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We study nonperturbative interaction corrections to the thermodynamic quantities of multichannel disor-
dered wires in the presence of the Coulomb interactions. Within the replica nonlinear �-model �NL�M�
formalism, they arise from nonperturbative soliton saddle points of the NL�M action. The problem is reduced
to evaluating the partition function of a replicated classical one-dimensional Coulomb gas. The state of the
latter depends on two parameters: the number of transverse channels in the wire Nch and the dimensionless
conductance G�LT� of a wire segment of length equal to the thermal diffusion length LT. At relatively high
temperatures, G�LT�� ln Nch, the gas is dimerized, i.e., consists of bound neutral pairs. At lower temperatures,
ln Nch�G�LT��1, the pairs overlap and form a Coulomb plasma. The crossover between the two regimes
occurs at a parametrically large conductance G�LT�� ln Nch and may be studied independently from the
perturbative effects. Specializing on the high-temperature regime, we obtain the leading nonperturbative cor-
rection to the wire heat capacity. Its ratio to the heat capacity for noninteracting electrons, C0, is �C /C0

�NchG2�LT�e−2G�LT�.

DOI: 10.1103/PhysRevB.76.235108 PACS number�s�: 73.21.Hb, 73.23.Hk, 73.20.Fz

I. INTRODUCTION

The interplay between disorder and electron-electron in-
teractions in conductors influences their low-temperature
properties in an essential way.1,2 Depending on the disorder
strength, the temperature, and other system parameters, a
conductor may be either in the metallic or in the insulating
regime. The manifestations of electron-electron interactions
in the two regimes are quite different. In the insulating re-
gime, the charge in a given localized site is quantized in the
units of the electron charge, and charge discreteness effects
dominate the system properties.2 In the metallic regime, the
charge in a given volume of the conductor can change con-
tinuously and charge discreteness effects are small. The two
regimes can be distinguished by the value of the appropri-
ately defined dimensionless conductance G, which is greater
than unity in the metallic regime and smaller than unity in
the insulating one. If the system crosses over from the me-
tallic to the insulating regime due to a change in temperature
or disorder strength, the Coulomb blockade effects are ex-
pected to gradually grow and become important at G�1.

Theoretically, the transition between the metallic and the
insulating regimes is typically approached from the metallic
side, G�1, where electron transport can be described semi-
classically. Therefore, the study of incipient charge discrete-
ness effects in the metallic regime is an important problem in
the theory of disordered conductors. This problem has re-
cently attracted much attention.3–17 In the metallic regime,
1 /G may be used as a small expansion parameter. For G
�1, the charge discreteness effects are exponentially small
in G, and their analysis requires nonperturbative methods. To
date, quantitative studies of nonperturbative interaction ef-
fects in the metallic regime have been limited to granulated
systems, or to systems in which the electron-electron inter-
action is spatially separated from the disorder. The present
paper is devoted to the study of nonperturbative effects in the
thermodynamic properties of homogeneously disordered
wires, in which electron-electron interactions and disorder
spatially coexist.

The most promising technique to study this problem is the
nonlinear � model �NL�M�, either in the replica18 or
Keldysh19,20 formulation. We use Finkelstein’s18 replica for-
mulation of the NL�M. We show that nonperturbative cor-
rections to the thermodynamic quantities of the wire depend
on two parameters: the number of channels Nch in the wire
and the dimensionless conductance G�LT� of the wire seg-
ment of length equal to the thermal diffusion length LT. In
contrast, the perturbative corrections1 are controlled by a
single parameter, G�LT�. For example, the leading perturba-
tion theory correction to the heat capacity is �CPT /C0
�1 /G�LT�, where C0 is the wire heat capacity in the nonin-
teracting electron approximation.

Within the NL�M formalism, the nonperturbative effects
are described by soliton saddle points of the NL�M action.
The spatial extent of the solitons is given by the thermal
diffusion length LT, and their action is equal to G�LT�. The
nonperturbative contribution to the thermodynamic quanti-
ties is described by the partition function for a gas of these
solitons. We map the problem onto a one-dimensional repli-
cated Coulomb gas. At high temperatures, G�LT�� ln Nch, the
Coulomb gas is dimerized, i.e., consists of widely separated
neutral pairs �dimers�. In the temperature range ln Nch
�G�LT��1, the dimers are ionized and form a Coulomb
plasma. Since the crossover between the two regimes occurs
at a parametrically large conductance, G�LT�� ln Nch, it can
be studied independently from the perturbative effects. In
this paper, we specialize on the high-temperature regime,
leaving consideration of the crossover to the low temperature
one for future work.

The paper is organized as follows. In Sec. II, we describe
the NL�M for multichannel wires. In Sec. III, we obtain the
analytic solution for the saddle points of the NL�M action in
the limit of the infinite number of channels Nch and evaluate
the functional integral over the fluctuations about the saddle
points. In Sec. IV, we obtain the leading nonperturbative
correction to the thermodynamic quantities of the wire for
Nch�1. In Sec. V, we summarize our results.

PHYSICAL REVIEW B 76, 235108 �2007�

1098-0121/2007/76�23�/235108�15� ©2007 The American Physical Society235108-1

http://dx.doi.org/10.1103/PhysRevB.76.235108


II. NONLINEAR � MODEL

We consider an infinitely long disordered wire with many
transverse channels, Nch�1. The disorder is assumed to be
weak, so that the elastic mean free path l satisfies the condi-
tion kFl�1, where kF is the Fermi wave number. We con-
sider the temperature T to be smaller than the Thouless en-
ergy for the transverse motion, ET�D /d2, where d is the
transverse wire dimension and D is the diffusion constant. In
this regime, the wire is described by the one-dimensional
NL�M.

Thermodynamic properties of the system can be extracted
from the averaged over disorder realizations replicated parti-

tion function, �Zp�= �Tr e−pĤ/T�, with p being the number of
replicas. We will be interested in the thermodynamic poten-
tial, which can be obtained using the replica trick:

��� = − T�ln Z� = − Tlim
p→0

�Zp� − 1

p
. �1�

In the diffusive regime, the replicated partition function �Zp�
has a functional integral representation in terms of NL�M,
describing the low-energy physics of the problem. The deri-
vation of the NL�M action has become a standard
procedure.18,21 Therefore, below, we only present its final
form suitable for the problem under consideration. The
NL�M action is a functional of two fields: the Q matrix,
parametrizing the diffusive degrees of freedom of electron
motion, and electric potential V. The former is a Hermitian
matrix in the space of replicas and Matsubara frequencies,
whose entries are 4�4 matrices in the space S � T, given by
the product of spin, S, and time-reversal, T, spaces.21,22 The
slowly varying in space electric potential Va is introduced to
treat the long range part of the Coulomb interaction in rep-
lica a. This part of the Coulomb interaction is of particular
importance for the consideration below. It cannot be de-
scribed by the Fermi-liquid interaction constants. Since the
Fermi-liquid effects in disordered metals have been studied
by Finkelstein18 and are not essential for the phenomena dis-
cussed in this paper, we ignore them in order to keep the
presentation more transparent. Then, the NL�M action can
be written as

�Zp� =� D�Q,V	e−SQ−SC, �2a�

SQ = A
��

2
� dx Tr
D

4
��Q�2 − �	̂ + V̂�Q�

+ A�� d
dx�
a

Va
2�x,
� , �2b�

SC =
1

2
� d
dxdx��

a

Va�x,
�K�x − x��Va�x�,
� , �2c�

where Tr denotes the trace over the replica, Matsubara, and
S � T spaces, � is the density of states per spin at the Fermi
level, and A is the wire cross section area. The matrices 	̂

and V̂ have the following structure in the replica and S � T

spaces: 	̂= i�ab
3�
, V̂=�ab
0Va, with 
i’s defined as 
i= ti
��0, where �i, ti are the Pauli matrices in the S and T
spaces. The term SQ, defined in Eq. �2b�, represents the part
of the action that describes electrons moving in the presence
of the auxiliary fields Va, whereas SC, defined in Eq. �2c�, is
the bare Coulomb action. The kernel K�x−x�� describes the
inverse effective Coulomb interaction in the wire and de-
pends on the specific device geometry. For example, for a
homogeneous wire in the absence of a nearby gate its Fourier
transform is K�q�= �1 /e2�ln 1

q2d2 . We assume that the external
magnetic field is absent. The action in Eqs. �2a�–�2c� consti-
tutes the NL�M.

