have performed numerical
calculations with different sizes L, Le and with different Cou-
lomb parameters VP to find that this property is quite robust.

In order to confirm that this property is not an artifact of
the approximation, we then use exact many-electron wave
functions on small systems and compare their current-
voltage characteristics with those by the time-dependent
Hartree-Fock approximation in Fig. 4. Here, a large Cou-
lomb parameter VP is used to accommodate the band bend-
ing within the small insulator of size L−Le. We also use U
=0 and �t=0.375 for a band insulator with gap �=1.5,
which is close to the gap in Fig. 4�b�, to confirm that recti-
fication survives in the band insulator on this small system.
In contrast, rectification turns out to be suppressed in the
Mott insulator irrespective of whether exact many-electron
wave functions are used or the time-dependent Hartree-Fock
approximation is employed, although they show a quantita-
tive difference.

The similar qualitative difference between Mott and band
insulators is demonstrated by field-effect carrier
injections.11,12 The field-effect characteristics are always am-
bipolar for Mott insulators and unipolar for band insulators

when the work functions are different between the insulator
and the metallic electrode. This field-effect property �with
drain current ID, drain voltage VD, and gate voltage UG in the
notations of Ref. 12� can be shown to be closely related to
the present interfacial property. The present result of I as a
function of V is denoted by I= f�V�. Then, in the geometry of
Ref. 12, the left �right� interface tends to produce a forward
�backward� current density I1 �I2� by the potential difference
UG+VD /2 �UG−VD /2�. The total current is approximately
given by ID� I1− I2= f�UG+VD /2�− f�UG−VD /2�
VDf��UG� for small VD, where f��V� is the derivative of
f�V�. Therefore, the suppressed rectification �f�V�: odd func-
tion of V� leads to ambipolar field-effect characteristics
�f��UG�: even function of UG�. The above relation between
the interfacial property and the field-effect property through
differentiation approximately holds for band insulators also.

For the field-effect characteristics, the gate-bias polarity
possessing the higher Schottky barrier at the metal–Mott in-
sulator interface is accompanied by more deviation from half
filling �i.e., weakened umklapp scattering� inside the channel
than that for the opposite gate-bias polarity.12 Such a coun-
terbalance is observed in detail and found in a very wide
parameter space spanned by the work-function difference,
the bandwidth difference, and the Coulomb parameter in the
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FIG. 2. �Color online� Energy levels, �i+�i±Ui /2, where �i is
the solution to the Poisson equation �Eq. �3�� with the simplified
density-potential relation �Eq. �5�� for L=100, Le=49, W=4.0, �
=0.33 �corresponding to U=1.6, �t=0 or U=0, �t=0.0825 with tc

=1�, VP=0.05, �L=0.65, and �R=−0.165. A Schottky barrier is
formed at the left interface, and a positive �negative� V for right-
�left�-going electrons corresponds to a forward �reverse� voltage
lowering �increasing� the barrier height.
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FIG. 3. �Color online� Current-voltage characteristics for �a�
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Rectification that is clearly seen for the band insulator is suppressed
for the Mott insulator.
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Poisson equation. In the present case, a very similar mecha-
nism works: the bias-polarity dependence of the present
charge-density distribution around the Schottky barrier is
quite similar to the corresponding one of the field-effect tran-
sistor. Charge transport through a Mott insulator is not sim-
ply governed by the interface but determined as a whole
including the interfacial and bulk regions. It is therefore
much less sensitive to the details of the interfacial barrier
potential than charge transport through a band insulator.
Whether the voltage is forward or reverse is insignificant at
metal–Mott insulator interfaces. Such collective charge
transport turns out to be realized by balancing the barrier
effect with the correlation effect, as shown in Fig. 9 of Ref.
12.