The Q matrix satisfies the nonlinear constraint Q2=1. It
also satisfies the charge conjugation condition,21

Q = CQTCT,

C = �ab�		� � 
0 0 0 − 1

0 0 1 0

0 − 1 0 0

1 0 0 0
�

� �ab�		� � �t1 � �− i�2�	 , �3�

where a, b and 	, 	� denote the replica and Matsubara indi-
ces, respectively, and the superscript T denotes the transpo-
sition. In what follows, we restrict ourselves to the case of
strong spin-orbit scattering.25 In this case, the Q matrix be-
longs to the symplectic ensemble,21 and its matrix elements
are unit matrices in the spin space.

To resolve the nonlinear constraint Q2=1, we will use the
exponential parametrization of the Q matrix,

Q = eiW/2�e−iW/2, �		�
ab = �ab�		�
0 sgn 	 ,

�W,�� = 0, W = W+, �4�

where �A ,B� denotes the anticommutator of A and B. The
invariance of the Q matrix with respect to the operation of
charge conjugation, Eq. �3�, and its Hermiticity impose the
following matrix structure on the rotation generators W in the
T space:

W		�
ab = � d c

− c* − d* �
		�

ab

, d̂+ = d̂, ĉT = − ĉ . �5�

The fields �d ,c�		�
ab represent the diffuson and Cooperon de-

grees of freedom, respectively, each being a unit matrix in
the spin space.

The action in Eqs. �2a�–�2c� is characterized by two pa-
rameters. The first is G�LT�=4���DA /LT, where LT

=��D /2�T is the thermal diffusion length. It has the mean-
ing of the dimensionless conductance of the wire segment of
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length LT. The other one is the number of transverse channels
in the wire, Nch=kF

2A /4�. We consider a multichannel me-
tallic wire for which both parameters are large. From now
on, the Planck’s constant � is set to unity.

For large G�LT�, we can evaluate the replicated partition
function in the saddle point approximation. In this approxi-
mation, the partition function is written as a sum of the con-
tributions arising from all the saddle points:

�Zp� = �
saddle
points

e−Ssp� D��Q,�V	e−�S��Q,�V	. �6�

Here, Ssp denotes the NL�M action evaluated at the saddle
point, and �Q ,�V describe fluctuations of the Q matrix and
electric potentials Va around a particular saddle point. Fi-
nally, �S��Q ,�V	 denotes the action change due to these
fluctuations. In the next section, we obtain the exact form of
the saddle points of the action in Eqs. �2a�–�2c� in the
G�LT�=const, Nch→ limit, which is referred to below as
the “Nch→ limit” for brevity. Then, in Sec. IV, we use
these results to construct approximate solutions to the saddle
point equations for a wire with large but finite number of
channels.

III. SADDLE POINTS IN THE Nch\� LIMIT

If the number of channels in the wire is sufficiently large,
e2�A�1, one may neglect the Coulomb action SC in Eqs.
�2a�–�2c� when looking for the saddle points. This corre-
sponds to the charge neutrality limit,15 which can be seen by
noting that formally such procedure corresponds to the limit
e→, which clearly enforces electroneutrality. The saddle
point equations in this limit are obtained by minimizing SQ in
Eq. �2a� with respect to Va and Q and read

D � �Q � Q� − �	̂ + V̂,Q	 = 0, �7a�

Va −
�

4
trQ



aa�x� = 0, �7b�

where tr is the trace in the S � T space only. Equation �7a� is
the Usadel equation, and Eq. �7b� represents the charge neu-
trality condition.

By direct substitution, one can check that Eqs. �7a� and
�7b� possess a set of stationary spatially uniform solutions,
Q		�

ab =�ab�		�
0 sgn�	+2�Twa�, Va=2�Twa, which are char-
acterized by a set of integer winding numbers in each replica,
wa. All these solutions represent degenerate minima of action
�2b�. The sum 4 �awa�W �the factor 4 here arises from the
4�4 matrix structure of Q		�

ab in the S � T space� defines the
trace of the Q matrix, Tr Q=2W. The Q matrices corre-
sponding to the minima with different wa but the same W
can be transformed into each other via continuous rotations
in the replica and Matsubara spaces, Eq. �4�. Therefore, the
NL�M action contains soliton minima in which the Q matrix
and the potentials Va smoothly interpolate between their val-
ues in different uniform minima.15 Such solitons are similar
to those first found in Ref. 8.

A. Single soliton solution

In this section, we find an analytic solution to the saddle
point equations �Eqs. �7a� and �7b�	 that correspond to a
single soliton. To be specific, we construct a soliton that
connects the following degenerate minima: Q=�, with
all the winding numbers wa=0 at x=−, and
Q		�

ab =�ab�		�
0 sgn�	+2�Twa� at x=, with w1,2=�1, all
the other wa being zero. This corresponds to a gradual
change in the electric potential in replicas 1 and 2, V1,2, from
zero at negative spatial infinity to �2�T at positive infinity.

For such a soliton, the generator W0 parametrizing the
saddle point Q matrix via Eq. �4� corresponds to a rotation
between Matsubara frequencies �T in replica 1 and −�T in
replica 2. In this subspace, W0 has the following structure:

W0 = � 0 �̂

�̂+ 0
�, �̂ = � �dei� �ce

i�

− �ce
−i� − �de−i� � , �8�

where �d, �c, �, and � are real parameters. In this equation,
the matrix element of W0 in the upper-left corner corre-
sponds to �W��T,�T

11 �0, the one in the upper-right corner to

�W��T,−�T
12 = �̂, and so on. All the other matrix elements of W0

are zero.
Substituting the rotation generator �8� into Eq. �4�, we

obtain the matrix elements of the Q matrix that participate in
the rotation:

� Q�T,�T
11 Q�T,−�T

12

Q−�T,�T
21 Q−�T,−�T

22 �

=
cos �d cos �c ei��+�� sin �d sin �c − iei� sin �d cos �c − iei� cos �d sin �c

e−i��+�� sin �d sin �c cos �d cos �c ie−i� cos �d sin �c ie−i� sin �d cos �c

ie−i� sin �d cos �c − iei� cos �d sin �c − cos �d cos �c e−i��−�� sin �d sin �c

ie−i� cos �d sin �c − iei� sin �d cos �c ei��−�� sin �d sin �c − cos �d cos �c

� . �9�
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All the other matrix elements are those of the � matrix.
The action for such a Q matrix is independent of the

angles � and � and depends only on ����2 and ����2 with
positive coefficients. Therefore, the action minimum corre-
sponds to coordinate independent angles � and �. It can be
shown that the soliton solutions with the minimum action
correspond to either �d�0, �c=0 �diffusonlike rotation�, or
�d=0, �c�0 �Cooperon-like rotation�. In these cases, substi-
tution of Eq. �9� into Eq. �7b� gives V1,2�x�=��T�1
−cos �d,c�x�	 for the diffusonlike and Cooperon-like rota-
tions, respectively. Then, Eq. �7a� yields

�2�d,c −
1

2LT
2 sin 2�d,c = 0. �10�

The solution that corresponds to the sought soliton is

�d,c�x� = 2 arctan�e�x−x0�/LT� � �0�x − x0� , �11�

giving for the electric potentials

V1,2�x� = � V0�x − x0� � ��T�1 + tanh��x − x0�/LT	� ,

�12�

which clearly satisfies V1,2�x→−�=0 and V1,2�x→�
=�2�T. Here, x0 denotes the soliton position.

Substituting the saddle point values of Q and Va, Eqs. �9�
and �12�, into action �2b�, we obtain the action for a single
soliton,

S0 = G�LT� .

We note that this action does not depend on the soliton po-
sition x0 and the angles � and � in Eq. �9�. However, for the
diffusonlike ��c=0� soliton, the different values of the angle
� correspond to the same Q matrix, and similarly different
values of � correspond to the same Q matrix for the
Cooperon-like ��d=0� soliton. Therefore, the action for the
fluctuations about the soliton has only two zero modes. One
is associated with a translation of the soliton �change in x0�.
The other corresponds to a rotation of the Q matrix in the
replica and Matsubara space caused by a uniform change in
either � or �, depending on whether we consider a diffuson-
like or a Cooperon-like soliton. The presence of these zero
modes needs to be borne in mind when integrating over the
fluctuations about the soliton configurations.

B. Fluctuations around a single soliton

In this section, we evaluate the single soliton contribution
to the replicated partition function, Eq. �6�, in the Nch→
limit. This requires evaluating the functional integral over
the fluctuations of the Q matrix and the potentials Va around
the single soliton saddle point.

As was explained at the end of Sec. III A, the fluctuation
spectrum has two zero modes. We show below that all the
other fluctuations are massive and integrate over them in the
Gaussian approximation. The resulting fluctuation determi-
nant is convergent and is evaluated below. The integration
over the zero modes is reduced to the integration over the
soliton position and the rotation angle.

The translational zero mode represents a simultaneous
spatial shift of the saddle point solution for the Q matrix and

the static �zero Matsubara frequency� component of the po-
tentials Va. In order to simplify the treatment of this zero
mode, we first integrate over the latter. This step involves no
approximations since action �2b� is quadratic in Va. The re-
sulting action depends only on the nonzero Matsubara com-
ponents of Va and on the Q matrix. In this representation, the
zero modes involve only the Q matrix degrees of freedom,
whereas all fluctuations of the nonzero Matsubara compo-
nents of Va are massive. Then, the single soliton contribution
to the partition function, Eq. �6�, in the Nch→ limit can be
written as exp�−G�LT�	�p, where �p is the functional integral
over the fluctuations about the soliton and is given by

�p = �p� D�W,�V	e−S�2��W,�V	. �13�

Here, the fluctuations of the nonzero Matsubara components
of the electric potential are denoted by �Va, the matrix W
parametrizes the deviation of the Q matrix from the saddle
point, and �p is the factor coming from integration over the
static components of Va. We will see later that in order to
obtain the physical observables, we will only need to evalu-
ate �p at p=0. Therefore, the value of � is of no importance.
Finally, the quadratic fluctuation action S�2��W ,�V	 is ob-
tained by integrating over the fluctuations of the static com-
ponent of Va in Eq. �2b� and expanding the resulting action
to the second order in W. Its form depends on the Q-matrix
parametrization.

In the remainder of this section, we show that the fluctua-
tion integral �p can be expressed as

�p = �pG�LT��p� dx0

LT
, �14�

where x0 is the position of the soliton and �p is a numerical
factor independent of the system parameters. In order to
evaluate the thermodynamic quantities, we need only the p
=0 value of this quantity, which is calculated below, �
��p=0�8.

In the remainder of the present section, we derive Eq.
�14�. The presentation is organized as follows. In Sec.
III B 1, we give the expression for the fluctuation action. In
Sec. III B 2, we carry out the integration over the Q-matrix
fluctuations. Section III B 3 deals with integration over the
electric potential fluctuations. The reader not interested in the
derivation of Eq. �14� may wish to proceed directly to Sec.
IV, where we use it to evaluate nonperturbative corrections to
the thermodynamic quantities.

1. Fluctuation action

We parametrize the deviations of the Q matrix from the
saddle point in terms of the matrix W, whose structure is
described by Eq. �5�, as follows:

Q = eiW0/2eiW/2�e−iW/2e−iW0/2. �15�

Here, the matrix W0 parametrizes the saddle point Q matrix.
For the soliton described in Sec. III A, it is given by
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W0�x� = � 0 i�0�x�
i

− i�0�x�
i 0
� . �16�

Here, i=0,1 corresponds to diffusonlike and Cooperon-like
rotations, �0 is defined in Eq. �11�, and we set �=�=� /2
and x0=0 for convenience.

In the following, we use dimensionless coordinate �
=x /LT, dimensionless fermionic Matsubara frequencies, �
=	 /2�T, and dimensionless Matsubara components of the
electric potential V�=�V� /2�T, where � is an integer defin-
ing the bosonic Matsubara frequency, such that the latter is

written as 2�T�. In these variables, the quadratic action in
Eq. �13� can be written as

S�2��W,V	 = SVV + SWW + SWV. �17�

Here, SVV denotes the part of the action that is quadratic in
the potentials Va,

SVV =
G�LT�

2 �
a

�
��0

� d�Va
����Va

−����� , �18a�

SWW denotes the part of the action that is quadratic in W,

SWW =
G�LT�

16
� d���

ab
�

	�0,	��0

tr��� − ���W		�
ab �W		�

ab �† + �W		�
ab � �W		�

ab �†	

+ �−
3

4
sin2 �0 +

�1 − cos �0�
2

��
a	

tr�W�T,	
1a �W�T,	

1a �† + W	,−�T
a2 �W	,−�T

a2 �†	

+
�cos �0 − 1�

2 �
a		�

sgn 	 tr�W		�
1a �W		�

1a �† − W		�
2a �W		�

2a �†	

−
sin2 �0

4
�tr��
iW�T,−�T

12 �2 + �
iW−�T,�T
21 �2	 −

1

4
�tr�
i�W�T,−�T

12 − W−�T,�T
21 �	�2�� , �18b�

and SWV denotes the part of the action that is linear in W and V,

SWV = i
G�LT�

8
� d��

a
�
�	

Va
� sgn 	 tr W	,	+2�T�

aa

+ i
G�LT�

8
� d��

��0

V1

��− �cos
�0

2
− 1�tr�W�T,2�T�1/2−��

11 	† + sin
�0

2
tr�
iW2�T�1/2+��,−�T

12 	†�
+ V1

−��− sin
�0

2
tr�
iW2�T�1/2+��,−�T

12 	 + �cos
�0

2
− 1�tr W�T,2�T�1/2−��

11 �
+ V2

��− �cos
�0

2
− 1�tr�W−2�T�1/2−��,−�T

22 	† − sin
�0

2
tr�
iW�T,−2�T�1/2+��

12 	†�
+ V2

−��sin
�0

2
tr�
iW�T,−2�T�1/2+��

12 	 + �cos
�0

2
− 1�trW−2�T�1/2−��,−�T

22 �� . �18c�

Here, “†” denotes the Hermitian conjugation in the S � T
space, i.e., corresponds to complex conjugation and transpo-
sition within a 4�4 block, without interchanging replica or
Matsubara indices. The diffusonlike soliton corresponds to

i=
0, and 
i=
1 for the Cooperon-like one. To be specific,
in what follows, we consider the case of a diffusonlike soli-
ton, i.e., we set 
i=
0. In the Cooperon-like case, the treat-
ment exactly parallels the one presented below.

Introducing the notation

�W =� DW exp�− SWW� �19�

and

�V =� D�V	e−SVV�e−SWV�W =� D�V	e−SVV+�1/2��SWV
2 �W,

�20�
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where �¯�W denotes the Gaussian average with respect to
the action SWW, we can write Eq. �13� as

�p = �p�W�V. �21�

We evaluate the quantities �W and �V in Secs. III B 2 and
III B 3.

2. Integration over W

We now evaluate the functional integral over the fluctua-
tions of the Q matrix, �W in Eq. �19�. Examination of the
quadratic action in Eq. �18b� shows that the variables W		�

ab

with different replica or Matsubara indices fluctuate indepen-
dently. Moreover, with the exception of W�T,−�T

12 , for each
W		�

ab , the actions for the diffusons and Cooperons constitut-
ing it are identical. The term containing W�T,−�T

12 is special
because it has the same replica and Matsubara indices as the
rotation generator W0 parametrizing the saddle point. The
fluctuations of the diffuson and Cooperon components of
W�T,−�T

12 are also independent, but their propagators are dif-
ferent. In particular, we will see that for a soliton represented
by a diffusonlike rotation, only the diffuson part of W�T,−�T

12

has zero modes, and vice versa for a Cooperon-like rotation.
In terms of the diffuson and Cooperon variables, see Eq.