IV. EXPERIMENTAL RESULTS

In the experiment, we prepared single crystals of two
kinds of quasi-one-dimensional organic charge-transfer com-
plexes; �BEDT-TTF��F2TCNQ� and K-TCNQ. The latter is
known as a Peierls-type �band� insulator composed of segre-
gated stacks of TCNQ anion radicals. The stack of the com-
pound is strongly dimerized along the stacking axis at room

temperature.17 The former is a Mott insulator composed of
side-by-side arrangement of BEDT-TTF cation radicals. The
molecular arrangement is free of dimerization down to low
temperature ��4 K�. We fabricated asymmetric contacts on
top of the single crystals by vacuum deposition with a gap of
about 100 �m, to measure the current along the quasi-one-
dimensional stacks or chains. Cathodes are fabricated with
100 nm of magnesium �work function �=3.66 eV�, which is
coated with thin �3 nm� silver layers to prevent the oxidation
of magnesium. The contacts form Schottky junctions with
both crystals. In contrast, anodes are fabricated with 50 nm
of gold ��=5.1 eV� for �BEDT-TTF��F2TCNQ� crystals and
50 nm of silver ��=4.26 eV� for K-TCNQ crystals. The con-
tacts form Ohmic junctions with the respective crystals at
room temperature. The dc-voltage characteristics were mea-
sured with the use of the semiconductor parameter analyzer
�Agilent E5270�.

Current-voltage characteristics of the devices are shown
in Fig. 5. It is found that the device with K-TCNQ exhibits
rectifying nature with the rectification ratio of about 5 �Fig.
5�b��. The results clearly show the formation of typical
Schottky junctions in K-TCNQ with magnesium. In sharp
contrast, the device with �BEDT-TTF��F2TCNQ� does not
show rectification, while it exhibits distinct nonlinear fea-
tures in the low-voltage range at both polarities �Fig. 5�a��.
The observed nonlinearity should be ascribed to the cathode

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-2 -1 0 1 2

I

V

(a)
U=2.7, δt=0
L=14, Le=5
te=tc=1, VP=5
φL=0.75, φR=−0.75
Exact

-0.4

-0.2

0

0.2

0.4

-2 -1 0 1 2

I

V

(b)
U=2.7, δt=0
L=14, Le=5
te=tc=1, VP=5
φL=0.75, φR=−0.75
Hartree-Fock

FIG. 4. �Color online� Current-voltage characteristics for �a� ex-
act many-electron wave function and �b� Hartree-Fock wave func-
tion, on a small system with L=14 and Le=5. Other parameters are
U=2.7, �t=0, te= tc=1, VP=5, �L=0.75, and �R=−0.75. The over-
all characteristics showing suppressed rectification are obtained for
both wave functions.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-4 -2 0 2 4

C
ur

re
nt

[µ
A

]

Voltage [V]

(a)

(BEDT-TTF)(F2TCNQ)
Mg-Au

T=295K

-0.1

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

C
ur

re
nt

[µ
A

]

Voltage [V]

(b)

K-TNCQ
Mg-Ag

T=250K

FIG. 5. �Color online� �a� Current-voltage characteristics of
�BEDT-TTF��F2TCNQ� with magnesium cathode and gold anode
at 295 K. �b� Current-voltage characteristics of K-TCNQ with mag-
nesium cathode and silver anode at 250 K.

YONEMITSU, MAESHIMA, AND HASEGAWA PHYSICAL REVIEW B 76, 235118 �2007�

235118-4



characteristics with magnesium since the device with gold
contacts for both the cathode and the anode show much more
conductive characteristics. It should be noted here that elec-
tron correlations are actually strong in K-TCNQ, but the
dimerization-induced backward scattering does not allow the
balance between the barrier effect and the correlation effect,
leading to the band-insulator-like behavior. Thus, we found
that these experimental results are consistent with the theo-
retical arguments presented above.

V. SUMMARY

In order to study the effect of electron correlation on
charge transport through metal-insulator interfaces, we con-
sider a one-dimensional Mott insulator, to which two metal-
lic electrodes with different work functions are attached, and
observe its current-voltage characteristics. The spatial depen-
dence of the potential including Schottky barriers at inter-
faces is theoretically modeled by an analytic solution to the
Poisson equation with a simplified density-potential relation.
The Hubbard model is used for a Mott insulator, and the
tight-binding model with alternating transfer integrals for a
band insulator. For small systems, we have compared nu-
merical results obtained through the time-dependent Hartree-
Fock approximation with those of exact many-electron wave
functions. The qualitative characteristics regarding the
current-voltage asymmetry are not lost by this approxima-
tion, which is used for large systems. Rectification is shown
to be strongly suppressed at metal–Mott insulator interfaces
even with large work-function differences. This property
dominated by an interface is shown to be closely related to
the previously explained, ambipolar field-effect characteris-
tics of a one-dimensional Mott insulator with two interfaces.
This collective charge transport through metal–Mott insula-
tor interfaces is a consequence of the fact that backward
scatterings at interfaces and umklapp scatterings inside the
Mott insulator are balanced. The suppression of rectification
is experimentally observed in the current-voltage character-
istics of the quasi-one-dimensional Mott insulator
�BEDT-TTF��F2TCNQ�, with magnesium cathode forming a
Schottky junction and gold anode forming an Ohmic junc-
tion, at room temperature.
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APPENDIX: POTENTIAL �„x…