�5�, action �18b� can be written as

SWW = �
ab

	�0,	��0

� � d���d		�
ab �*L̂		�

ab d		�
ab + �c		�

ab �*L̂		�
ab c		�

ab �

+� d��ds
*L̂dds + cs

*L̂ccs� , �22�

where the primed sum means that the term with a=1, b=2,
	=�T, and 	�=−�T is excluded, and �d ,c�s��d ,c��T,−�T

12 .

The operators L̂		�
ab , L̂d,c are all of the Schrödinger type and

have the form

L̂d,c =
G�LT�

4
�L̂�=1 + ud,c���� ,

L̂		�
ab =

G�LT�
4

�L̂�−�� + U		�
ab ���� , �23�

with the operator L̂� defined as

L̂� = −
d2

d�2 + � , �24�

with � and � being the appropriate dimensionless Matsubara
frequencies. The potentials ud,c for ds, cs are given by

ud��� = −
2

cosh2���
, uc�x� = −

1

cosh2���
. �25�

The potentials U		�
ab depend on the replica and Matsubara

indices involved and can be expressed in terms of the fol-
lowing potentials:

v1,2��� =
1

2
�1 ± tanh���	, u��� = −

3

4 cosh2���
. �26�

The expressions for the potentials U		�
ab in terms of v1,2���

and u��� are summarized in Table I.

The operators L̂		�
ab and L̂c are positive definite. The opera-

tor L̂d, Eq. �23�, with the potential ud, defined in Eq. �25�, has
one zero eigenvalue, with all the other ones being positive
and separated by a finite gap. The integration over the zero
modes requires a special consideration. We therefore defer
the integration over the variables ds in �W, Eq. �19�, to the
end of this section and begin by integrating over all the other
variables first. To this end, we introduce an auxiliary quantity
�W� as

�W =
� D�ds	exp�−� d�ds

*L̂dds�
� D�ds	exp�−

G�LT�
4

� d�ds
*L̂�=1ds��W� � �d�W� .

�27�

Calculation of �W� reduces to the evaluation of Gaussian in-
tegrals. Since �d ,c�		�

ab are complex fields, the integration
over each of them gives a factor of an inverse determinant of
the corresponding operator in the quadratic action, Eq. �22�,
and we obtain the following expression for �W� :

�W� =
�p

det�G�LT�
4

L̂�=1�det L̂c

�
ab

	�0,	��0

�
�det L̂		�

ab �−2.

TABLE I. Potentials U		�
ab appearing in the operators L̂		�

ab , Eq. �23�. Each entry gives the potential specific to particular replica and
Matsubara indices in terms of the potentials v1,2 and u defined in Eq. �26�. �j ,k� denote replica indices not equal to 1 or 2.

		�

ab

jk 1j 2j j1 j2 11 12 21 22

	��T, 	��−�T 0 v2−1 v1 v2 v2−1 0 2v2−2 2v1 0

	=�T, 	��−�T 0 u v1 v2 v2−1 v1+u v2+u−1 2v1 0

	��T, 	�=−�T 0 v2−1 v1 v2 u 0 v2+u−1 2v1 v1+u

	=�T, 	�=−�T 0 u v1 v2 u v1+u Excluded 2v1 v1+u
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The prime indicates that the product does not include the
contribution from a=1, b=2, 	=�T, and 	�=−�T. The op-

erators L̂		�
ab in the expression for �W� can be classified accord-

ing to whether their replica indices correspond to the replicas
participating in the soliton rotation. In particular, for a ,b
�2, the operators L		�

ab are insensitive to the presence of a

soliton. Denoting each of these operators as L̂		�
jk , we see that

the product over the replicas with a ,b�2 contributes a fac-

tor ��	�0,	��0 det L̂		�
jk �−�p − 2�2

to the fluctuation determinant.
Analogously, for a=1,2 and b�2, we have p−2 identical
operators L		�

ab for each of a=1 and a=2, which we denote as

L̂		�
1j and L̂		�

2j , respectively. Finally, there are p−2 equal op-

erators for a�2 and each of b=1 and b=2, denoted as L̂		�
j1

and L̂		�
j2 . Using these observations, we rewrite the previous

equation as

�W� =
�p

det�G�LT�
4

L̂�=1�det L̂c

� �
	�0,	��0

�
det L̂		�

12 det L̂		�
21 det L̂		�

11 det L̂		�
22 �−1

� �
	�0,	��0

det L̂		�
jk �−�p − 2�2

�� �
	�0,	��0

det L̂		�
1j det L̂		�

2j det L̂		�
j1 det L̂		�

j2 �−�p−2�
.

In the above expression, the prime means that det L̂�T,−�T
12 is excluded from the product. To compute the thermodynamic

quantities, we will need only the value of �W� at p=0, for which we use the same notation,

�W� =
1

det�G�LT�
4

L̂�=1�det L̂c

� �
	�0,	��0

�
det L̂		�

12 det L̂		�
21 det L̂		�

11 det L̂		�
22 �det L̂		�

jk 	4�−1

�� �
	�0,	��0

det L̂		�
1j det L̂		�

2j det L̂		�
j1 det L̂		�

j2 �2
. �28�

Using Eq. �18b�, definitions �23�–�26�, and the identity

ln det Ô=tr ln Ô, we can write for Eq. �28�

ln �W� = 2�
�=1

 �4� tr� ln
�L� + v1��L� + v2�

L��L� + 1�

− � tr� ln
�L� + 2v1��L� + 2v2�

L��L� + 2�
+ 4 tr� ln

L� + u

L�

− 2 tr� ln
�L� + v1 + u��L� + v2 + u�

L��L� + 1� �
− tr� ln

L�=1 + uc

L�=1
, �29�

where tr� denotes the trace in the coordinate space, tr� Ô
=�d�O�� ,��. The terms in Eq. �29� are grouped in such a
way that each is finite at a given �, i.e., does not diverge
with the length of the system.

In the Appendix, it is shown that each term in Eq. �29� can
be evaluated using the formula

tr� ln
�L� + U1��L� + U2�

L��L� + h�
= ln tt� = ln�� + h

�
t2, �30�

where the potentials U1��� and U2��� satisfy U1���=U2�−��,
U1�−�=0, U1��=h �for the potentials from Eq. �29�, the

parameter h takes on the values 0, 1, or 2	. The quantities t,
t� describe the �→ asymptotics of the two independent
solutions of the equation

�L̂� + U1���	� = 0. �31�

Namely, if we find the two solutions �1,2 whose asymptotics
at �→ ± are given by �1��→−��exp����� and �2��
→ +��exp�−��+h��, the parameters t and t� are given by
the coefficients in front of the growing exponentials in the
asymptotics of these solutions at opposite infinities,

�1��� � t exp��� + h��, �→  ,

�2��� � t� exp�− ����, �→ −  . �32�

The last equality in Eq. �30� holds since ��+ht=��t�; see
the Appendix for details. The case of a potential vanishing at
spatial infinities is recovered from Eq. �30� by setting h=0,
U1=U2=U, and t= t�:

tr� ln
L� + U

L�
= ln t . �33�

In order to find the parameters t and t� corresponding to
the potentials in Eq. �29�, we note that for each potential, Eq.
�31� has the general form
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−
d2�

d�2 + 
� −
�

cosh2 �
+
�

2
�1 + tanh ���� = 0, �34�

where the values of the parameters �, � depend on the spe-
cific potential. For example, the potentials u��� and v1��� in
Eq. �26� correspond to �=3 /4, �=0 and �=0, �=1, respec-
tively.

If one introduces the variable z= �1+tanh �� /2, and y�z�
=z−��/2�1−z�−��+�/2��z�, the above equation reduces to the
hypergeometric equation for y�z�:

z�1 − z�
d2y

dz2 + �c − �a + b + 1�z	
dy

dz
− aby = 0, �35�

where the parameters a, b, and c are given by the following
expressions:

c = 1 + �� ,

a =
1

2
�1 + �� + �� + � − �1 + 4�� ,

b =
1

2
�1 + �� + �� + � + �1 + 4�� . �36�

Using the properties of the hypergeometric functions
F�a ,b ,c ,z� �Ref. 23� and switching back to the original vari-
able �=arctanh�2z−1�, it is easy to show that the two inde-
pendent solutions �1,2 of Eq. �34� satisfying the desired
asymptotics, �1��→−�→exp����� and �2��→�
→exp�−��+h��, are given by

�1�z� = z��/2�1 − z���+�/2F�a,b,c,z� ,

�2�z� = z��/2�1 − z���+�/2F�a,b,a + b − c + 1,1 − z� .

�37�

The asymptotic behavior of �1��� at �→ + is

�1��→ + � �
��c���a + b − c�
��a���b�

e��+��, �38�

where ��x� is the Euler gamma function. Comparing Eq. �38�
with Eq. �32�, we find that the value of the coefficient t
entering Eq. �30� is given by

t =
��c���a + b − c�
��a���b�

, �39�

with a, b, c defined in Eq. �36�. Using Eqs. �30�, �33�, and
�39� and the identity ��x+1�=x��x�, we obtain the following
for �W� , Eq. �29�:

ln �W� = 2�
�=1

 �4� ln
 4���� + 1

��� + �� + 1�2

�2�����2��� + 1�

�4���/2 + �� + 1/2�
� − � ln
 4���� + 2

��� + �� + 2�2

�2�����2��� + 2�

�4���/2 + �� + 2/2�
�

− 2 ln
 16���� + 1

���� + �� + 1�2 − 1	2

�2�����2��� + 1�

�4���/2 + �� + 1/2 − 1/2�
� + 4 ln
 ��

�� − 1/4�
�2����

�2��� − 1/2�
��

+ ln���3 − �5

2
���3 + �5

2
�� � ln 0.08. �40�

One can check that the sum over � above converges, since
the summand behaves like �−3/2 for large �. The last equality
was obtained by performing the summation numerically.

We now complete the evaluation of �W by computing the

functional integral �d, defined in Eq. �27�. The operator L̂d

defined by Eqs. �23� and �25� has one zero eigenvalue. The
corresponding eigenfunction is 1 /cosh �. The fluctuations of
Re ds and Im ds in the numerator of Eq. �27� along this mode
correspond to the rotational and translational zero modes of
the soliton discussed at the end of Sec. III A.

Indeed, in the parametrization �Eq. �15�	, a soliton dis-
placement, Q0���→Q0��−�0�, by a small amount, �0

=x0 /LT, is described by the generator W�0
that can be ob-

tained from the condition

�Q � − ieiW0/2�W�0
e−iW0/2 = −

�Q0

��
�0,

where Q0 is given by Eq. �15� with W=0 and W0 from Eq.
�16� with i=0. From this equation, it follows that W�0

has the

same structure as W0, Eq. �8�, with matrix �̂ replaced by
�W�0

��T,−�T
12 defined as

�W�0
��T,−�T

12 = − i
0
d�0���

d�
�0.

Comparing this expression with Eq. �5�, we see that the soli-
ton translation corresponds to the diffuson fluctuation of the

form ds���=−i
d�0���

d� �0=−�i /cosh ���0. Along the same lines

D. A. PESIN AND A. V. ANDREEV PHYSICAL REVIEW B 76, 235108 �2007�

235108-8



of reasoning, it can be shown that the soliton rotation by the
angle �0, �→� /2+�0 in Eq. �9�, corresponds to ds���
= �1 /cosh ���0 and represents the other zero mode.

We separate the functional integral over ds in the numera-
tor of Eq. �27� into a product of integrals over the zero and
massive modes:

�d =

J� d�0� d�0� D�ds̃	exp�−
G�LT�

4
� d�ds̃

*�L̂�=1 + ud�ds̃�
� D�ds	exp�−

G�LT�
4

� d�ds
*L̂�=1ds� ,

where ds̃ contains the massive modes only and J denotes the Jacobian for the change of variables �ds�→ �d̃s ,�0 ,�0�. The
product of the Jacobian J and the ratio of the functional integrals in this expression can be evaluated using the following trick.
We introduce a regularized ratio �d��� of the functional integrals over ds in the last equation by infinitesimally shifting the
frequency � from unity, �→1+�, where � is positive. As a result, the zero modes acquire a finite mass and �d��� can be
written as

�d��� �
J� d�0� d�0 exp
−

�G�LT�
4

� d�

cosh2 �
��0

2 + �0
2�� � D�ds̃	exp�−

G�LT�
4

� d�ds̃
*�L̂�=1 + ud�ds̃�

� D�ds	exp�−
G�LT�

4
� d�ds

*L̂�=1ds� . �41�

On the other hand, this ratio of Gaussian integrals can be
calculated using Eqs. �33�, �39�, and �36�. In the limit of �
→0, we obtain

�d��� = det
L̂�=1+�

L̂�=1+� + ud

=
���1 + � − 1����1 + � + 2�

���1 + �����1 + � + 1�
�

4

�
.

�42�

To arrive at this expression, we set �=1+� in Eq. �36� and
used the fact that the potential ud corresponds to �=2 and
�=0. Integrating over �0 and �0 in Eq. �41� and comparing
the result with Eq. �42�, we conclude that �d can be written
as

�d =
2G�LT�
�

� d�0� d�0.

Substituting this expression into Eq. �27� and integrating
over �0, we obtain the following expression for �W:

�W = 4�W� G�LT� � d�0, �43�

with �W� given by Eq. �40�.

3. Integration over the electric potential fluctuations

We now turn to the evaluation of the functional integral
over the potential fluctuations, �V in Eq. �20�. The action for
the potential fluctuations is obtained by evaluating the
Gaussian average �SWV

2 �W in Eq. �20� with respect to the ac-
tion SWW in Eq. �18b�. The result of this tedious but straight-
forward calculation can be expressed in the form

SVV −
1

2
�SWV

2 �W

=
G�LT�

2 �
��0

� d�d��
�
a=1

p

Va
�����0

��� − ���Va
−�����

− �
a=1,2

Va
���������,���Va

−������ . �44�

Here, in the p−2 replicas not participating in the soliton
rotation, the dimensionless polarization operator �0

���−��� is
given by the usual expression

�0
��� − ��� =� dq

2�
eiq��−��� q2

��� + q2 , �45�

and in the remaining two replicas �a=1,2�, the dimension-
less polarization operators acquire a correction ����� ,���
due to the presence of a soliton,

�����,��� = cos
����

2
G1
���,���cos

�����
2

+ sin
����

2
G2
���,���sin

�����
2

− G0
��� − ��� .

�46�

In the last equation, we introduced the following Green’s
functions:

G0
��� − ��� = L̂���

−1 ,
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G1,2
� ��,��� = �L̂��� + v1,2 + u�−1, �47�

where the operator L� and the potentials v1���, v2���, and
u��� are defined in Eqs. �24� and �26�.

We note that the polarization operator in the presence of
the soliton, Eq. �44�, is diagonal in Matsubara frequencies.
This is a consequence of the fact that the soliton saddle point
is static. We also note that no inter-replica couplings between
the potential fluctuations are generated.