We adopt the simplified density-potential relation �Eq.
�5��, which implies

n��� = 2 for − � 	 � 	 − W/2,

n��� = 1 − 
�� + �/2� for − W/2 	 � 	 − �/2,

n��� = 1 for − �/2 	 � 	 �/2,

n��� = 1 − 
�� − �/2� for �/2 	 � 	 W/2,

n��� = 0 for W/2 	 � 	 � . �A1�

Then, the solution to the Poisson equation �Eq. �3�� is given
by

��x� = − �/2 ± c0 sinh��
VP�x − x0�� for 1 	 n 	 2,

�A2�

with sign � for x	x0 and � for x0	x, and

��x� = �/2 ± c0 sinh��
VP�x − x0�� for 0 	 n 	 1,

�A3�

with sign � for x0	x and � for x	x0, where c0 and x0 are
constants. Taking the boundary condition �Eq. �4�� into ac-
count, we obtain �with definitions �L�V���L−V /2 and
�R�V���R+V /2� the following.

If − �
2 �−�L�V��

�
2 and − �

2 �−�R�V��
�
2 ,

��x� =
�L�V��x − L + Le/2� − �R�V��x − Le/2�

L − Le

for Le/2 	 x 	 L − Le/2. �A4�

If − W
2 �−�L�V�	− �

2 and − �
2 �−�R�V��

�
2 ,

��x� = − �/2 + c0 sinh��
VP�x − x0��

for Le/2 	 x 	 x0,

��x� =
��/2��x − L + Le/2� − �R�V��x − x0�

L − Le/2 − x0
for x0 	 x 	 L

− Le/2, �A5�

where x0 is the solution to

sinh��
VP�x0 − Le/2��
�
VP�L − Le/2 − x0�

=
− �/2 + �L�V�
− �R�V� + �/2

, �A6�

and c0 is given by

c0 =
− �R�V� + �/2

�
VP�L − Le/2 − x0�
. �A7�

If − �
2 �−�L�V��

�
2 and − W

2 �−�R�V�	− �
2 ,

��x� =
− ��/2��x − Le/2� + �L�V��x − x0�

x0 − Le/2

for Le/2 	 x 	 x0,

��x� = − �/2 − c0 sinh��
VP�x − x0�� for x0 	 x 	 L

− Le/2, �A8�

where x0 is the solution to
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�
VP�x0 − Le/2�
sinh��
VP�L − Le/2 − x0��

=
− �L�V� + �/2
− �/2 + �R�V�

, �A9�

and c0 is given by

c0 =
− �L�V� + �/2

�
VP�x0 − Le/2�
. �A10�

If − W
2 �−�L�V�	− �

2 and �
2 	−�R�V��

W
2 ,

��x� = − �/2 + c0 sinh��
VP�x − x0�� for Le/2 	 x 	 x0,

��x� =
�

x1 − x0
�x −

x1 + x0

2
� for x0 	 x 	 x1,

��x� = �/2 + c0 sinh��
VP�x − x1�� for x1 	 x 	 L − Le/2,

�A11�

where x0 and x1 are the solutions to

sinh��
VP�x0 − Le/2��
�
VP�x1 − x0�

=
− �/2 + �L�V�

�
�A12�

and

�
VP�x1 − x0�
sinh��
VP�L − Le/2 − x1��

=
�

− �R�V� − �/2
, �A13�

and c0 is given by

c0 =
�

�
VP�x1 − x0�
. �A14�
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