As an important consistency check, let us prove that

�
−



d���s
��0��,��� = 0, �48�

which must hold due to particle number conservation. The
polarization operator �0

� automatically satisfies this property,
as its Fourier transform is proportional to q. To prove that
��� satisfies the same condition, we note that �− d2

d�2 +v1

+u�cos
�0

2 =0 and �− d2

d�2 +v2+u�sin
�0

2 =0. Thus, we can write

�
−



d�������,��� = �
−



d�� cos
�0���

2
G1
���,���cos

�0����
2

+ �
−



d�� sin
�0���

2
G2
���,���sin

�0����
2

− �
−



d��G0
��� − ��� =

1

���
cos2 �0

2

+
1

���
sin2 �0

2
−

1

���
= 0, �49�

as expected.
Performing the Gaussian integral over V in Eq. �20� and

taking the number of replicas p to zero, we obtain

�V = �
��0

det2 �0
�

det2��0
� − ����

= exp�− 2 �
��0

tr� ln�1 − �����0
��−1	� . �50�

Due to the complicated form of ���, explicit evaluation of
this quantity is a daunting task. In particular, the method of
the previous section does not apply here because the polar-
ization operators are not represented by Schrödinger-type op-
erators. However, we note that the dimensionless polariza-
tion operators �0

� and �0
�−��� are independent of the

system parameters. Provided the sum over � in Eq. �50�
converges it is clear that �V is a parameter-independent nu-
merical factor. Below, we prove that the sum over � in the
exponent of Eq. �50� does converge and evaluate �V numeri-
cally.

To this end, we obtain the large-� asymptotics of the sum-
mand in Eq. �50�. This can be done by expanding the loga-
rithm in Eq. �50� to first order in �����0

��−1,

tr� ln�1 − �����0
��−1	 � − tr� ��

���0
��−1

= −� d�d�������,�����0
����−�

−1 .

�51�

Using the Fourier transform of �0
� from Eq. �45�, the above

trace can be written as

tr� ��
���0

��−1 =� dq

2�

� + q2

q2 � d�d��e−iq������,���eiq��.

�52�

We note that each of the two terms in the expression for
���, Eq. �46�, can be written as �0���G�� ,����0����, where
G�� ,��� is the resolvent of the operator ��− d2

d�2 +U� and �0 is
the zero mode of �− d2

d�2 +U�. The phase factors in the last
integral in Eq. �52� can be interpreted as a gauge transforma-
tion of the Green’s function G̃�� ,���=e−iq�G�� ,���eiq��= ��
+ � 1

i
d
d� +q�2+U�−1. Therefore, the integral can be written as

� d�d��e−iq������,���eiq�� =� d�d�� cos
�0���

2  1

� + q2 + 2q�1

i

d

d�
� −

d2

d�2 + v1 + u�
�,��

cos
�0����

2

+� d�d�� sin
�0���

2  1

� + q2 + 2q�1

i

d

d�
� −

d2

d�2 + v2 + u�
�,��

sin
�0����

2
−� d�

1

� + q2 . �53�

Then, we expand each of the first two kernels in the right
hand side of Eq. �53� in powers of �− d2

d�2 +v1,2+u

+2q� 1
i

d
d�

�	 / ��+q2� to the order that gives first nonvanishing

contribution to the entire integral. The zeroth order term van-
ishes in the same way as it happened in Eq. �49�, and so does

the first order one being proportional to cos
�0

2
d
d� cos

�0

2
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+sin
�0

2
d
d� sin

�0

2 � d
d� �1 /2�=0. Therefore, expansion to the

second order gives the first nonzero contribution, and we
arrive at

tr� ��
��K +�0

��−1 �� dq

2�

� + q2

q2 �− 4�
q2

�� + q2�3

�� d��cos
�0

2

d2

d�2 cos
�0

2

+ sin
�0

2

d2

d�2 sin
�0

2
�

�
1

2�3/2 . �54�

Equation �54� proves convergence of the sum over frequen-
cies in Eq. �50�. Therefore, we do not have to introduce any
additional regulators.

We can calculate �V numerically by expanding the loga-
rithm in Eq. �50� in �����0

��−1 and calculating the corre-
sponding traces. The explicit calculation shows that expan-
sion to the third order yields a precision better than a percent,
which is sufficient for our purposes. Proceeding this way, we
obtain �V�24. Combining �V with �W, expressed via �W�
and �d calculated in Eqs. �40� and �43�, we obtain the final
expression for �, determining the fluctuation integral �p=0,
Eq. �14�, needed to calculate the thermodynamics quantities:

� = 4�W� �V � 8. �55�

IV. NONPERTURBATIVE CORRECTIONS TO THE
THERMODYNAMIC QUANTITIES

In the previous section, we found the soliton saddle points
and showed that the functional integral over the fluctuations
about a single soliton configuration can be expressed in
terms of the integral over the soliton position, Eq. �14�. In
the present section, we use these results to obtain nonpertur-
bative corrections to the thermodynamic quantities at rela-
tively high temperatures, G�LT��1. We begin by consider-
ing the Nch→ limit in Sec. IV A and turn to the case of
large but finite Nch in Sec. IV B.

A. Infinite channel number

In the Nch→ limit, the Coulomb action �Eq. �2c�	 van-
ishes. In this case, the NL�M action has infinitely many
degenerate saddle points with spatially uniform potentials
characterized by the winding numbers wa, Va�x�=2�Twa,
with the usual saddle point, Q=�, corresponding to all wa
=0. The single soliton solutions, studied in Sec. III A, repre-
sent exact inhomogeneous saddle points with a finite action
G�LT� and correspond to a kinklike change of the electric
potentials Va�x� by ±2�T, Eq. �12�, in two of the replicas
involved in the soliton rotation. The spatial size of the kink is
given by the thermal diffusion length LT. In the dilute soliton
gas limit, which corresponds to G�LT��1, multisoliton
saddle points can be viewed as sets of such kinks separated
by distances much larger than LT. In this case, the action of a

multisoliton saddle point is given by the sum of single soli-
ton actions. Similarly, the functional integral over the mas-
sive modes factorizes into a product of fluctuational determi-
nants for each soliton. Thus, in the dilute regime, the soliton
gas is noninteracting. Noting that the sum over the saddle
points in Eq. �6� factorizes into a product of a sum over the
uniform saddle points and the sum over the soliton configu-
rations, we can easily find the multisoliton contributions to
the replicated partition function in the dilute soliton gas re-
gime,

�Zp� = Z0
p�

n=0


�2p�p − 1��p�pG�LT�e−G�LT�	n

n! �
i=1

n � d�0
�i�

= Z0
p exp�2p�p − 1��p�pG�LT�e−G�LT�L/LT	 . �56�

Here, Z0
p denotes the contribution of the homogeneous saddle

points to the replicated partition function, L /LT is the dimen-
sionless wire length, the factor of p�p−1� arises from the
number of ways the two replicas participating in the soliton
rotation can be chosen from the p replicas available, �0

�i� de-
notes the position of the ith soliton, and the factor of 2 arises
from taking the Cooperon-like and diffusonlike solitons into
account. Substituting this result into Eq. �1�, we obtain the
leading nonperturbative correction to the average thermody-
namic potential in the Nch→ limit:

�� = 2�G�LT�e−G�LT� L

LT
T , �57�

where � is defined in Eq. �55�.
The correction to the heat capacity can be obtained as

�C=−T
�2��

�T2 . Taking into account that the largest contribu-
tion comes from differentiating G�LT� in the exponential, we
obtain the ratio of �C to the heat capacity of noninteracting
electrons, C0= 2�2

3 �ATL,

�C
C0

= − 24�G2�LT�e−G�LT�. �58�

The analysis above was restricted to the charge neutrality
limit, Nch→. In the next section, we consider the case of a
large but finite number of channels in the wire. In this case,
the Coulomb action �Eq. �2c�	 may not be neglected. Its pres-
ence significantly modifies the behavior of the soliton gas.

B. Finite channel number

For Nch�1, the influence of the Coulomb action �Eq.
�2c�	 on the soliton shape and on the massive fluctuations
about the multisoliton configurations is small and may be
neglected. Therefore, each soliton configuration is still fully
characterized by the soliton positions and the indices of the
replicas participating in the soliton rotation. The Coulomb
action for each configuration is given by the term SC, Eq.
�2c�, evaluated for the specific potential profile Va�x� corre-
sponding to such a configuration.

For a single soliton situated at x0, the potential profile in
the two replicas participating in the rotation is represented by
a kink, V0�x−x0�, Eq. �12�, in one of the replicas and an
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antikink, −V0�x−x0�, in the other one. Thus, each soliton is
characterized by its position x0

�i� and the index of the replica
containing the kink, a+

�i�, and the antikink, a−
�i�. The potential

profile for each soliton configuration is given by

Va�x� = �
i

��a,a+
�i� − �a,a−

�i�	V0�x − x0
�i�� . �59�

Using this representation, the replicated partition function,
Eq. �6�, can be written as

�Zp� = Z̃0
p�

n=0


�2�p�pG�LT�e−G�LT�	n

n!

��
i=1

n � d�0
�i��

a±
�i�

exp�− SC���0
�i�,a±

�i���	 , �60�

where SC���0
�i� ,a±

�i��� denotes the Coulomb action �Eq. �2c�	
evaluated for a given soliton configuration ��0

�i� ,a±
�i��. Since

the Coulomb action diverges for any uniform saddle point
with wa�0, such saddle points are forbidden, and the factor

Z̃0
p, arising from the uniform saddle points, contains the con-

tribution only from the usual saddle point, Q=�, �wa=0�.
Equation �60� is valid in the dilute soliton gas regime,

G�LT��1, in which the typical intersoliton distance exceeds
the thermal diffusion length LT. In the following, we assume
that at these length scales, the Coulomb interaction is
screened due to the presence of a nearby gate, so that its

Fourier transform is given by K�q���1 /e2�ln� dg
2

d2
�, where dg

is of the order of the distance to the gate. This assumption
simplifies further calculations but does not reduce the gener-
ality of the results obtained below. Then, defining the kink
density �a��� in replica a,

�a��� = �
i

��� − �0
�i����a,a+

�i� − �a,a−
�i�	 , �61�

we can express the Coulomb action in Eq. �60� in the dilute
gas limit as

SC���0
�i�,a±

�i��� = −
�vF

32e2 ln
dg

d

G�LT�
Nch

��
a
� d�d���a����a������ − ��� . �62�

Equations �60�–�62� express the replicated partition func-
tion of the disordered wire as a partition function of a one-
dimensional replicated neutral gas of kinks and antikinks in-
teracting via a linear potential. Importantly, the positive and
negative charges in this gas occur only in pairs, such that the
appearance of a positive charge in one replica is accompa-
nied by the appearance of a negative charge in a different
replica at the same spatial position. This problem can be
mapped onto a one-dimensional replicated sine-Gordon
model.24 Below, we will not use this mapping but work in
the replicated kink gas representation.

Only the soliton configurations that correspond to a neu-
tral kink gas in each replica give a nonvanishing contribution

to the partition functions because all non-neutral configura-
tions possess an infinite Coulomb action. The density of the
kink gas is controlled by the fugacity, �pG�LT�e−G�LT�. De-
pending on its value, the kink gas can be in two different
regimes. At high temperatures, for G�LT�� ln Nch, the gas is
dimerized. In other words, the kinks within each replica form
a dilute gas of bound pairs of a kink and an antikink. At
lower temperatures, ln�Nch��G�LT��1, the kink pairs over-
lap and form an ionized plasma. The dilute soliton gas ap-
proximation used to derive Eq. �60� is valid in both of these
cases. We restrict our analysis below to the high-temperature
regime, G�LT�� ln Nch.

For G�LT��1, Eq. �60� may be viewed as an expansion of
the replicated partition function in the powers of the fugacity,
�pG�LT�e−G�LT�. In the presence of the Coulomb action, the
single soliton contribution to the partition function vanishes,
since the corresponding Coulomb action is infinite. There-
fore, the leading term in this expansion is given by the con-
tribution of two solitons which corresponds to two kink-
antikink pairs in different replicas. We shall refer to this
object as a dimer.

To evaluate the contribution of a single dimer into the
replicated partition function we express the Coulomb action
�Eq. �62�	 in terms of the kink-antikink separation within the
dimer, �rel, and substitute the result into Eq. �60�. Denoting
the dimer center of mass coordinate by �cm, summing over all
possible pairs of replicas that can accommodate the dimer,
and recalling that each soliton can be either Cooperon-like or
diffusonlike, we obtain

�Zp� = Z̃0
p�1 + 4p�p − 1��p�p

2G2�LT�e−2G�LT�

�
1

2!
�

0

L/LT

d�cm�
−



d�rele
−��rel�LT/LN� , �63�

where we introduced the notation

LN =

8e2 ln
dg

d

�vF

Nch

G�LT�
LT �64�

that has the meaning of the typical kink-antikink separation
within each dimer. Since LN�LT /�T
el, where 
el is the elas-
tic mean free time, this length scale is much larger than LT
within the validity domain of the NL�M description. There-
fore, the dilute soliton gas approximation is justified. Per-
forming the integrals over �cm and �rel in Eq. �63�, we get

�Zp� = Z̃0
p�1 + 4p�p − 1��p�p

2 LLN

LT
2 G2�LT�e−2G�LT�� .

�65�

This expression shows that the single dimer contribution to
the partition function diverges as the length of the wire L
goes to infinity. From the second term, we infer that the
spatial density of dimers is �

LN

LT
2 G2�LT�e−2G�LT�. In the regime

G�LT�� ln Nch, this density is smaller than 1 /LN, and multi-
soliton configurations appear as a dilute gas of dimers.
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Since the dimers in the dilute limit do not interact, the
integration over all dimer configurations results in exponen-
tiation of the correction arising from a single dimer, second
term in Eq. �65�,

�Zp� = Z̃0
p
�

n=0


1

n!
�4p�p − 1��p�p

2 LLN

LT
2 G2�LT�e−2G�LT��n�

= Z̃0
pe4p�p−1��p�p

2�LLN/LT
2�G2�LT�e−2G�LT�

. �66�

Using Eq. �1� and definition �64�, we get the expression
for the leading nonperturbative correction for the thermody-
namic potential:

�� =
32

�
�2 e2

vF
ln

dg

d
NchG�LT�e−2G�LT� L

LT
T , �67�

where � is defined in Eq. �55�. Using this expression, we
obtain the ratio of the nonperturbative correction to the heat
capacity to that of noninteracting electrons,

�C

C0
= −

384

�
�2 e2

vF
ln

dg

d
NchG2�LT�e−2G�LT�. �68�

Equations �67� and �68� are the main results of this paper.
These results are drastically different from expressions �57�
and �58� obtained by taking the formal Nch→ limit. We
note that the corrections for the thermodynamic potential for
infinite and finite Nch, Eqs. �57� and �67�, become of the
same order at G�LT�� ln Nch, when the dimer gas crosses
over into the ionized regime.

V. SUMMARY

We studied nonperturbative interaction corrections to the
thermodynamic quantities of a multichannel disordered wire.
Within the replica NL�M formalism, these corrections arise
from soliton saddle points of the NL�M action. In the limit
of infinite number of channels Nch in the wire, we obtained
the exact single soliton solution of the saddle point equations
and evaluated the function integral over the fluctuation about
the soliton configuration. We showed that for G�LT��1 and
Nch�1, nonperturbative corrections to the thermodynamic
quantities of the system are described by a partition function
for a dilute gas of solitons. The latter is equivalent to the
partition function for a replicated classical one-dimensional
Coulomb gas. As the temperature is lowered, this gas under-
goes a crossover from the dimerized regime of neutral soli-
ton pairs at G�LT�� ln Nch to the regime of ionized plasma
for G�LT�� ln Nch. The crossover G�LT�� ln Nch�1 occurs
at temperatures that are parametrically larger than those cor-
responding to the transition from weak to strong localization,
G�LT��1. This enables one to study this crossover sepa-
rately from the perturbative effects. We specialized on the
high-temperature regime, G�LT�� ln Nch, and obtained the
leading nonperturbative correction to the specific heat �rela-
tive to that of noninteracting electrons�, �C /C0
�NchG

2�LT�e−2G�LT�, Eq. �68�. We would like to emphasize
that this correction is drastically different from the result
obtained by taking the formal limit Nch→, Eq. �58�,

�C /C0�G2�LT�e−G�LT�. It is worth noting that these correc-
tions are sensitive to the magnetic field. It can be shown17

that the magnetic field suppresses the Cooperon-like solitons,
thus decreasing the correction magnitude.

Although our treatment was specialized to the symplectic
ensemble, we believe that the mapping of the nonperturba-
tive corrections to the soliton gas and to the replicated Cou-
lomb gas, described by Eqs. �60�, holds for all three en-
sembles. Indeed, the existence of soliton minima is generic
for all three ensembles.15 The mapping to the replicated clas-
sical Coulomb gas relies only on the fact that the functional
integral over the fluctuations about a single soliton configu-
ration can be reduced to the integral over the soliton position,
Eq. �14�. This, in turn, is a consequence of the fact that the
integral over the massive modes converges, which we expect
to be true for all ensembles.

The generalization of our formalism to the treatment of
nonperturbative corrections to the transport characteristic is
left for future work.
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APPENDIX: DERIVATION OF EQUATION (30)

In Sec. III B 2, we encountered expressions containing
determinants of Schrödinger-type operators of the form

ln D0 = tr� ln

� −
d2

d�2 + U

� −
d2

d�2

, �A1a�

ln Dh = tr� ln
�� −

d2

d�2 + U1��� −
d2

d�2 + U2�
�� −

d2

d�2 + h��� −
d2

d�2� , �A1b�

where U��� is a potential that vanishes at �→ ± and U1,2���
are steplike potentials, satisfying U1���=U2�−��, U1�−�=0,
and U1��=h.

As explained in the text above, Eq. �33�, the trace in Eq.
�A1a� can be obtained as a particular case of that in Eq.
�A1b�. Therefore, we concentrate our attention on the latter.
We first rewrite Eq. �A1b� as

ln Dh = tr� ln

� −
d2

d�2 + U1

� −
d2

d�2 + h 

+ tr� ln

� −
d2

d�2 + U2

� −
d2

d�2 + h�1 − �

+ tr� ln
�� −

d2

d�2 + h ��� −
d2

d�2 + h�1 − ��
�� −

d2

d�2 + h��� −
d2

d�2� ,

�A2�
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where  ��� is the step function. The third term does not
depend on the potentials and can be calculated explicitly,
which is done at the end of this appendix. The first two terms
are equal since U1���=U2�−��. We denote each of them as
ln Dh1 and proceed to the calculation this quantity.

To compute

ln Dh1 = tr� ln

� −
d2

d�2 + U1

� −
d2

d�2 + h 

, �A3�

we represent the potential U1��� as a sum U1���=h ���
+v���, where v��� vanishes at spatial infinities and express
the variational derivative of ln Dh1 with respect to v��� in
terms of the Green’s function G�� ,���= ���− d2

d�2 +U1�−1��,��,

� ln Dh1

�v���
=
�tr� ln G−1

�v���
= G��,�� . �A4�

The Green’s function G�� ,��� can be found by solving the
differential equation


� −
d2

d�2 + U1����G��,��� = ��� − ��� , �A5�

with the boundary conditions that G�� ,��� vanishes at spatial
infinities � ,��→ ±. It can be expressed23 in terms of the
two independent solutions of the homogeneous equation


� −
d2

d�2 + U1�����i��� = 0, �A6�

such that �1��→−�→0 and �2��→ +�→0. In particular,
at coinciding points, we have

G��,�� =
�1����2���

W��1���,�2���	
, �A7�

where W��1��� ,�2���	 is the Wronskian of �1��� and �2���,

W��1���,�2���	 =
d�1���

d�
�2��� − �1���

d�2���
d�

. �A8�

The Wronskian of the two independent solutions of Eq. �A6�
does not depend on coordinate � and, therefore, may be ex-
pressed in terms of the �→ ± asymptotics of �i���. By
appropriately normalizing the solutions, we can express the
latter as

�1��� = � ek�, �→ − 

te!�, �→ 
�, �2��� = �t�e−k�, �→ − 

e−!�, �→ 
� ,

�A9�

where k=��, !=��+h, and t, t� depend on the specific form
of the operator in Eq. �A6�. Evaluating the Wronskian at
�→ ± using the asymptotics �Eq. �A9�	, we obtain

W��1���,�2���	 = 2!t = 2kt�. �A10�

Next, we prove that

� ln Dh1

�v���
=
� ln t

�v���
. �A11�

To this end, we introduce an auxiliary construction

W̃��1���,�̃2���	 =
d�1���

d�
�̃2��� − �1���

d�̃2���
d�

.

�A12�

Here, �1 and �̃2 are solutions of Eq. �A6� with the same �,
but for two different potentials v��� and ṽ���, both of which
vanish at �→ ±. The tilde denotes quantities corresponding
to ṽ. We assume that �1 and �̃2 have the asymptotic form
�Eq. �A9�	, with �̃2 characterized by t̃�.

In contrast to the Wronskian W��1��� ,�2���	, built out of
the solutions of the same equation, the quantity

W̃��1��� , �̃2���	 depends on the coordinate and satisfies the
differential equation

dW̃���
d�

=
d2�1���

d�2 �̃2��� − �1���
d2�̃2���

d�2 = �v��� − ṽ���	�1�̃2

�A13�

that follows directly from Eq. �A6� for �1 and �̃2.
Integrating Eq. �A13� with respect to � from − to  and

using the asymptotic form of �1 and �̃2, Eq. �A9�, we obtain

W̃�� − W̃�− � = �
−



d��v − ṽ��1�̃2 = 2!t − 2kt̃�.

�A14�

Taking a variational derivative of this equation with respect
to v��� at v���= ṽ���, we obtain

�1����2��� = 2!
�t

�v���
. �A15�

Plugging Eqs. �A10� and �A15� into Eq. �A7� for the Green’s
function and using Eq. �A4�, we obtain Eq. �A11�.

Integrating Eq. �A11� with respect to v from v���=0 to its
final value, we obtain

ln Dh1 = ln
t

t0
, �A16�

where t0 is the coefficient in front of e!� in asymptotic form
�Eq. �A9�	 of �1 for v���=0. The latter can be easily found
from the continuity of the logarithmic derivative
d ln �1��� /d� at �=0 and is given by t0= �1+k /!� /2.

Finally, the third term in Eq. �A2� can be calculated in the
following manner. We denote this term by T3��� and intro-
duce the Green’s functions g0, gh, and g± that vanish at
� ,��→ ± and satisfy the equations

�� −
d2

d�2�g0 = ��� − ���, �� −
d2

d�2 + h�gh = ��� − ��� ,

�� −
d2

d�2 + h �g+ = ��� − ��� ,
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�� −
d2

d�2 + h�1 − ��g− = ��� − ��� . �A17�

Taking the derivative of T3��� with respect to �, we ob-
tain

�T3

��
= �

−



d��g+��,�� + g−��,�� − g0��,�� − gh��,��	 .

�A18�

All Green’s functions entering this equation are easily calcu-
lated using the method of Wronskian, as was done above for
a general potential. Specifically, we obtain the following ex-
pressions for the Green’s function at coinciding points:

g0��,�� =
1

2k
, gh =

1

2!
, g− = g+�− �,− ��� ,

g+��,�� = �− ��� 1

2k
+

k − !

2k�k + !�
e2k��

+ ���� 1

2!
+

! − k

2!�k + !�
e−2!�� . �A19�

Keeping in mind that T3��→�→0, we can express it as

T3���=−��
d��

�T3����

���
. Substituting expressions �A17� for the

Green’s functions into Eq. �A18�, we obtain

T3 = ln
!t0

2

k
, �A20�

with t0 defined below Eq. �A16�.
Substituting Eqs. �A20� and �A16� into Eq. �A2�, we ob-

tain the final expression for the trace in Eq. �A1b�,

tr� ln
�� −

d2

d�2 + U1��� −
d2

d�2 + U2�
�� −

d2

d�2 + h��� −
d2

d�2�
= 2 ln Dh1 + T3 = ln�� + h

�
t2 = ln tt�, �A21�

where in the last expression we used ��+ht=��t� to write a
more symmetric expression, in which t and t� are defined in
Eq. �A9�. This proves Eq. �30�.
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